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Sommario (Italian)

In questa tesi sono affrontati alcuni problemi relativi a due aree alla frontiera tra
l’analisi e la fisica matematica (quantizzazione e integrali sui cammini di Feynman)
per cui l’impiego di tecniche e strategie dell’analisi tempo-frequenza risulta essere
particolarmente utile.

Per quanto riguarda il problema della quantizzazione, ci occupiamo di operatori
pseudodifferenziali parametrizzati da matrici come

σTf(x) =

∫
R2d

e2πi(x−y)·ξσ((I − T )x+ Ty, ξ)f(y)dydξ = 〈σ,WT (g, f)〉,

dove il simbolo è in generale una distribuzione temperata (σ ∈ S ′(R2d)) e T ∈ Rd×d

è una matrice arbitraria; abbiamo introdotto la distribuzione tempo-frequenza di
tipo Wigner associata

WT (g, f)(x, ξ) =

∫
Rd
e−2πiy·ξg(x+ Ty)f(x− (I − T )y)dy.

Nella tesi determiniamo in che misura i ben noti risultati che caratterizzano il
calcolo di Weyl e la trasformata di Wigner (corrispondenti al caso T = I/2) possano
essere estesi in questo contesto più generale, con particolare riguardo ai risultati
di continuità su spazi di modulazione e Wiener amalgam con simboli nelle stesse
classi. Sebbene regole di quantizzazione ancora più generali possano essere prese in
considerazione, la scelta precedente è particolarmente rilevante perché, in un certo
senso, esaurisce la classe delle ragionevoli modificazioni lineari delle trasformate di
Weyl/Wigner.

Motivati poi dalle applicazioni dell’analisi di Gabor allo studio delle equazioni
differenziali dispersive, ci occupiamo dell’analisi di operatori metaplettici tramite
pacchetti d’onda; ricade in questa classe di operatori il propagatore di Schrödinger
associato a una Hamiltoniana di tipo quadratico. Dimostriamo, nella fattispecie,
alcune stime per le corrispondenti rappresentazioni nello spazio delle fasi in cui
gli attesi fenomeni di dispersione, sparpagliamento e sparsità dei pacchetti d’onda
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sono tutti rappresentati. Si considerano infine applicazioni alla propagazione di
singolarità nello spazio delle fasi.

Un altro problema affrontato è quello delle stime di continuità su spazi di
modulazione e Wiener amalgam per le soluzioni dell’equazione di Dirac

i∂tψ(t, x) = (Dm + V )ψ(t, x), (t, x) ∈ R× Rd, ψ(t, x) ∈ Cn,

sotto ipotesi di bassa regolarità per il potenziale V . Si studia inoltre, nel caso
libero, la buona positura per nonlinearità reali di tipo analitico a valori vettoriali; in
questo scenario ricade il noto modello di Thirring. Lo studio dell’equazione di Dirac
con tecniche di analisi tempo-frequenza è ancora limitato: il nostro contributo sul
tema è solo il secondo che si registra nella letteratura.

Per quanto riguarda gli integrali sui cammini di Feynman, grazie a tecniche
dell’analisi di Gabor è stato possibile risolvere il problema della convergenza pun-
tuale dei nuclei integrali nell’approccio sequenziale alla Nelson (formulazione di
Feynman-Trotter) per una vasta classe di Hamiltoniane quadratiche con pertur-
bazioni di bassa regolarità. Questo problema risale alla formulazione originale
proposta da Feynman ed è rimasto a lungo aperto. Il nostro risultato di convergenza
vale per quasi ogni istante fissato (anche tutti, ammettendo una formulazione più de-
bole) e generalizza risultati precedenti ottenuti per altri schemi di approssimazione
sotto forti ipotesi di regolarità per i potenziali.

Abbiamo inoltre introdotto nuovi propagatori approssimati del tipo opera-
tore integrale oscillante (à la Fujiwara), la cui ispirazione proviene dalla pratica
corrente in fisica e chimica, dove è uso introdurre versioni approssimate del fun-
zionale d’azione. Nonostante queste approssimazioni e le ipotesi di bassa regolarità
sui potenziali, la nostra formulazione permette di garantire la stessa velocità di
convergenza che caratterizza costruzioni più sofisticate.
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Abstract

This dissertation deals with several aspects of two broad research areas which lie at
the interface between analysis and physics, namely quantization and path integrals,
where the techniques of Gabor analysis naturally play a significant role.

We consider the class matrix-parametrized pseudodifferential operators such as

σTf(x) =

∫
R2d

e2πi(x−y)·ξσ((I − T )x+ Ty, ξ)f(y)dydξ = 〈σ,WT (g, f)〉,

where the symbol is in general a temperate distribution (σ ∈ S ′(R2d)) and T ∈ Rd×d

is an arbitrary matrix. We introduced the associated phase-space distributions of
Wigner type

WT (g, f)(x, ξ) =

∫
Rd
e−2πiy·ξg(x+ Ty)f(x− (I − T )y)dy.

We then investigate whether the well-known results for Weyl quantization and the
Wigner distribution (T = I/2) extend to this more general context, with a focus on
boundedness results on modulation and Wiener amalgam spaces for symbols in the
same classes. While more general quantization rules of this type can be taken into
account, we characterize the relevance of our choice - which, in a sense, exhausts
the family of appropriate linear modifications of Weyl/Wigner transforms.

Motivated by the applications of Gabor analysis to dispersive equations, we deal
with the wave packet analysis of metaplectic operators - which include Schrödinger
propagators with quadratic Hamiltonians. We prove refined estimates for their
phase-space representations where dispersive, spreading and sparsity phenomena
for Gabor wave packets are simultaneously represented, with applications to
propagation of singularities on the phase space.

We also provide a broad set of continuity estimates on modulation and Wiener
amalgam spaces for the solutions of the Dirac equation

i∂tψ(t, x) = (Dm + V )ψ(t, x), (t, x) ∈ R× Rd, ψ(t, x) ∈ Cn,
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under several choices of potentials V of low regularity. We also study the local well-
posedness in the free case for vector-valued real-analytic nonlinearities, including
the Thirring model. The study of the Dirac equation from a time-frequency analysis
perspective can be further broadened - our contribution is only the second one on
the topic appeared in the literature.

As far as Feynman path integrals are concerned, thanks to the machinery of
Gabor analysis we solve the problem of pointwise convergence of integral kernels
in Nelson’s sequential approach (also known as the Feynman-Trotter formulation),
for a large class of quadratic Hamiltonians with rough potential perturbations.
This issue has been conjectured by Feynman and its solution has been open for a
long time; our result is almost global in time (even global, if a weaker formulation
is allowed) and generalizes known results for different time-slicing approximation
schemes and well-behaved potentials.

Finally, we consider a new family of approximate propagators in the form of
oscillatory integral operators (à la Fujiwara). The inspiration comes from the
custom in physics and chemistry, where approximations of the action functional
are usually considered. In spite of these approximations and the low regularity
of potentials, the same rate of convergence of more sophisticated parametrices is
guaranteed.
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Outline

We briefly describe the organization of the material in this dissertation.

