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Abstract

The application of the Partition of Unity Method (PUM) to signal approximation on graphs represents a recent advance-
ment of this versatile and efficient interpolation technique. Given the novelty of this approach, little is yet known regarding
the role of kernel parameters employed in constructing the associated Graph Basis Functions (GBFs). In order to shed light
on this aspect, this study proposes several numerical tests obtained using GBFs generated by heat kernels and variational
spline kernels.
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1. Introduction

The interest in the field of signal sampling and approximation on graphs has been growing in recent
years [1–7] due to the numerous possible applications, ranging from retrieving information on web traffic
signals [8] to analyzing road traffic in urban areas of arbitrarily complex shapes [9]. Among the various
methods proposed in recent years, the Partition of Unity Method (PUM) stands out for its computational
efficiency and versatility [10,11]. Thanks to the approach derived from kernel-based interpolation [12–15]
and the efficiency of signal reconstruction from local approximations, computation times and errors pro-
duced are extremely limited [10,13]. Moreover, this holds true even in the case of highly intricate networks.
In this study, the Minnesota graph is examined as an exemplary instance of formidable complexity and
size. This graph boasts 2642 vertices and 3304 edges, and the experiments conducted on it are readily
comparable to others found in the literature [10,11]. The choice of kernels used for constructing the Graph
Basis Functions (GBFs) [16] is a crucial step in implementing a PUM algorithm. We have opted to exper-
iment with two of the most promising functions in the literature, i.e. the variational spline [17] and heat
kernels [18,19]. Still, very little is known about the relationship between the parameters of these kernels
and the efficiency of the method. Therefore, after a brief introduction to the fundamental concepts, we
present interpolation errors and computation times observed as specific kernel parameters vary, revealing
interesting novel insights into the behavior of the interpolant. A comparison between the two kernels is
performed as well.

The paper is organized as follows. Section 2 contains the preliminaries about graph theory. Section 3
introduces kernel-based interpolation, while Section 4 focuses on graph-signal interpolation with positive
definite GBFs. Section 5 describes the PUM and the algorithms implemented. In Section 6 a large and
extensive numerical investigation about the interpolant behaviour depending on the kernel parameters
is presented. The paper concludes with Section 7, where we summarize our conclusions and propose
directions for future work, setting the stage for subsequent advancements in the field.
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2. Preliminaries on graph theory

In this section, basic concepts on graph theory will be briefly introduced. Interested readers may refer
to [20–22] for further insights.

Definition 2.1 (Graph). A graph is defined as a set of vertices V (or nodes) and pairs B ∈ V × V ,
called edges or links, which represent the connections between vertices.

Definition 2.2 (Directed and Undirected Graphs). A graph is termed “undirected” if the presence
of the element (m,n) in the set of edges B ∈ V ×V implies the presence of the element (n,m). Graphically,
this means that the segments connecting the vertices are not oriented.

Definition 2.3 (Adjacency Matrix). Given a graph G with vertices V and edges B, the adjacency
matrix of G is the matrix A with entries:

(1) Am,n =

{
1 if (m,n) ∈ B,

0 if (m,n) ̸∈ B.

For a given set V , a graph with vertices V is completely determined by its adjacency matrix. In the
case of an undirected graph, the adjacency matrix is symmetric:

(2) A = AT .

If the graph is weighted, additional concepts can be introduced.

Definition 2.4 (Weight Matrix). Let G be a graph with N > 0 vertices. The weight matrix of G is
defined as the matrix W ∈ M(N,N) with entries Wm,n corresponding to the weights between the edges
m and n.

In this more general case, an element Wm,n = 0 in the matrix W indicates that the edge between
vertices m and n does not exist, while a non-zero element of the matrix describes the edge between the
two vertices and its corresponding weight. Similarly to the matrix A, W is also symmetric for undirected
graphs:

W = W T .

Thanks to these definitions, it is possible to transform any instance of an unweighted graph into a weighted
graph, where every non-zero weight is set to 1.

Now, we can proceed to define the degree matrix and the Laplacian.

Definition 2.5 (Vertex Degree). Given a vertex v ∈ V , the degree of v is defined as the number of
edges connected to it.

Definition 2.6 (Degree Matrix). The degree matrix for an undirected graph is defined as the diagonal
matrix D with entries:

(3) Dm,m =
∑
n

Wm,n.

If the graph is unweighted, Dm,m is simply equal to the number of edges connected to the m-th vertex.

Definition 2.7 (Laplacian Matrix). The Laplacian matrix (or simply Laplacian) L of a graph is de-
fined as the matrix obtained by subtracting the degree matrix from the weight matrix:

L = D −W.

For undirected graphs, L is symmetric.

Definition 2.8 (Normalized Laplacian). The normalized Laplacian matrix for a graph is defined as:

LN = D− 1
2 (D −W )D− 1

2 .
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2.1. Signals and spectral theory overview

Given a graph G with the set of vertices V , a signal on G is a real or complex-valued function
x : V → R. Since the vertices V are ordered, the signal can be vectorized as follows:

x = [x(v1), x(v2), . . . , x(vn)]
T .

The set of such functions on a graph forms an n-dimensional vector space denoted as L(G), on which it
is natural to define the inner product:

yTx :=
n∑

i=1

x(vi)y(vi),

where x, y ∈ L(G), and vi ∈ V for all i ∈ {1, . . . , n}. An orthonormal basis for the space L(G) is formed by
the vectors {δv1 , . . . , δvn}, where δvj (vi) = δi,j for i, j ∈ {1, . . . , n}. There are two approaches to address
the Fourier transform of a signal on a graph: decomposing the signal through the eigenvectors of either
the adjacency matrix or the Laplacian.