First of all, in Chapter 1 the reader can find a detailed introduction to the
problems that have been taken into account, together with an exposition of the
main results.
The rest of the thesis is organized in three parts.

• Part I collects the background material on time-frequency analysis. In an
attempt of providing an essentially self-contained presentation, in Chapter 2
we fix the notation and recall the general notions of analysis that are needed
below, whereas Chapter 3 and Chapter 4 are devoted to the basic results
of Gabor analysis of functions/distributions and operators respectively.

• In Part II we collect the results concerning the problem of quantization and
its applications. More in detail:

- In Chapter 5 we deal with matrix-parametrized quantization rules and
the related time-frequency distributions. The results come from the
papers [BCGT20; CDT19; CNT19b; CT20].

- Chapter 6 is devoted to the wave packet analysis of metaplectic oper-
ators, in the spirit of the paper [CNT20].

- The time-frequency analysis of the Dirac equation conducted in the
paper [Tra20] is the main content of Chapter 7.

• Part III contains the results concerning Feynman path integrals. In partic-
ular:

- The problem of pointwise convergence of integral kernels is the focus of
Chapter 8. The original results can be found in the papers [FNT20;
NT20].

- In Chapter 9 we report on the results proved in [NT19] on the conver-
gence of suitable sequences of operators.
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Chapter 1

Introduction and Discussion of
the Results

This dissertation deals with several aspects of two broad research areas which lie at
the interface between analysis and physics, namely quantization and path integrals,
where recourse to techniques of phase space analysis is particularly well suited.

1.1 The elements of Gabor analysis

To be precise, the ensemble of techniques used in this thesis should be referred
to as time-frequency analysis or, even better, Gabor analysis. The origin of this
fascinating branch of modern harmonic analysis dates back to D. Gabor’s article
Theory of Communication of 1946 [Gab46], where the author suggested that a
family of functions obtained by translation and modulation of a single Gaussian
signal may provide a collection of elementary building blocks (usually known as
atoms, wave packets or coherent states depending on the context) for any square-
integrable signal, meaning that for any f ∈ L2(R) there exist cmn ∈ C, m,n ∈ Z,
such that

f(x) =
∑
m,n∈Z

cmne
2πinxg(x−m), g(x) = e−πx

2

. (1.1)

The same problem can be considered in the general d-dimensional Euclidean setting
and also with different atoms than Gaussian functions, provided that suitable
decay and smoothness conditions are guaranteed - for instance, one may assume
g ∈ S(Rd), the Schwartz class of rapidly decreasing functions.

Interestingly enough, Gaussian wave packets were already well known in physics
since the early work of E. Schrödinger on minimum uncertainty states [Sch82]
and also in connection with coherent states of the Weyl-Heisenberg group [Gla63;

3



1. Introduction and Discussion of the Results

Per86] and von Neumann lattices [Neu18]. In fact, it was J. von Neumann
the one who claimed (without proof) in [Neu18] that the family of Gaussians
G = {e2πinxe−π(x−m)2}m,n∈Z spans a dense subset of L2(R).

Both the claims by Gabor and von Neumann turned out to be true, but proofs
were given only in the 1970s [BBGK71; Per71]. Nevertheless, the expansion (1.1)
is unstable in many aspects: for instance, even for f ∈ S(R) the series in (1.1)
converges only in the sense of distributions [Jan81]; moreover, the sequence of
coefficients (cmn) is not uniquely determined and does not precisely characterize
the signal f in terms of its energy, meaning that ‖cmn‖`2(Z2) is not comparable
in general with ‖f‖L2(R). More precisely, this means that G is not a frame nor a
Riesz basis for L2(R) [Chr16; Hei11]. In fact, the main obstruction here resides
in the choice of a critical time-frequency density: it is now well known that the
family {e2πiβnxe−π(x−αm)2} is a frame for L2(R) if and only if αβ < 1 (overcritical
sampling) - see in this connection the celebrated series of papers by Kristian Seip
[Sei92; SW92] and also [ALS09; LS99]. The mathematical literature on Gabor
expansions and their applications has astonishingly grown in sophistication in
the last forty years; we recommend the classic monograph [Grö01] as a point of
departure.

On the other hand, expansions like those in (1.1) unravel only the discrete
facet of time-frequency analysis. Let us first elaborate more on the notion of wave
packet, that is a function which does possess good localization in phase space. To
be more concrete, recall that good energy concentration of a non-trivial function
g ∈ S(Rd) on a measurable set X ⊂ Rd is achieved if there exists 0 ≤ δX ≤ 1/2
such that (∫

Rd\X
|g(y)|2dy

)1/2

≤ δX‖g‖L2 .

The spectral content of g is well concentrated on a set Ξ ⊂ Rd if the analogous
estimate is satisfied by its Fourier transform ĝ for some small δΞ ≥ 0. Therefore g
is concentrated on the cell (or “logon” [Gab46]) X × Ξ in the phase space and the
Donoho-Stark uncertainty principle prescribes a lower bound for the measure of
such cell in terms of δX and δΞ, namely |X||Ξ| ≥ (1− δX − δΞ)2 [DS89].

The essential phase-space support of g can be moved to (x+X)×(ξ+Ξ) for any
choice of (x, ξ) ∈ R2d by applying a so-called time-frequency shift π(x, ξ) = MξTx
to g, namely as a result of the joint action of the modulation operator Mξ and the
translation operator Tx, respectively defined by

Mξg(y) = e2πiy·ξg(y), Txg(y) = g(y − x), y ∈ Rd.

Functions of the type π(z)g for some fixed z ∈ R2d and g ∈ S(Rd) are called
Gabor wave packets or atoms. We retrieve Gaussian wave packets for the choice

4



1.1. The elements of Gabor analysis

g(y) = e−π|y|
2
; note in particular that the Gabor expansion in (1.1) coincides with∑

m,n∈Z cmnπ(m,n)g.

In according with the program of modern harmonic analysis, the dictionary
of atomic elements provided by Gabor wave packets can be used to decompose
functions and operators into elementary pieces - that is the so-called analysis
step. The focus is then shifted to the level of phase space, where one is lead to
investigate how Gabor atoms interact or how they evolve under operators. Finally,
one collects all these results and tries to read the overall effect on the original
objects (synthesis), hence coming back to the primary domain hopefully with new
information.

1.1.1 The Gabor analysis of functions and distributions

Let us briefly discuss how this program is carried out for functions and distributions.
As far as the analysis step is concerned, we can design a phase-space representation
of a signal f ∈ L2(Rd) by means of a decomposition along the uniform boxes
in phase space occupied by the Gabor atoms π(z)g, z ∈ R2d, for some fixed
g ∈ L2(Rd) \ {0}. This is the continuous analogue of the expansion (1.1) and is
called the Gabor transform of f with window function g - also known as short-time
Fourier transform (STFT) or sliding/windowed Fourier transform:

Vgf(x, ξ) := 〈f, π(x, ξ)g〉 =

∫
Rd
e−2πiy·ξf(y) g(y − x) dy, (x, ξ) ∈ R2d, (1.2)

where the bracket 〈·, ·〉 denote the inner product in L2 - or its extension to the
duality S ′−S in the case where f is a temperate distribution and g ∈ S(Rd) \ {0}.
In order to understand the heuristics behind this expression, it is worth noting
that it can be equivalently recast as follows:

Vgf(x, ξ) = F(f · Txg)(ξ) = e−2πix·ξ(f ∗Mξg
∗)(x),

where we set g∗(y) = g(−y). Now, fix x ∈ Rd and assume for simplicity that g is
a real smooth function with compact support; then f · Txg is just a slice of the
original signal f near the “instant” x and Vgf(x, ξ) provides the spectral content
of this piece of the signal. It is clear the role of Txg as sliding cut-off function
as x varies on Rd, but due to overlaps we have that Vgf is a highly redundant
representation; the design of the window function is in fact a major problem for
obtaining a satisfactory resolution. For this and other problems of interest for
applications we suggest the comprehensive references [Boa15; HA08].

The idea behind the STFT encodes the paradigm of local Fourier analysis, which
first appeared in the signal processing community in an attempt to overcome the
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1. Introduction and Discussion of the Results

practical limitations of the Fourier transform - see the pioneering papers by Jean
Ville [Vil48] and the classic monographs [Coh95; Fla99]. It is indeed well-known
that the standard Fourier analysis suffers from several limitations for the purposes
of signal processing. Just to mention some of them, note that the computation
of a single frequency value of the Fourier transform requires the knowledge of the
entire history of the signal; conversely, the inversion of the Fourier transform shows
that the value of a signal at one instant comes from superposition of everlasting
monochromatic waves tξ(y) = e2πiξ·y, which are global in nature. As a result, the
Fourier transform is not stable under local perturbations in the time (or frequency)
domain.

Another concrete experience of the drawbacks of the Fourier transform is
provided by listening to music; in a sense, this just amounts to the knowledge of a
signal in the time domain, where the transition between notes can be perceived
but the latter cannot be identified. Conversely, on the spectral side we may easily
derive a statistics on the abundance of single notes forming the piece, at the cost
of little information on when (and for how long) they are in play. The solution
here is provided by the musical score, which is ultimately the prototype of a
joint time-frequency representation of a signal. The Gabor transform (1.2) can be
thought of as a mathematical analogue of the musical score (or, in more evocative
terms, a rough mathematical model of hearing). We stress that the analysing
function tξ(y) = e2πiξ·y of the Fourier transform (formally F(f)(ξ) = 〈f, tξ〉) is
replaced here with the phase-space localized Gabor atom π(z)g - note that the
latter belong to L2(Rd) while the former do not.

The short-time Fourier transform is a rich source of intriguing mathematical
problems, including invertibility/reconstruction of a signal from the knowledge of
its STFT and the connection with discrete samples and Gabor expansions in the
spirit of (1.1) (with cmn = 〈f, π(m,n)g〉), see again [Grö01] for a comprehensive
account. Moreover, the Gabor transform can be used to perform fine-tuning of
the phase-space properties of distributions and thus introduce new function spaces.
For instance, the so-called modulation spaces were designed by H.G. Feichtinger
in the 1980s [Fei03; Fei81; Fei83] and can be thought of as the parallel of Besov-
Triebel-Lizorkin spaces for wavelets, with uniform rather than dyadic geometry.
This can be equivalently obtained by constraining the summability/decay of signals
on phase space, that is the global behaviour of their time-frequency representations.
To be precise, given a continuous and positive function m on R2d with at most
polynomial growth and 1 ≤ p, q ≤ ∞ the modulation space Mp,q

m (Rd) is the subset
of all the distributions f ∈ S ′(Rd) such that

‖f‖Mp,q
m

:=

(∫
Rd

(∫
Rd
|Vgf(x, ξ)|pm(x, ξ)pdx

)q/p
dξ

)1/q

<∞, (1.3)
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1.1. The elements of Gabor analysis

for some (in fact, any) non-trivial g ∈ S(Rd), with obvious modifications in the
case where p =∞ or q =∞. We omit the subscript in the unweighted case m = 1
and also write Mp(Rd) when p = q. Even if general weight functions will be taken
into account below, we are usually concerned with weights of polynomial type: for
s ∈ R we set vs(x) := (1 + |x|)s, x ∈ Rd. We then consider amalgamated weights of
type m(z) = vs(z), z = (x, ξ) ∈ R2d, or splitted weights like m(x, ξ) = vr(x)vs(ξ)
for r, s ∈ R - in this case we write Mp,q

r,s (Rd) for clarity. As a rule of thumb, the
decay and smoothness of f ∈ Mp,q

r,s (Rd) are related to the weighted Lp and Lq

summability of Vgf(x, ξ) with respect to x and ξ respectively.

In addition, reversing the order of integration in (1.3), namely

‖f‖W p,q
r,s

:=

(∫
Rd

(∫
Rd
|Vgf(x, ξ)|p(1 + |ξ|)rpdξ

)q/p
(1 + |x|)sqdx

)1/q

,

gives rise to a norm that characterizes the so-called Wiener amalgam spaces
W p,q
r,s (Rd). In fact, they are strictly related to modulation spaces via the Fourier

transform, since W p,q
r,s (Rd) = FMp,q

r,s (Rd).

These families of Banach spaces enjoy a large number of nice properties and
connections with other well-known spaces of harmonic analysis - notably M2(Rd) =
W 2(Rd) = L2(Rd); we refer to Section 3.2 for an account of the main features
of these spaces. Modulation and Wiener amalgam spaces provide an optimal
framework for the the problems of Gabor analysis, but in the last twenty years
they had a non-negligible impact on the study of pseudodifferential operators and
nonlinear partial differential equations. We cannot hope to frame all the relevant
literature here; we just mention the classic monographs [FS02; FS98; Grö01] and
the more recent ones [BO20; CR20; WHHG11] for a wide perspective and further
references. We also recommend the survey [RSW12] for applications to PDEs.

While the Gabor transform is a well-defined continuous mapping
Vg : Mp,q

m (Rd) → Lp,qm (R2d) that performs the analysis of a function in terms
of Gabor wave packets, the inverse problem of synthesis/reconstruction is en-
coded by the so-called adjoint Gabor transform. Precisely, fix a non-trivial atom
γ ∈ S(Rd); for any measurable function F : R2d → C on phase space that grows at
most polynomially (i.e., |F (z)| = O(|z|N ) for some positive integer N), the adjoint
Gabor transform is the distribution-valued integral defined by

V ∗γ F :=

∫
R2d

F (z)π(z)γ dz ∈ S ′(Rd).

The choice of the name is justified by the identity

〈V ∗γ F, f〉 = 〈F, Vγf〉, f ∈ S(Rd).
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1. Introduction and Discussion of the Results

It can be proved that the mapping V ∗γ is continuous from Lp,qm (R2d) to Mp,q
m (Rd),

and the following crucial inversion formula holds if 〈γ, g〉 6= 0:

f =
1

〈γ, g〉
V ∗γ Vgf =

1

〈γ, g〉

∫
R2d

Vgf(z)π(z)γ dz, f ∈Mp,q
m (Rd). (1.4)

The role of the adjoint Gabor transform in the synthesis step is thus clarified.