2.2. The Fourier transform via the adjacency matrix

Definition 2.9 (Graph Fourier Transform). The Fourier transform of a graph signal x is defined
as:

(4) x̂ = U−1x,

where U is the matrix composed of the eigenvectors of the adjacency matrix (arranged in columns).

If U−1 = UT , the k-th element of x̂, denoted x̂(k), is a projection of the signal onto the k-th eigenvector:

(5) x̂(k) =

N−1∑
n=0

x(n)uk(n).

Thus, the Fourier transform on graphs can be interpreted as a decomposition of the signal onto the set
of eigenvectors, which form an orthonormal basis.

Definition 2.10 (Inverse Graph Fourier Transform). The inverse Fourier transform of a graph
signal is defined as the function:

(6) x = Ux̂,

where U is the matrix composed of the eigenvectors of the adjacency matrix and x̂ is the Fourier transform
of the signal x.

Analogously to the previous case, we can write:

(7) x(n) =
N−1∑
n=0

x̂(k)uk(n).

2.3. The Fourier Transform via the Laplacian

Analogously to what was seen in the previous section, it is also possible to perform the spectral
decomposition of a signal on a graph using the Laplacian L = UΛU−1.

Definition 2.11 (Fourier Transform via the Laplacian). The Fourier transform of a signal x on a
graph G via the Laplacian is defined as the vector:

x̂ = U−1x,

where U is the matrix composed of the eigenvectors of the Laplacian (arranged in columns).
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The inverse transform can be introduced easily as well.

Definition 2.12 (Inverse Fourier Transform via the Laplacian). Let x be a signal on a graph G,
and let x̂ be its Fourier transform computed through the spectral decomposition of the Laplacian. The
inverse Fourier transform of x̂ is:

x = Ux̂,

where U is the matrix composed of the eigenvectors of the Laplacian.

Further information on graph theory is available in [21–23].

2.4. Convolution

The Fourier transform allows us to define the convolution operation between signals on a graph.

Definition 2.13 (Convolution product). Let x, y ∈ L(G) be signals on the graph G. The convolution
operation between x and y is defined as follows:

x ∗ y := U(Mx̂ŷ) = UMx̂U
T y,

where Mx̂ is the diagonal matrix Mx̂ = diag(x̂).

2.4.1. Properties

The following properties hold for the convolution product on graphs:

• x ∗ y = y ∗ x,
• (x ∗ y) ∗ z = x ∗ (y ∗ z) ,
• (x+ y) ∗ z = x ∗ z + (y ∗ z),
• (αx) ∗ y = α(y ∗ x), ∀α ∈ R.

The identity element for this operation is the element f⊮ =
∑n

i=1 ui. An operator of convolution Cx can
be defined as follows:

Cx = UMx̂U
T .

Remark 2.1. If the eigenvalues of the Laplacian are not simple, the eigenvectors Ĝ = {u1, . . . , un} are
not uniquely determined. This ambiguity is problematic for the definition of convolution. To overcome
the problem, two solutions are possible:

i) Assume that the set of eigenvectors Ĝ is fixed in advance;
ii) Define convolution uniquely on functions x that have an invariant action on the Laplacian’s

eigenspace of the graph.

3. Kernel-based interpolation on graphs

In order to introduce the PUMs, it is useful to provide a brief introduction to the theory of kernel-
based interpolation. A more in-depth review of the topic can be found in [24]. For these techniques,
symmetric functions K : V × V → R on a graph G are used, meaning that K(v, w) = K(w, v) for all
v, w ∈ V . Such a kernel allows to introduce a linear operator K : L(G) → L(G) as follows:

Kx(vi) =

n∑
j=1

K(vi, vj)x(vj),
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where x is a signal in the space L(G). The operator K can be represented by the symmetric matrix
K ∈ Rn×n:

K =


K(v1, v1) K(v1, v2) . . . K(v1, vn)
K(v2, v1) K(v2, v2) . . . K(v2, vn)

...
...

. . .
...

K(vn, v1) K(vn, v2) . . . K(vn, vn)

 .(8)

Now, it is necessary to define positive definite, semi-positive definite, and conditionally positive definite
kernels.

Definition 3.1 (Positive Definite Kernel). A symmetric kernel K is positive definite if the matrix
K ∈ Rn×n is strictly positive definite, i.e., if xTKx > 0 for all x ∈ Rn, x ̸= 0.

Definition 3.2 (Semi-Positive Definite Kernel). A symmetric kernel K is semi-positive definite
(p.s.d.) if the matrix K ∈ Rn×n is semi-positive definite, i.e., if xTKx ≥ 0 for all x ∈ Rn.

Definition 3.3 (Conditionally Positive Definite Kernel). A symmetric kernel K is called condi-
tionally positive definite with respect to a subspace Y ⊂ L(G) if it is positive definite on Y.

By means of every positive definite kernel, it is possible to endow the space L(G) with the following
inner product:

⟨x, y⟩K = yTK−1x, x, y ∈ L(G).

In the literature the resulting space is often called the native space and denoted as NK . This is a Hilbert
space with reproducing kernels, where K is precisely the reproducing kernel. It holds the property:

⟨x,K(·, vj)⟩ = xTK−1K(·, vj) = x(vj), for every x ∈ L(G).

A positive definite kernel K can be used to solve interpolation problems in spaces generated by a linear
combination of columns of the matrix K calculated at interpolation nodes.

3.1. Interpolation via positive definite kernels

Given signals x(w1), . . . , x(wN ) on a subset W = {w1, . . . , wN} ⊂ V , with N ≤ n, we want to find an
interpolating signal IWx ∈ L(G) that satisfies the condition:

IWx(wk) = x(wk), for every k ∈ {1, . . . , N}.(9)

at nodes in W . A positive definite kernel can be applied to solve this problem. Considering as a basis for
interpolating functions the columns of the matrix K in (8), the interpolant IWx has the form:

IWx(v) =

N∑
k=1

ckK(v, wk),

where the coefficients are found by solving the linear system

(10)


K(w1, w1) K(w1, w2) . . . K(w1, wn)
K(w2, w1) K(w2, w2) . . . K(w2, wn)

...
...