1.1.2 The analysis of operators via Gabor wave packets

The machinery developed so far can also be used to perform the Gabor wave packet
analysis of operators. Given a linear continuous operator A : S(Rd) → S ′(Rd),
if we fix two windows g, γ ∈ S(Rd) such that ‖g‖L2 = ‖γ‖L2 = 1 and apply the
inversion formula (1.4) twice we obtain

A = V ∗γ VγAV
∗
g Vg = V ∗γ ÃVg,

where we set Ã = VγAV
∗
g . It turns out that Ã corresponds to a representation of

the operator A on phase space; precisely, a straightforward computation shows
that Ã is an integral operator satisfying

Ã(Vgf)(w) = Vγ(Af)(w) =

∫
R2d

KA(w, z)Vgf(z)dz, w ∈ R2d,

where the integral kernel corresponds to the so-called Gabor matrix of A with
respect to analysis and synthesis windows g and γ respectively:

KA(w, z) := 〈Aπ(z)g, π(w)γ〉, w, z ∈ R2d.

Indeed, the Gabor matrix KA can be thought of as an infinite-dimensional matrix
encoding the whole information on the phase-space features of A, since it does
precisely characterize how wave packets evolve and interact under the action of A.

The phase-space analysis of an operator thus corresponds to a detailed inves-
tigation of the properties of the corresponding Gabor matrix. In particular, it is
clear that some form of sparsity of KA is a highly desirable property, for both
theoretical and numerical purposes.

The techniques of Gabor analysis are the backbone of all the results contained
in this dissertation, hence in the first part - Chapters 3 and 4 - we provide
a hopefully extensive review of the background material with pointers to the
literature and proofs of new technical results needed below.

8



1.2. The problem of quantization

1.2 The problem of quantization

The first class of problems that we are concerned with may be labelled “quantization
and related issues” for the sake of conciseness. More precisely, this amounts to the
Gabor analysis of pseudodifferential and related operators, with applications to
the analysis of PDEs.

We already mentioned that Gabor analysis has been largely influenced by
problems arising in quantum physics; in fact, several notions have usually un-
dergone parallel and independent developments, such as Gabor expansions (they
were introduced by J. von Neumann in [Neu18] within a rigorous theory of the
measurement process). Another example is the origin of the Wigner transform:
recall that for f, g ∈ L2(Rd) it is defined by

W (f, g)(x, ξ) :=

∫
Rd
e−2πiξ·yf

(
x+

y

2

)
g
(
x− y

2

)
dy.

If f = g we write Wf . Even if its appearance is not much revealing, this sort
of Fourier transform of the two-point cross-correlation between f and g was
mysteriously introduced by E. Wigner in a celebrated paper of 1932 [Wig32] as a
quasi-probability distribution on phase space in order to derive quantum corrections
to classical statistical mechanics, where the relevant terms are functions of jointly
position and momentum. It was later rediscovered in the context of signal analysis
by J. Ville [Vil48] and eventually became a popular tool in this community because
it enjoys several properties desired from a good time-frequency representation
[Jan97; MH97]. In fact, some of such features are shared with the STFT since

W (f, g)(x, ξ) = 2de4πix·ξVg∨f(2x, 2ξ),

where we set g∨(y) := g(−y). Nevertheless, there is an intrinsic difference: the
Wigner transform Wf is a quadratic time-frequency representation - in the sense
that W (cf) = |c|2Wf for any c ∈ C, while the Gabor transform (with fixed
window g) is linear. Heuristically, Wf(x, ξ) is interpreted as a measure of the
energy content of the signal f in a “tight” spectral band around ξ during a “short”
time interval near x. See Section 3.1.2 for further details.

The Wigner transform plays a key role in the problem of quantization. In a
nutshell, this requires to associate in a “robust” way a classical observable σ (i.e.,
a suitable function on the phase space) with a quantum observable op(σ) - which
is represented by a self-adjoint operator on the Hilbert space of the system in the
canonical Schrödinger picture of quantum mechanics. A naive way to perform
quantization is provided by the following recipe: given an observable σ : R2d → R,
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1. Introduction and Discussion of the Results

then op(σ) is obtained by formally replacing xj with the position operator Xj and
ξj with the momentum operator Dj, where

Xjf(x) = xjf(x), Djf(x) =
h

2πi

∂

∂xj
f(x), f ∈ S(Rd), j = 1, . . . , d,

where h > 0 is a small real parameter (the analogue of the Planck constant).
The well-posedness issues related to such a functional calculus of operators are of
primary concern. It should be also emphasized that the operators Xj and Dj may
be defined in a different way as long as they satisfy the canonical commutation
relations

[Xj, Xk] = 0, [Dj, Dk] = 0, 2π[Xj, Dk] = ihδjkI, j, k = 1, . . . , d,

where [A,B] = AB −BA is the commutator of the operators A and B. Moreover,
the correspondence σ 7→ op(σ) should depend on the parameter h in such a way
that the classical observable σ can be recovered by taking the “classical limit”
limh→0 oph(σ) in a suitable sense (this is known as the correspondence principle
[Boh76]). For simplicity we temporarily ignore this aspect and fix h = 1 in this
discussion, in line with the custom in harmonic analysis. Note that it is customary
to introduce the reduced parameter ~ := h/2π, hence we have ~ = 1/2π for the
moment.

There is plenty of quantization schemes in the literature, each with its own
strengths and weaknesses. Let us commence our discussion with the case of
monomial observables for concreteness, namely σ(x, ξ) = xmj ξ

n
j for some m,n ∈ N

and j = 1, . . . , d. We immediately remark that a clear ordering problem occurs
due to the non-commutativity of Xj and Dj, which is an unavoidable source of
ambiguity in the definition of op(σ). In this respect, providing a quantization rule
corresponds to fixing an order for the quantization of monomials. Two options are
quite natural: the normal and antinormal orderings, also called left (resp. right)
or q − p (resp. p− q) quantization, the name being clear from the very definition:

xmj ξ
n
j

left7−→ Xm
j D

n
j , xmj ξ

n
j

right7−−→ Dn
jX

m
j .

A compromise between these prescriptions which favours symmetry is provided by
the Weyl quantization:

opw(xmj ξ
n
j ) =

1

2n

n∑
k=0

(
b

k

)
Dn−k
j Xn

j D
k
j .

The correspondence introduced by H. Weyl in the late 1920s [Wey] is usually
acknowledged as the one having optimal properties. In fact, we highlight that M.
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1.2. The problem of quantization

de Gosson has recently made a strong case for the Born-Jordan quantization as
the optimal quantization rule, cf. [Gos16]; this is an equally weighted average of
the operator orderings, namely

opBJ(xmj ξ
n
j ) =

1

m+ 1

m∑
k=0

Xm−k
j Dn

jX
k
j =

1

n+ 1

n∑
k=0

Dn−k
j Xm

j D
k
j .

Note that the Weyl and Born-Jordan orderings coincide for m = n = 1 and both
yield the operator (XjDj +DjXj)/2.