. . .
...

K(wN , w1) K(wN , w2) . . . K(wN , wn)


︸ ︷︷ ︸

KW


c1
c2
...
cN

 =


x(w1)
x(w2)

...
x(wN )

 .
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Since K is positive definite, the submatrix KW is positive definite by the inclusion principle (for further
details, see [25] Theorem 4.3.15). Then the system (10) has a unique solution, and the signal IWx can be
uniquely written using the introduced basis. The resulting interpolation space is given by

NK,W = {x ∈ L(G)|x(v) =
N∑
k=1

ckK(v, wk)}.

The following result quantifies the goodness of approximation and justifies the popularity of Hilbert
spaces with reproducing kernels in the field of signal approximation.

Theorem 3.1. The interpolant IWx of x makes the norm of the native space || · ||K minimum with
respect to any possible interpolant of x in L(G) on the nodes W .

Additional results justifying the popularity of kernel-based interpolation can be found in [26].

3.2. Interpolation via conditionally positive definite kernels

Let K be a conditionally positive definite kernel with respect to a subspace Y. Suppose Y ⊥, the
orthogonal complement, has an orthonormal basis {y⊥1 , . . . , y⊥M} with M sufficiently small. Then the
augmented kernel can be defined as:

K(δ)(v, w) = K(v, w) + δ

(
M∑
i=1

y⊥i (v)y
⊥
i (w)

)
.

If the relationship δ > |λmin(K)| ≥ 0 holds, where λmin is the smallest eigenvalue of K, then the kernel
K(δ) is everywhere positive definite and the previously illustrated procedure can be applied. Then it is
possible to find an interpolation signal x ∈ NK(δ),W such that (9) is satisfied. The interpolant IWx(v)
has the form:

IWx(v) =
N∑
k=1

ckK(v, wk) +
M∑
i=1

diy
⊥
i (v), with di = δ

N∑
k=1

cky
⊥
k (wk),

where the coefficients ck are the solution of (10) with respect to the kernel K(δ).

4. Graph signal interpolation with positive definite GBFs

This section will briefly cover GBFs and their application in signal approximation on a graph. These
methods represent the next step in defining the PUM.

Definition 4.1 (Positive Definite GBF). Consider a graph G with the set of vertices V =
{v1, . . . , vn} and edges B ⊆ V × V . A GBF is defined as positive definite if the matrix

(11) Kf =


Cδv1

f(v1) Cδv2
f(v1) . . . Cδvnf(v1)

Cδv1
f(v2) Cδv2

f(v2) . . . Cδvnf(v2)
...

...
. . .

...
Cδv1

f(vn) Cδv2
f(vn) . . . Cδvnf(vn)


is symmetric and positive definite. Here, {δv1 , . . . , δvn} denotes the standard unit basis of L(G), while the
convolution operator C in (11) is the operator defined in Subsection 2.4.

Property 4.1.

(a) A GBF f is positive definite if and only if f̂k > 0 for all k ∈ {1, . . . , n}.
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(b) The kernel Kf (v, w) := Cδwf(v) can be decomposed by Mercer’s theorem into orthonormal eigen-
vectors:

Kf (v, w) = Cδwf(v) =
n∑

k=1

f̂kuk(v)uk(w).

(c) The operator Kf can be written as:

Kf = UMf̂U
T .

(d) A positive definite GBF induces an inner product as follows:

(12) ⟨x, y⟩Kf =
n∑

k=1

x̂kŷk

f̂k
= ŷTM 1

f̂
x̂,

and a norm:

||x||Kf :=

√√√√ n∑
k=1

x̂2k
f̂k

.

With the previously defined inner product, the space L(G) becomes a Hilbert space with reproducing
kernels.

4.1. Examples of positive definite GBFs

Two notable examples of positive definite functions on graphs are presented below:

I) Variational splines on graphs are based on the following kernel:

Kf(ϵIn+L)−s = (ϵIn + L)−s =
n∑

k=1

1

(ϵ+ λk)s
uku

T
k .(13)

For ϵ > −λ1 and s > 0, (13) is positive definite. Variational spline kernels are presented in [27]
as interpolants that minimize the energy functional xT (ϵIn + L)sx. They can be used as GBF
interpolants based on the function with Fourier transform:

f̂(ϵIn+L)−s =

(
1

(ϵ+ λ1)s
, . . . ,

1

(ϵ+ λn)s

)
.

II) Heat (or diffusion) kernels are defined on a graph through Mercer’s decomposition:

(14) Kf
e−tL

= e−tL =
n∑

k=1

e−tλkuku
T
k ,

where λk, k ∈ {1, . . . , n} are the eigenvalues of the Laplacian of the considered graph. This kernel
is positive definite for every t ∈ R. The corresponding GBF is uniquely determined by the Fourier
transform

f̂e−tL = (e−tλ1 , . . . , e−tλn).

4.2. Error estimation

In this paragraph, we will use the notation chosen in [13]: IWx denotes the GBF interpolant of the
signal x at nodes W . The space of interpolating GBFs is generated by the translates Cejk

of the GBFs:

NKf ,W =

{
x ∈ L(G)|x =

N∑
k=1

ckCejk
f

}
.
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The inner product and norm on this space are:

⟨x, y⟩Kf
=

n∑
k=1

x̂kŷk

f̂k
= ŷTM1/f̂ x̂ and ||x||Kf

=

√√√√ n∑
k=1

x̂2k
f̂k

.

To estimate the error |x(v)− IWx(v)|, it is necessary to introduce the norming sets.
Let L(G) be an auxiliary space, consisting of signals BM with limited bandwidth on G, and SW and

BM be the following projection operators on L(G):

SWx(v) =

{
x(v) if v ∈ W,

0 otherwise,
and BMx =

M∑
k=1

(uTk x)uk.

The map SW maps the signal x onto W ⊂ V , while BM is a projection operator onto the space BM of
functions with limited bandwidth.

Definition 4.2 (Norming Set). A norming set of the subspace BM ⊂ L(G) is defined as a subset
W = {w1, . . . , wN} of V such that the operator SWBM is injective on BM.

The requirement of injectivity is due to the necessity that the inverse (SWBM )−1 be well-defined on the
image SW (BM ) = SWBM (L(G)). Moreover, the norming constant of the set W is defined as the operator
norm:

||(SWBM )−1|| = sup
z∈SW (BM ),||z||≤1

||(SWBM )−1z||.

There exists a simple criterion to determine whether W is a norming set of BM.

Theorem 4.2. The set W is a norming set of BM if and only if the spectral norm of the matrix
BM (In − SW )BM is strictly less than 1. The norming constant of the set W is bounded as follows:

||(SWBM )−1|| ≤ 1

1− ||BM (In − SW )BM ||
.

Now we can introduce the main error result presented in [13].

Theorem 4.3. Let f ∈ P+ (space of positive definite functions) and W ⊂ V be a norming set for the
space BM on graph G. Then the following error estimation holds for the GBF interpolation of a signal x
using the interpolant IWx ∈ NW,Kf

:

max
v∈V

|x(v)− IWx(v)| ≤ (1 + ||(SWBM )−1||)

(
n∑

k=M+1

f̂k

) 1
2

||x||Kf
.

The error estimation depends on three factors: the constant ||(SWBM )−1||, the sum
∑n

k=M+1 f̂k, and
the norm of the native space ||x||Kf

. Such factors, in turn, depend on the set W , the bandwidth M , the

Fourier coefficients f̂k, and the signal x. In particular, the choice of f and W should take into account
the following points:

1. The set W and the bandwidth M determine the constant ||(SWBM )−1||. If the complexity of W
is excessively reduced or if the nodes in W do not effectively separate the signals in the space
BM , the norming constant could be high or even infinite. Therefore, the choice of W should take
into account the value of ||(SWBM )−1|| for large M .

2. As M increases, the value of ||(SWBM )−1|| increases while
∑n

k=M+1 f̂k decreases. Hence, there is
a trade-off between these two values in terms of bandwidth M .
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3. For Fourier coefficients with rapid decay f̂k, the sum
∑n

k=M+1 f̂k exhibits the same behavior.
However, if the signal x is not sufficiently regular, Fourier series with rapid decay can lead to
rather high norms ||x||Kf

. The choice of the appropriate GBF f must therefore take into account
this trade-off.

Then, the following result holds:

Corollary 4.4. Under the same assumptions as Theorem 4.3, the following estimates hold:

• If f̂k ≤ C1k
−s, s > 1, then:

max
v∈V

|x(v)− IWx(v)| ≤
√

C1

s− 1
(1 + ||(SWBM )−1||)M− s−1

2 ||x||Kf
.

• If f̂k ≤ C2e
−tk, t > 0, then:

max
v∈V

|x(v)− IWx(v)| ≤
√

C2

1− e−t
(1 + ||(SWBM )−1||)e−

t
2
(M+1)||x||Kf

.

5. The partition of unity method on graphs

The PUM is a rather effective tool when dealing with extensive datasets. The idea of the method is to
partition the closed and bounded domain under examination into specific subdomains or communities in
which local interpolants are sought. Through the use of local interpolants and a given partition of unity
(a family of functions with particular properties), the global interpolant is obtained [10].

5.1. Graph partition

In order to apply the PUM to a connected graph, it is necessary to divide it into a suitable set of
subdomains. In this section, an algorithm for finding the appropriate subdomains for the PUM will be
presented. The general problem of ideal graph partitioning into subgraphs and community detection is
an open problem not addressed in many articles. One interesting solution is provided in [11], while the
interested reader may find an overview of the topic in [28]. In this section, we will briefly only present
the method proposed in [10] and based on the works [29,30]. The chosen strategy is as follows. Given a
connected graph G, we want to obtain J subgraphs Cj , j = {1, . . . , J} such that:

V =
J⋃

j=1

Cj , Cj ∩ Cj′ = ∅, ∀j′ ̸= j ∈ {1, . . . , J}.

Now, considering a metric d on the graph, we need to find j reference nodes for the partitions Cj , called
centers. In j-Center Clustering (see [31]), the centers are the points qj that minimize the fill distance:

h(QJ) = max
i∈{1,...,n}

min
j∈{1,...,J}

d(qj , vj),

where d is the distance between points on the graph. The described approach has considerable computa-
tional complexity (finding the nodes QJ that minimize the fill-distance is an NP-Hard problem [30]). To
overcome this problem, a simpler greedy algorithm can be used to identify the nodes.

Given a pre-existing set of nodes Qj−1 = {q1, . . . , qj−1}, we find the next value qj such that the
distance between Qj−1 and qj is maximized. There is at least one interpolation node ofW in each partition
Cj . Algorithm 1 in [10] describes in detail the procedure above, while its MATLAB implementation is
available in [32]. Further details to determine necessary conditions for the above algorithm and provide
a graph partition sufficiently close to the optimal one can be found in [10, Theorem 5.1].