The quantization of polynomial observables ultimately reduces to the previous
rules. The coverage of more general functions crucially relies on a simple though
powerful remark. Let P (X,D) =

∑
|α|≤mX

αDα
x be a linear partial differential

operator of order m ∈ N - we use the multi-index notation; note that P (X,D)
corresponds to the normal quantization of the polynomial P (x, ξ) =

∑
|α|≤m x

αξα.
The inversion formula for the Fourier transform yields

P (X,D)f =

∫
R2d

e2πi(x−y)·ξP (x, ξ)f(y)dydξ, f ∈ S(Rd).

It is quite tempting to take this integral representation as a definition of the
normal quantization of a general function σ of both position and momentum
beyond the polynomial case, at least formally; the hard work of providing a
rigorous and consistent framework for the study of these operators is left to the
theory of pseudodifferential operators [BS72; Fol89; Hör85; Kg81; NR10; Shu87;
Tay11; Won98], with the aim to relate the properties of the operator σ(x,D) (e.g.,
invertibility, composition, etc.) to those enjoyed by the corresponding symbol
σ(x, ξ) at the algebraic level.

Operators of the form

opKN(σ)f =

∫
R2d

e2π(x−y)·ξσ(x, ξ)f(y)dydξ (1.5)

are usually known as classical (or Kohn-Nirenberg) pseudodifferential operators.
In the case of the polynomial symbol we retrieve the normal ordering discussed
above. Similarly, given a generalized phase-space symbol σ ∈ S ′(R2d), the Weyl
quantization prescribes that the operator σw = opw(σ) : S(Rd) → S ′(Rd) is
(formally) defined by

opw(σ)f(x) =

∫
R2d

e2πi(x−y)·ξσ

(
x+ y

2
, ξ

)
f(y)dydξ. (1.6)

The rigorous handling of the integral expressions in (1.5) and (1.6) is non-trivial
and easily becomes a quite technical issue - one is required to precisely adjust

11



1. Introduction and Discussion of the Results

the regularity and decay assumptions on the symbol under which they can be
meaningfully interpreted. Nevertheless, a straightforward computation reveals the
role of the Wigner transform in the Weyl quantization:

〈opw(σ)f, g〉 = 〈σ,W (g, f)〉, f, g ∈ S(Rd). (1.7)

This weak formulation is certainly easier to handle and allows one to cover dis-
tributional symbols without further effort. More importantly, this is also the
bridge to Gabor analysis, since modulation and Wiener amalgam spaces may be
used both as symbol classes as well as background where to study boundedness
of pseudodifferential operators; the basic results in this connection may be found
in [Grö01; Grö06a], while [CR20] is devoted to more advanced outcomes, also
including applications to PDEs.

1.2.1 Linear perturbations of the Wigner transform and
the Weyl quantization

Let us focus on the Wigner distribution, in order to understand the role of time-
frequency representations in quantization rules. It is well known that not all
properties which are desired from a time-frequency representation are compatible.
For instance, the Wigner transform is real-valued, but it may take negative values;
this is a serious obstruction to the interpretation of the Wigner transform as
a probability distribution or as an energy density of a signal. A key result in
the problem of the positivity of the Wigner distribution is Hudson’s theorem
(cf. Proposition 3.1.3), stating that generalized Gaussian functions have positive
Wigner transforms [Jan84]. The question of zeros of the Wigner distribution is a
highly non-trivial problem which requires the contribution of several branches of
analysis, see the recent paper [GJM20].

In order to obtain time-frequency representations that are positive for all
functions but still retaining the nice properties of the Wigner distribution (marginal
densities, orthogonality relations, etc.), one is lead to take local averages of the
Wigner transform in the hope of taming sign oscillations. This is usually done by
convolving Wf with a suitable kernel θ and such a procedure yields a general class
of quadratic time-frequency representations, which is called Cohen’s class after L.
Cohen [Coh66].

Time-frequency representations in Cohen’s class are parametrized by a kernel
θ ∈ S ′(R2d), in the sense of the following definition:

Qθ(f, g) := W (f, g) ∗ θ, f, g ∈ S(Rd). (1.8)

Most of the time-frequency representations proposed so far belong to Cohen’s class
[Coh95; HA08], and the correspondence between properties of θ and Qθ is well
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1.2. The problem of quantization

understood [HA08]. In many respects Qθ can be interpreted as a perturbation of
the Wigner distribution and the Cohen class provides a unifying framework for the
study of several time-frequency representations appearing in signal processing - see
for instance [Coh89; Coh95; HA08; HB92].

For every time-frequency representation in Cohen’s class one can naturally
introduce a quantization rule in analogy to the Weyl quantization (1.7), namely,

〈opθ(σ)f, g〉 = 〈σ,Qθ(g, f)〉 = 〈σ ∗ θ∗,W (g, f)〉, f, g ∈ S(Rd) , (1.9)

whenever the expressions make sense [Coh13; Grö01].

Although the new operator opθ(σ) is just a Weyl operator with the modified
symbol σ ∗ θ∗ (whenever defined in S(R2d)), the variety of pseudodifferential calculi
given by definition (1.9) adds flexibility and a new flavour to the description and
analysis of operators. For example, a first important variation of the Wigner trans-
form are the τ -Wigner transforms [BDDO10; BDDOC10], which are parametrized
by a real number τ and defined by

Wτ (f, g)(x, ξ) =

∫
Rd
e−2πiy·ξf(x+ τy)g(x− (1− τ)y) dy, f, g ∈ S(Rd) . (1.10)

Such distributions belong to Cohen’s class, their kernel θτ ∈ S ′(R2d) being given
(on the spectral side) by

θ̂τ (x, ξ) = e−2πi(τ−1/2)x·ξ, (x, ξ) ∈ R2d. (1.11)

The corresponding pseudodifferential calculi are known as Shubin’s τ -pseudo-
differential operators [Shu87]; according to formula (1.9) these are explicitly given
by

opτ (σ)f(x) =

∫
R2d

e2π(x−y)·ξσ((1− τ)x+ τy, ξ)f(y)dydξ. (1.12)

In some sense, the dependence on x and y of the symbol is now amalgamated in
an affine combination of the variables. Note that for the parameter τ = 1/2 this is
just the Weyl transform, while for τ = 0 we recover the standard Kohn-Nirenberg
quantization. We highlight that the already mentioned Born-Jordan quantization
rule [BJ25] also belongs to the Cohen class and in fact can be obtained as an integral
average over τ ∈ [0, 1], see [BDDO10; CGN17a] and the monograph [Gos16].

While the distributions in the Cohen class are definitely more general, τ -
distributions provide a precise control over the deviation from the Wigner distri-
bution thanks to the parameter τ - or equivalently µ = τ − 1/2. Accordingly, it
is interesting to investigate whether some of the most relevant properties of the
Wigner distributions and the Weyl operators “survive” the perturbation, that is if
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1. Introduction and Discussion of the Results

they extend (possibly in a weaker form) to τ distributions and the corresponding
quantizations. This is the motivation for the papers [CDT19] and [CNT19b], which
are now briefly described; expanded accounts are given in Sections 5.5.3, 5.7.3, 5.8
and 5.9.