In order to avoid to lose the information related to the topology of the considered graph, it is not
appropriate to directly choose the Cj clusters as subdomains for the PUM. A better strategy is to
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incorporate the found partitions into further subdomains Vj , j ∈ {1, . . . , J}. Algorithm 2 and Corollary
1 in [10] show a possible procedure for this enlargement of the sets Cj . In particular, given in input a
partition Cj and a distance r > 0, the algorithm adds each node v ∈ V with distance on the graph less
than r from any element of Cj , giving rise to the subdomain Vj :

Vj = Cj ∪ {v ∈ V |d(v, w) ≤ r, w ∈ Cj},

returning the subdomain Vj .

5.2. PUM for GBF approximation on graphs

Here, we report the approximation algorithm using the PUM illustrated in [10]. Given a positive
definite GBF f and the kernel

Kf (v, w) = Cδwf(v),

to realize a GBF approximation of a signal x of which the values x(wi), i ∈ {1, . . . , n}, are known. We
use the following functional, which is the solution of the regularized least squares problem:

x∗ = argmin
y∈NKf

(
1

N

N∑
i=1

|x(wi)− y(wi)|2 + γ||y||2Kf
), γ > 0,

where γ is the regularization parameter and NKf
is the space L(G) with the inner product defined in

equation (12). It is recalled that NKf
is a Hilbert space with reproducing kernel Kf . The first term of the

functional ensures that the approximated values x∗(wi) are sufficiently close to the known values, while
the second forces ||x∗||Kf

not to grow excessively. Thus, one can write x∗ as:

x∗(v) =

N∑
i=1

ciCδwi
f(v),

where the coefficients ci, i = {1, . . . , n} are obtained through the linear system:

(15)


Cδw1

f(w1) . . . CδwN
f(w1)

...
. . .

...
CδwN

f(w1) . . . CδwN
f(wN )


︸ ︷︷ ︸

Kf,w

+ γNIN


 c1

...
cN

 =

x(w1)
...

x(wN )

 .

The main submatrix Kf,w is positive definite, hence the matrix Kf is positive definite and the system
admits a unique solution.

In summary, the main steps to achieve the GBF-PUM approximation on the graph are as follows:

• The set of nodes V is decomposed into J partitions using Algorithm 1 in [10].
• Algorithm 2 in [10] is applied to enlarge Cj by adding nodes with fixed maximum distance r > 0
on the graph. This way, the ideal subdomains Vj = {vj1 , . . . , vjnj

}, j ∈ {1, . . . , J}, are obtained.

• The local subgraphs Gj = (Vj , Ej , L
(j), d) are extracted with vertices Vj , edges Ej = {ei,i′ ∈

E|vi, vi′ ∈ Vj}, and Laplacian

L(j) =

 Lj1,j1 . . . Lj1,jnj

...
. . .

...
Ljnj ,j1

. . . Ljnj ,jnj

 ,

where the latter is the main submatrix of L corresponding to the nodes of Vj . The metric on
Gj is the induced metric. If necessary, the local Fourier transform of the subgraphs Gj can be
computed through the decomposition of the Laplacian L(j) = U (j)Mλ(j)U (j)T .
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• The local GBF approximants

x
(j)
∗ (v) =

Nj∑
i=1

c
(j)
i Cwji

f (j)(v)(16)

relative to the subgraphs Gj are computed, using a positive definite GBF approximation f (j) on
each subgraph. The coefficients in (16) are obtained by solving the equation system:

(Kf (j),Wj
+ γNjINj )


c
(j)
1
...

c
(j)
Nj

 =

 x(wj1)
...

x(wjNj
)


for the sets Wj = W ∩Vj with γ ≥ 0 and Nj ≥ 1 elements. Possible kernel expansions to consider
in a local form are given in (13) and (14).

• The final form of the global GBF-PUM interpolant on G is:

(17) x∗(v) =

J∑
j=1

ϕ(j)(v)x
(j)
∗ (v),

where the functionals (ϕ(j))Jj=1 are constructed in such a way that:

supp(ϕ(j)) ⊆ Vj , ϕ
(j) ≥ 0, and

J∑
j=1

ϕ(j)(v) = 1 ∀ v ∈ V.

5.3. Computational cost and error

In this subsection, we briefly illustrate the computational cost of the GBF-PUM that mainly depends
on the calculation of the functions Cδwf and Cδwf

(j) and on the solution of the system (15).
As for the calculation of the basis functions, the complexity depends on the procedure for finding the

kernels Kf and Kf (j) . It may be necessary to perform the spectral decomposition of the Laplacian over

the entire graph G, a step that would require O(n3) operations. Thus, for the PUM the required number
of operations is given by

∑J
j=1O(n3

j ) ≤ J ·O(maxj(nj)
3). Notice that the computational cost reduction

is significant if all subdomains Vj have the same size nj ∼ n
J .

Then, for the calculation of the coefficients (c1, . . . , cN )T , we need to solve the system (15). In the
global case, O(N3) operations are required, N being the number of interpolation nodes. Also for solving
this problem, there is a reduction in computational costs with the PUM. Indeed, we have to solve J linear
systems of size Nj , each requiring O(N3

j ) arithmetic operations.
We can now define the approximation space naturally induced by the partition of unity [10].

Definition 5.1 (Space NPUM). Let {Vj}Jj=1 be a covering of V , and let {ϕ(j)}Jj=1 be a unit partition

based on it. Let Gj = (Vj , Ej , L
(j), d) be the subgraphs of G constructed through the nodes Vj, the edges

Ej = {(v, w) ∈ E|v, w ∈ Vj}, and the local Laplacian L(j). Furthermore, let N (j) ⊂ L(Gj) be local
approximation spaces referred to the subgraphs Gj. The space NPUM related to the global unit partition
is defined as follows:

NPUM =

{
x ∈ L(G)

∣∣ x =
J∑

j=1

ϕ(j)x(j) ∈ N (j)

}
.