The main purpose of the paper [CDT19], which is a joint work with E. Cordero
and L. D’Elia, is to derive uniform upper bounds with respect to τ ∈ (0, 1) for
the operator norm of opτ (σ) on modulation and Wiener amalgam spaces for
several symbol classes of the same type, cf. Theorem 5.7.7. This is achieved by
duality, in the sense that we first derived uniform continuity estimates for τ -Wigner
distributions - see Theorem 5.5.9. We stress that the endpoint quantizations τ = 0
and τ = 1 are more delicate to handle, being unbounded in general - see Proposition
5.7.8 below.

In the article [CNT19b] (joint work with E. Cordero and F. Nicola) the focus is
on Weyl operators with symbols in the modulation space M∞,1(Rd). In fact, this
space of rough symbols (essentially, bounded continuous functions which locally
coincide with the Fourier transform of an integrable function) was independently
discovered by J. Sjöstrand in 1994 [Sjö94] in an attempt to extend the well-
behaved Hörmander class S0

0,0. He showed that this exotic symbol class still yield
pseudodifferential operators which are bounded on L2(Rd). In addition, it is a
Banach algebra under the Weyl product, namely if ρ, σ ∈M∞,1(R2d) then ρw ◦ σw

is again a pseudodifferential operator with Weyl symbol in M∞,1(R2d) - see Section
4.2 for further details.

Later on, K. Gröchenig exploited the full power of time-frequency analysis to
further study the features of this symbol class [Grö06c] and proved an important
characterization that could be condensed in the following statement: the Gabor
matrix of σw is approximately diagonalized by Gabor wave packets. More precisely
(see Theorem 5.8.1 for further details): σ ∈M∞,1(R2d) if and only if there exists
H ∈ L1(R2d) such that, for all g ∈M1(Rd),

|〈σwπ(z)g, π(w)g〉| ≤ H(w − z), w, z ∈ R2d. (1.13)

This sparsity estimate is a rich source of consequences as far as boundedness results
for Weyl operators are concerned. For instance, it can be used to easily prove
that if σ ∈M∞,1(R2d) then σw is bounded on every modulation space1 Mp,q(Rd),
1 ≤ p, q ≤ ∞. Indeed, recall that lifting the continuity problem to the level of
phase space by means of the Gabor transform amounts to study the continuity

1This result can be interpreted as a generalization of the classical result by Caldéron and
Vaillancourt [CV71], since the space Ck

b (R2d) of k-times continuously differentiable functions with
bounded derivatives up to k-th order is embedded in M∞,1(R2d) for k > 2d [Grö01, Theorem
14.5.3].
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1.2. The problem of quantization

of a phase-space representation of σw, that is an integral operator with integral
kernel given by the Gabor matrix Kσw . Using the estimate above we see that
the action of σw on phase space is essentially that of a convolution operator with
kernel H ∈ L1(R2d), that is continuous on Lp,q(R2d), 1 ≤ p, q ≤ ∞ (cf. [Grö01,
Proposition 11.3(a)]). We refer to Theorem 5.8.2 for further details and related
results.

In [CNT19b] we extended this result to τ -operators and used it to prove new
boundedness results on Wiener amalgam spaces. In some sense, this family of
results is stable under the perturbation represented by τ ; this is expected for many
reasons, including the fact that the change-of-quantization map

στ11 = στ22 ⇐⇒ σ̂2(ξ, η) = e−2πi(τ2−τ1)ξ·ησ̂1(ξ, η),

is well behaved on modulation spaces (cf. [Tof04a, Proposition 1.2 and Remark
1.5]). The same is not true for Wiener amalgam spaces [CN10, Proposition 6.4],
therefore the results for Weyl operators with symbols in some W p,q do not extend
in general to other quantizations; for instance, Weyl operators with symbols
in L1(R2d) ⊂ W∞,1(R2d) are bounded on L2(Rd) (cf. [WHHG11]) but neither
Kohn–Nirenberg operators (τ = 0) nor anti-Kohn-Nirenberg operators (τ = 1) are
[Bou95; Bou97]. See also [DT18] and Proposition 5.7.8 in this connection.

It is then interesting to investigate whether almost-diagonalization results in
the same spirit also hold for operators with symbols in the Fourier-Sjöstrand class
W∞,1(R2d) = FM∞,1, which contains rougher functions and distributions - as an
example, the Dirac delta belongs to W∞,1. As expected, the path is somehow more
involved due to the peculiar way τ comes across; nevertheless, this has been done
in [CNT19b, Theorem 4.3], leading to several boundedness and algebraic results on
modulation and Wiener amalgam spaces for τ -operators with τ ∈ (0, 1) - weaker
results hold also for endpoint quantizations. We highlight that some properties of
the Weyl quantization are destroyed by τ -perturbations, like the discrete version
of (1.13).

In view of this discussion, it is therefore tempting to stress the resistance of
the Weyl quantization under more general perturbations in the Cohen class, still
with some loose control on the perturbation. One could try to fill the gap between
generality and controllability by allowing general parametrizations τ : Rd → Rd

in (1.12). For instance, in the recent paper [ER20] the authors consider smooth
quantizing functions with bounded or unbounded derivatives. While in the nonlinear
scenario there is still too much freedom in choosing the function τ , the linear case
can be characterized in full generality. This just amounts to replace the scalar
parameter τ with a matrix parameter T ∈ Rd×d.
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1. Introduction and Discussion of the Results

The resulting family of T -pseudodifferential operators under our attention is

σTf(x) =

∫
R2d

e2πi(x−y)·ξσ((I − T )x+ Ty, ξ)f(y)dydξ = 〈σ,WT (g, f)〉, (1.14)

where I = Id ∈ Rd×d is the identity matrix and we introduced the matrix-Wigner
distribution

WT (g, f)(x, ξ) =

∫
Rd
e−2πiy·ξg(x+ Ty)f(x− (I − T )y)dy. (1.15)

These are members of the Cohen class in (1.8) with a kernel θT given by

θT = F−1ΘT ∈ S ′(R2d), ΘT (u, v) = e−2πiξ·(T−I/2)η.

An even more general definition in the spirit of (1.15) uses an arbitrary linear

mapping of the pair (x, y) ∈ R2d. Let A =

[
A11 A12

A21 A22

]
∈ R2d×2d be an invertible,

real-valued 2d× 2d-matrix. We define the bilinear time-frequency transform BA of
two functions f, g by

BA(f, g)(x, ξ) =

∫
Rd
e−2πiy·ξf(A11x+ A12y)g(A21x+ A22y)dy. (1.16)

Note that this general framework also encompasses the Gabor transform (1.2).
Clearly, WT in (1.15) is a special case by choosing

A = AT =

[
I T
I −(I − T )

]
.

Once again, every matrix-Wigner transform BA is associated with a quantization
rule: given an invertible 2d × 2d-matrix A and a symbol σ ∈ S ′(R2d), we define
the operator σA by

〈σAf, g〉 = 〈σ,BA(g, f)〉, f, g ∈ S(Rd) . (1.17)

The class of matrix-Wigner transforms has already a sizeable history. To the
best of our knowledge they were first introduced in [FM89] in dimension d = 1 for a
different purpose, but the original contribution to the subject went unnoticed. The
first thorough investigation of matrix-Wigner transforms BA is contained in the
unpublished Ph.D. thesis [Bay10] of D. Bayer, who studied the general properties
of this class of time-frequency representations and the associated pseudodifferential
operators. Independently, in [BCO11] the authors introduced and studied “Wigner
representations associated with linear transformations of the time-frequency plane”

16



1.3. Wave packet analysis of metaplectic operators and applications

in dimension d = 1. In [GG13] matrix-Wigner transforms were used for a signal
estimation problem. Recently, in [Tof17] the author discusses “matrix parametrized
pseudo-differential calculi on modulation spaces”, which precisely correspond to
T -operators in (1.14) in the context of modulation space, while in [CT17] they are
studied in the Gelfand-Shilov regularity setting.