We will use, to define the quality of the approximation, the Laplacian norm or the weighted gradient
∇Lx.
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Definition 5.2 (Weighted Gradient relative to the Laplacian). Given a graph G, the weighted
gradient ∇Lx defined on the edges ei,i′ = (vi, vi′) ∈ E of G as:

∇Lx(ei,i′) =
√

Ai,i′(x(vi)− x(vi′)).

Through this new definition, it is possible to perform a standard Laplacian decomposition of the graph
LS as follows:

xTLSx =
1

2

n∑
i=1

∑
i′:ei,i′∈E

Ai,i′(x(vi)− x(vi′))
2 = (∇Lx)

T∇Lx.

This decomposition shows that the Laplacian LS is semi-positive definite. In order to state the main
result related to the accuracy of the PUM, we will consider the Lp norms for functions in L(G) and
L(E), where E is the set of edges of G. We also introduce for functions z ∈ L(E) the norm ||z||L∞,p(E):

||z||L∞,p(E) := max
i∈{1,...,n}

( ∑
i′:ei,i′∈E

|z(ei,i′)|p
) 1

p

.

We can now state the following theorem [10].

Theorem 5.1. Let {Vj}Jj=1 be a covering of V and let {ϕ(j)}Jj=1 be a relative partition of unity. Given a

signal x ∈ L(G), there exists a local approximation x
(j)
∗ ∈ L(Gj) such that, given 1 ≤ p ≤ ∞, the relation

(a), or relations (a), (b), or relations (a), (b), (c) hold:

(a) ||x− x
(j)
∗ ||Lp(Gj) ≤ ϵ

(j)
p,0,

(b) ||∇L(j)x−∇L(j)x
(j)
∗ ||Lp(Ej) ≤ ϵ

(j)
p,1,

(c) ||L(j)x− L(j)x
(j)
∗ ||Lp(Gj) ≤ ϵ

(j)
p,2.

In particular, if (a) or (b) hold, it is assumed that the partition of unity {ϕ(j)}Jj=1 satisfies the boundary
conditions:

(BC) ∇Lϕ
(j)(ei,i′) = 0, for every edge ei,i′ ∈ E, with vi ∈ Vj and vi′ ̸∈ Vj .

Then the following limitations hold for the errors of x∗ =
∑J

j=1 ϕ
(j)x

(j)
∗ ∈ NPUM:

(a)’ ||x− x∗||LP (G) ≤
∑J

j=1 ϵ
(j)
p,0 if (a) is true,

(b)’ ||∇Lx−∇Lx∗||LP (E) ≤
∑J

j=1(ϵ
(j)
p,1 + ||∇Lϕ

(j)||L∞,p(E)ϵ
(j)
p,0) if (a), (b) and (BC) hold,

(c)’ ||Lx − Lx∗||Lp(G) ≤
∑J

j=1(ϵ
(j)
p,2 + ||∇Lϕ

(j)||L∞,q(E)ϵ
(j)
p,1 + ||LSϕ

(j)||L∞(G)ϵ
(j)
p,0) if (a), (b), (c) and

(BC) hold.

In (c)’, 1 ≤ q ≤ ∞ is the dual of p.

6. Numerical experiments

In this section, we present some results coming from a numerical experimentation on the Minnesota
graph [33] by varying the involved parameters in the variational spline and diffusion kernels. The programs
were executed on a Huawei Mate D15 Laptop with an Intel(R) Core(TM) i7-1165G7 @ 2.80GHz, 2803
Mhz, 4 Core(s) processor and 16 GB of RAM.

At first, we perform some experiments on the variational spline kernel similar to the one in [10], in
order to find the optimal parameters for approximating the signal. In particular, we aim to investigate
the role of the parameter ϵ and its relationship with the obtained errors.

To facilitate easy comparison with [10], we choose an enlargement parameter r = 8 and a number of
subdomains J = 8. Tables 1-2 and Figure 1 show the Relative Root Mean Square Errors (RRMSEs) and
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Relative Maximum Absolute Errors (RMAEs) obtained from the interpolation of the same signal used
in [10] by varying ϵ in the range [0.0005, 0.0020]. The calculation of RRMSE and RMAE is performed
respectively by the following rules:

RRMSE =
∥(x− x∗)∥2

max(|x|)| ·
√

|V |
,

RMAE =
∥x− x∗∥∞

∥x∥∞
,

where x∗ represents the approximated signal, x the actual signal and |V | is the number of nodes in the
graph.

Number of nodes ϵ = 0.0005 ϵ = 0.0010 ϵ = 0.0015 ϵ = 0.0020

200 4.3× 10−2 4.4× 10−2 4.5× 10−2 4.6× 10−2

600 5.9× 10−3 5.8× 10−3 5.7× 10−3 5.7× 10−3

1000 8.4× 10−4 8.4× 10−4 8.4× 10−4 8.4× 10−4

1400 3.3× 10−4 3.3× 10−4 3.3× 10−4 3.3× 10−4

1800 2.2× 10−5 2.6× 10−5 3.2× 10−5 3.8× 10−5

2200 3.6× 10−6 4.6× 10−6 5.7× 10−6 7.0× 10−6

2600 6.2× 10−7 7.8× 10−7 9.7× 10−7 1.2× 10−7

Number of nodes ϵ = 0.0005 ϵ = 0.0010 ϵ = 0.0015 ϵ = 0.0020

200 3.8× 10−1 3.9× 10−1 4.0× 10−1 4.1× 10−1

600 8.7× 10−2 8.6× 10−2 8.4× 10−2 8.3× 10−2

1000 1.0× 10−2 1.0× 10−2 9.9× 10−3 9.8× 10−3

1400 5.4× 10−3 5.4× 10−3 5.3× 10−3 5.3× 10−3

1800 2.2× 10−4 2.6× 10−4 3.1× 10−4 3.8× 10−4

2200 3.2× 10−5 4.0× 10−5 4.9× 10−5 5.9× 10−5

2600 1.0× 10−5 1.3× 10−5 1.6× 10−5 1.9× 10−5

Figure 1. RRMSE (left) and RMAE (right) obtained by using the variational spline kernel in GBF-PUM algorithm with
J = 8 subdomains, enlargement parameter r = 8, kernel parameters s = 2 and ϵ ∈ [0.0005, 0.0020].

It is immediately noticeable that the precision of the method increases as ϵ decreases, especially for
a large number of interpolation nodes. In the range including between 200 and 1400 interpolation nodes,
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the numerical results are similar; however, there is a very slight inverse trend compared to that observed
with many interpolation nodes: the PUM using the kernel with a larger ϵ appears slightly more accurate.
To exclude that this behavior is only local, the experiments were repeated for a wider range of ϵ, i.e.
ϵ ∈ [0.0005, 0.01]. Moreover, from Figure 1, we can clearly note a slightly higher precision for smaller
values of ϵ when the number of interpolation nodes grows, i.e. for N ≥ 1800.

Number of nodes ϵ = 0.0005 ϵ = 0.005 ϵ = 0.007 ϵ = 0.01

200 4.3× 10−2 5.1× 10−2 5.6× 10−2 6.5× 10−2

600 5.9× 10−3 5.4× 10−3 5.5× 10−3 6.6× 10−3

1000 8.4× 10−4 9.6× 10−4 1.2× 10−3 1.7× 10−3

1400 3.3× 10−4 4.1× 10−4 5.3× 10−4 8.1× 10−4

1800 2.2× 10−5 1.0× 10−4 1.6× 10−4 2.8× 10−4

2200 3.6× 10−6 1.8× 10−5 2.9× 10−5 5.1× 10−5

2600 6.2× 10−7 2.9× 10−6 4.5× 10−6 7.6× 10−6

Number of nodes ϵ = 0.0005 ϵ = 0.005 ϵ = 0.007 ϵ = 0.01

200 3.8× 10−1 4.4× 10−1 4.5× 10−1 4.5× 10−1

600 8.7× 10−2 7.3× 10−2 6.7× 10−2 5.6× 10−2

1000 1.0× 10−2 9.3× 10−3 9.0× 10−3 1.4× 10−2

1400 5.4× 10−3 5.2× 10−3 5.2× 10−3 7.7× 10−3

1800 2.2× 10−4 1.3× 10−3 2.1× 10−3 3.8× 10−3

2200 3.2× 10−5 1.4× 10−4 2.3× 10−4 4.3× 10−4

2600 1.0× 10−5 4.0× 10−5 5.7× 10−5 9.0× 10−5

Figure 2. RRMSE (left) and RMAE (right) obtained by using the variational spline kernel in the GBF-PUM algorithm
with J = 8 subdomains, enlargement parameter r = 8, kernel parameters s = 2 and ϵ ∈ [0.0005, 0.01].

A similar behavior is confirmed by experiments done for different values of ϵ ∈ [0.0005, 0.01] and
shown in Tables 3-4. In the latter cases, in Table 5 and Figure 3 we also report the computation times (in
seconds) of the approximated signals obtained for ϵ = 0.0005, 0.005, 0.007, 0.01. Since these computation
times may vary significantly from one routine execution to another, it is challenging to detect particular
advantages in the use of one parameter over another. Nevertheless, the repeated iteration of the algorithm
seems to indicate that kernels with parameters closer to zero lead to a reduction in computation time,
especially in the case of large numbers of interpolation nodes. The general trend is essentially the same
as already described in [10]. Obviously, longer computation times are observed for a larger number of
nodes.
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Number of nodes ϵ = 0.0005 ϵ = 0.001 ϵ = 0.0015 ϵ = 0.0020

200 7.2× 10−1 7.8× 10−1 7.9× 10−1 1.1× 10+0

600 7.6× 10−1 8.5× 10−1 7.9× 10−1 1.2× 10+0

1000 8.2× 10−1 8.9× 10−1 9.7× 10−1 1.3× 10+0

1400 9.0× 10−1 8.8× 10−1 1.0× 10+0 1.3× 10+0

1800 9.4× 10−1 1.0× 10+0 1.3× 10+0 1.3× 10+0

2200 1.1× 10+0 1.1× 10+0 1.4× 10+0 1.5× 10+0

2600 1.2× 10+0 1.1× 10+0 1.5× 10+0 1.6× 10+0

Figure 3. Computation time (in seconds) using the variational spline kernel in GBF-PUM algorithm with J = 8 subdomains,
enlargement parameter r = 8, kernel parameters s = 2 and ϵ ∈ [0.0005, 0.01].

It is possible to use the same process for calculating an interpolant through the diffusion kernel.
However, the results may be largely inaccurate when the kernel parameter is not carefully chosen. Indeed,
Figure 4 compares results achieved with the variation spline kernel, pointing out that the use of diffusion
kernel with a fixed parameter t = 10 underperforms those of the variation spline kernel with ϵ = 0.001 and
s = 2. In particular, in such figure it can be easily inferred that the GBF-PUM using the diffusion kernel
is not particularly accurate with t = 10. It is therefore important to suitably determine an appropriate
parameter for the diffusion kernel. In Table 6 we thus pertain to the signal approximation obtained by the
diffusion kernel with parameter t = 20. The sole difference from previous experiments lies in the method of
calculating the diffusion kernel. In the current computation, a kernel derived using the complete Laplacian
is employed, rather than one generated through combinations of local kernels. The results shown in this
table are now consistent with those found in [10], with both errors and computation times significantly
reduced. Additionally, in this study the diffusion kernel leads to a more efficient method than the one
generated by the variational spline in terms of computational time, especially for a larger number of
interpolation nodes (cf. Table 5 and Table 6).