Finally, E. Cordero and the author in [CT20] reworked and streamlined several
results of [Bay10] and showed that matrix-Wigner distributions as in (1.15) are all
and only the members of the general family (1.16) that belong to Cohen’s class.
Several results concerning such distributions, including boundedness results on
modulation and Wiener amalgam spaces, are given.

In the joint contribution [BCGT20] with D. Bayer, E. Cordero and K. Gröchenig,
we used the accumulated knowledge on the topic to provide several results for
T -pseudodifferential operators, including broad sets of norm estimates in the spirit
of [CDT19] and almost-diagonalization properties in the spirit of [CNT19b]. As
expected, the results involving modulation spaces are somehow stable under matrix
perturbations, while those in the framework of Wiener amalgam spaces are less
easy to extend. Moreover, the Wigner distribution and the Weyl calculus have
stood out for their remarkable properties.

All these results are presented in Chapter 5. A detailed outline of the findings
can be found at the beginning of that chapter. In some sense, our effort can be seen
as a complete time-frequency characterization of pseudodifferential operators and
associated distributions for the general linear case of quantizing parametrization
τ : Rd → Rd in (1.10).

1.3 Wave packet analysis of metaplectic

operators and applications

We have already mentioned that the analysis of a linear continuous operator
A : S(Rd) → S ′(Rd) in terms of Gabor wave packets comes through a detailed
study of the corresponding Gabor matrix KA with respect to fixed g, γ ∈ S(Rd)\{0},
namely

KA(w, z) := 〈Aπ(z)g, π(w)γ〉, w, z ∈ R2d.

In the previous section we have seen this principle in action in the case where
A is a Weyl operator with symbol in the Sjöstrand class M∞,1(Rd). Results in
the same spirit have been appearing in the literature for several families of op-
erators, including pseudodifferential operators [CNT19b; GR08; Grö06c; RT98;
Tat04], Fourier integral operators [CGNR13; CGNR14; CNR10; Tat04] and propa-
gators associated with Cauchy problems for Schrödinger-type evolution equations
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1. Introduction and Discussion of the Results

[CNR15a; CNR15b; CNR15c; KT05; MMT08; Tat04]. We also recommend the
recent monograph [CR20] for a more systematic account.

We stress that wave packets should be tailored in order to best fit the geometry
of the problem. For instance, the Gabor matrix of Fourier integral operators arising
as propagators for strictly hyperbolic equations does not display a sparse behaviour,
while analogous representations involving curvelet atoms do enjoy super-polynomial
decay, cf. [CD05; CF78]. See also [GL07; ST05; Tat04] for other applications of
wave packet analysis.

For the sake of concreteness let us focus on the Schrödinger propagator for the
free particle U(t) = ei(t/2π)∆, t ∈ R, and fix g ∈ S(Rd) \ {0}. It has been proved
that the corresponding Gabor matrix is well organized [CNR09; CNR10; CNR12];
precisely, for any t ∈ R and N ∈ N there exists a constant C = C(t, N) > 0 such
that the following decay estimate for the Gabor matrix elements of U(t) holds:

|〈ei(t/2π)∆π(z)g, π(w)g〉| ≤ C(1 + |w − Stz|)−N , w, z ∈ R2d, (1.18)

where St ∈ R2d×2d is the block matrix

St =

[
I 2tI
O I

]
, (1.19)

where O ∈ Rd×d is the null matrix. We remark that t 7→ St coincides with
the Hamiltonian flow for the free particle in phase space; precisely, the classical
equations of motion with Hamiltonian H(x, ξ) = |ξ|2 and initial datum (x0, ξ0) ∈
R2d are solved by (x(t), ξ(t)) = St(x0, ξ0). Hence the wave packet analysis (1.18)
shows that the time evolution of wave packets under U(t) approximately follows the
classical flow, in according with the correspondence principle of quantum mechanics
mentioned before.

Nevertheless, a distinctive feature of wave propagation dynamics is the unavoid-
able effect of diffraction. In the situation under our attention it does manifest itself
as the well-known phenomenon of the spreading of wave packets [Dir78, Section
31]. Moreover, a straightforward consequence of the dispersive estimates for the
Schrödinger propagator [Tao06] is that there exists C > 0 such that

|〈ei(t/2π)∆π(z)g, π(w)g〉| ≤ C(1 + |t|)−d/2, w, z ∈ R2d. (1.20)

It may therefore appear quite unsatisfactory that there is no trace of such issues in
quasi-diagonalization estimates as (1.18).

This question has been addressed in the article [CNT20], which is a joint work
with E. Cordero and F. Nicola; the results therein are presented in Chapter 6
below. Our purpose was exactly to prove refined estimates for the Gabor matrix
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1.3. Wave packet analysis of metaplectic operators and applications

of U(t) where sparsity, spreading and dispersive phenomena are simultaneously
represented. To the best of our knowledge, we are not aware of results in this spirit
for pseudodifferential or evolution operators.

Our quest is in fact motivated by the more general situation where U(t) is
the Schrödinger propagator corresponding to the Hamiltonian H = Qw, where
Q is a real homogeneous quadratic polynomial on R2d and Qw denotes its Weyl
quantization as in (1.6). To be precise, consider

Q(x, ξ) =
1

2
Aξ · ξ +Bx · ξ +

1

2
Cx · x, (1.21)

where A,B,C ∈ Rd×d and A,C are symmetric matrices. It is not difficult to
compute the corresponding Weyl quantization, that is

Qw = − 1

8π2

d∑
j,k=1

Aj,k∂j∂k−
i

2π

d∑
j,k=1

Bj,kxj∂k +
1

2

d∑
j,k=1

Cj,kxjxk−
i

4π
Tr(B). (1.22)

The Schrödinger propagator U(t) = e−2πitQw
, t ∈ R, is in turn an instance of a

metaplectic operator. In short, the metaplectic representation is a machinery which
associates a symplectic matrix S ∈ Sp(d,R) with a member of the metaplectic
group µ(S) ∈ Mp(d,R), that is a unitary operator on L2(Rd) defined up to the sign.
If R 3 t 7→ St ∈ Sp(d,R) denotes the classical flow on phase space associated with
the quadratic Hamiltonian H(x, ξ) = Q(x, ξ) then µ(St) = e−2πitQw

- see (1.19) for
the free particle case. We refer to Section 4.3 for further details.