Number of nodes RMAE RRMSE Time (s)

200 5.7× 10−1 2.0× 10−1 3.5× 10−1

600 2.7× 10−1 2.7× 10−2 3.2× 10−1

1000 2.2× 10−2 1.2× 10−3 3.6× 10−1

1400 1.4× 10−4 1.4× 10−5 4.7× 10−1

1800 3.1× 10−5 1.4× 10−6 4.6× 10−1

2200 3.2× 10−6 1.6× 10−7 6.0× 10−1

2600 1.8× 10−6 1.2× 10−7 6.0× 10−1
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Figure 4. Comparison between errors, RRMSE (left) and RMAE (right), using the diffusion kernel and the variational
spline kernel (s = 2) with J = 8 subdomains and enlargement parameter r = 8.

Figure 5. RRMSE and RMAE obtained using the diffusion kernel with parameter t = 20. The number of subdomains is
J = 8 with an enlargement parameter r = 8.

Then, we present a direct comparison between the two kernels, as already shown in Figure 4, but
using an appropriate parameter for calculating the diffusion kernel. It is easy to observe that the results
obtained in Table 7 are much closer to those of variational spline in terms of accuracy. Interestingly, the
computation times using the diffusion kernel (reported in Table 8) are lower than those recorded with
the variational spline kernel in Table 5.

Number of nodes Diff. RMAE Diff. RRMSE Var. RMAE Var. RRMSE

200 5.7× 10−1 2.0× 10−1 3.9× 10−1 4.4× 10−2

600 2.7× 10−1 2.7× 10−2 8.9× 10−2 5.8× 10−3

1000 2.2× 10−2 1.2× 10−3 1.0× 10−2 8.4× 10−4

1400 1.4× 10−4 1.4× 10−5 5.4× 10−3 3.3× 10−4

1800 3.1× 10−5 1.4× 10−6 2.6× 10−4 2.6× 10−5

2200 3.2× 10−6 1.6× 10−7 4.0× 10−5 4.6× 10−6

2600 1.8× 10−6 1.2× 10−7 1.3× 10−5 7.8× 10−7

Similarly to the variational spline case, we now present some numerical results related to the GBF-
PUM interpolation of the same signal used previously on the Minnesota graph. Tables 9-10 and graphs
in Figure 7 show the RMAE and RRMSE as the parameter t varies between 10 and 40. We have chosen
to always consider an enlargement parameter r = 8 with J = 8 clusters.
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Figure 6. Comparison between errors, RRMSE (left) and RMAE (right), using the diffusion kernel and the variational
spline kernel (s = 2) with J = 8 subdomains and enlargement parameter r = 8.

Number of nodes Time (s) variational spline Time (s) diffusion kernel

200 7.0× 10−1 3.5× 10−1

600 7.8× 10−1 3.2× 10−1

1000 8.8× 10−1 3.6× 10−1

1400 9.9× 10−1 4.7× 10−1

1800 9.4× 10−1 4.6× 10−1

2200 1.0× 10+0 6.0× 10−1

2600 1.1× 10+0 7.4× 10−1

Number of nodes t = 10 t = 20 t = 30 t = 40

200 8.0× 10−1 5.7× 10−1 4.6× 10−1 4.3× 10−1

600 6.1× 10−1 2.7× 10−1 2.0× 10−1 1.3× 10−1

1000 2.5× 10−1 2.2× 10−2 1.1× 10−3 1.0× 10−4

1400 9.6× 10−2 1.4× 10−4 6.0× 10−5 1.9× 10−4

1800 4.8× 10−3 3.1× 10−5 1.1× 10−5 3.4× 10−6

2200 1.5× 10−4 3.2× 10−6 1.0× 10−5 9.7× 10−6

2600 2.7× 10−6 1.8× 10−6 3.4× 10−7 1.8× 10−6

Number of nodes t = 10 t = 20 t = 30 t = 40

200 3.1× 10−1 1.9× 10−1 1.3× 10−1 8.9× 10−2

600 9.3× 10−2 2.7× 10−2 1.4× 10−2 8.3× 10−3

1000 2.3× 10−2 1.2× 10−2 5.8× 10−5 8.1× 10−6

1400 6.3× 10−2 1.4× 10−5 5.1× 10−6 1.1× 10−5

1800 2.7× 10−4 1.4× 10−6 8.3× 10−7 2.5× 10−7

2200 9.5× 10−6 1.6× 10−7 7.0× 10−7 7.7× 10−7

2600 1.0× 10−7 1.2× 10−7 6.5× 10−8 2.7× 10−8

In this case, the behavior does not appear linear as observed using the previous kernel. However, it
can be reasonably assumed that, for a small number of nodes (< 1000), using a higher parameter within
the analyzed range leads to more accurate results.
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Figure 7. RRMSE (left) and RMAE (right) obtained by using the diffusion kernel in the GBF-PUM algorithm with J = 8
subdomains, enlargement parameter r = 8 and kernel parameter t ∈ [10, 40].

7. Conclusions and future work

In this paper we proposed several numerical tests obtained using GBFs generated by the heat kernel
and the kernel created through variational splines. From the numerical experiments, as expected, we
can note that when the number of sample nodes increases, also the precision of the GBF-PUM improves.
Moreover, we remark that in the case of a real dataset, this behaviour is less noticeable but still significant,
due to the nature of the data. Future work consists in extending the framework to a multilayer signals
using these kernels to recover the temporal dependency and using approximation instead of interpolation
for greater applicability to real problems.
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