It is therefore convenient to focus on metaplectic operators as primary objects
of our investigation. The spreading of wave packets under µ(S) is now connected
with the singular values of S ∈ Sp(d,R) [CNT19a], which occur in couples (σ, σ−1)
of positive real numbers. We fix the ordering by labelling the largest d singular
values in such a way that σ1 ≥ . . . ≥ σd ≥ 1; moreover we set Σ = diag(σ1, . . . , σd)
and introduce the matrices

D =

[
Σ O
O Σ−1

]
, D′ =

[
Σ−1 O
O I

]
, D′′ =

[
I O
O Σ−1

]
. (1.23)

The singular value decomposition of S ∈ Sp(d,R) (also known as the Euler
decomposition in this setting) has a peculiar form due to the symplectic condition,
namely there exist (non-unique) orthogonal and symplectic matrices U, V such
that S = U>DV , cf. Proposition 4.3.2 and Section 4.3.1 below. Such factorization
is identified by the triple (U, V,Σ). In the following for a given S ∈ Sp(d,R) we
will denote by (U, V,Σ) an Euler decomposition of S and by D,D′, D′′ the above
defined related matrices.
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1. Introduction and Discussion of the Results

We are now in the position to state our first result, concerning rapidly decaying
Gabor wave packets.

Theorem 1.3.1. For any g, γ ∈ S(Rd) and N > 0 there exists C > 0 such that,
for every S ∈ Sp(d,R) and any Euler decomposition (U, V,Σ) of S,

|〈µ(S)π(z)g, π(w)γ〉| ≤ C(det Σ)−1/2(1 + |D′U(w−Sz)|)−N , z, w ∈ R2d. (1.24)

We see that the simultaneous occurrence of sparsity, spreading and dispersive
phenomena is represented by the quasi-diagonal structure along S, the dilation by
D′U and the factor (det Σ)−1/2 respectively. An equivalent form of the previous
estimate where the spreading phenomenon is somehow more distributed follows by
noticing that D′U(w − Sz) = D′Uw −D′′V z.

The special case of the free particle propagator is treated in detail in Section
6.3. We just mention here that, for any fixed t ∈ R and any Euler decomposition
(Ut, Vt,Σt) of St, the estimate (1.24) reads∣∣〈ei(t/2π)∆π(z)g, π(w)γ〉

∣∣ ≤ C(1 + |t|)−d/2(1 + |D′tUt(w − Stz)|)−N , w, z ∈ R2d.

We see that the features of both (1.18) and (1.20) are now represented, whereas
the spreading phenomenon manifests itself as a dilation by the matrix D′tUt, the
nature of which is investigated in Section 6.3.

We also provide results in the same spirit of Theorem 1.3.1 for wave packets
associated with less regular atoms; in particular we assume that g and γ belong
to suitable modulation spaces. The latter provide an optimal environment where
to investigate the behaviour of the Gabor matrix of a metaplectic operator, as
evidenced by the following result.

Theorem 1.3.2. (i) Let 1 ≤ p, q, r ≤ ∞ satisfy 1/p + 1/q = 1 + 1/r. For
any g ∈ Mp(Rd), γ ∈ M q(Rd), S ∈ Sp(d,R) and any Euler decomposition
(U, V,Σ) of S, there exists H ∈ Lr(R2d) such that, for any z, w ∈ R2d,

|〈µ(S)π(z)g, π(w)γ〉| ≤ H(D′U(w − Sz)), (1.25)

with

‖H‖Lr ≤ (det Σ)1/2−1/r‖g‖Mp‖γ‖Mq . (1.26)

(ii) Let s > 2d. For any g, γ ∈ M∞
vs (Rd) there exists H ∈ L∞vs−2d

(R2d) such that
(1.25) holds, with

‖H‖L∞vs−2d

≤ (det Σ)−1/2‖g‖M∞vs (Rd)‖γ‖M∞vs (Rd).
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1.3. Wave packet analysis of metaplectic operators and applications

Here we used the notation ‖H‖L∞vs = ‖Hvs‖L∞ . We remark that the best decay
in (1.26) is achieved in the case where p = q = r = 1, namely for Gabor atoms
belonging to the Feichtinger algebra M1(Rd). We also highlight the inclusion
M∞

vs (Rd) ⊂M1(Rd) for s > 2d, which follows directly from the definition.

In Theorem 1.3.3 we prove an estimate in the same spirit of Theorem 1.3.2 for
the Gabor matrix of the so-called generalized metaplectic operators. This family
of operators characterized by the sparsity of their phase-space representation
has been introduced and studied in [CGNR13; CGNR14] in connection with
inverse-closed algebras of Fourier integral operators. In short, a linear operator
A : S(Rd)→ S ′(Rd) is in the class FIO(S) if there exists H ∈ L1(R2d) such that

|〈Aπ(z)g, π(w)g〉| ≤ H(w − Sz), w, z ∈ R2d.

The main properties are recalled in Section 4.3.5. In particular, it can be proved
that A ∈ FIO(S) if and only if A is the composition of a metaplectic operator
µ(S) and a Weyl operator σw for a suitable symbol σ ∈M∞,1 - cf. Theorem 4.3.10.

Theorem 1.3.3. Let 1 ≤ p, q, r ≤ ∞ satisfy 1/p + 1/q = 1 + 1/r. Consider
S ∈ Sp(d,R) with an Euler decomposition (U, V,Σ), a ∈ M∞,1(R2d) so that
A := awµ(S) ∈ FIO(S), cf. Theorem 4.3.10. For any g ∈ Mp(Rd), γ ∈ M q(Rd)
there exists H ∈ Lr(R2d) such that, for any z, w ∈ R2d,

|〈Aπ(z)g, π(w)γ〉| ≤ H(D′U(w − Sz)),

with
‖H‖Lr ≤ (det Σ)1/2−1/r‖a‖M∞,1‖g‖Mp‖γ‖Mq .

Finally, we provide an application of the enhanced estimates for the Gabor
matrix to the propagation of singularities for the Schrödinger equation. The fruitful
interplay between time-frequency and microlocal analysis lead to new notions of
global wave front sets after Hörmander [Hör91]. Several notions of global wave
front set have been introduced to detect (the lack of) regularity at modulation
space level, see [RW14] for a more detailed discussion and [PSRW18; Wah18] for
further applications.

Given an open cone Γ in R2d and g ∈ S(Rd) \ {0} we define the space M1
(g)(Γ)

of M1-regular distributions on the cone Γ with respect to g as the set of all the
distributions f ∈ S ′(Rd) such that

‖f‖M1
(g)

(Γ) :=

∫
Γ

|Vgf(z)|dz <∞. (1.27)

The next result shows that M1-regularity of a function f on a conic subset of
the phase space is preserved by the action of µ(S) provided that a slightly smaller
cone, evolved under S, is taken into account. We set S2d−1 for the sphere in R2d.
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Theorem 1.3.4. Let S ∈ Sp(d,R), g, γ ∈ S(Rd) \ {0} and Γ,Γ′ ⊂ R2d be open
cones such that Γ′ ∩ S2d−1 ⊂ Γ ∩ S2d−1. If f ∈ S ′(Rd) is M1-regular on Γ with
respect to g then µ(S)f is M1-regular on S(Γ′) with respect to γ.

Precisely, given r ≥ 0 there exists C > 0 such that, for any f ∈ M1
v−r(R

d) ∩
M1

(g)(Γ) (cf. (3.10)) and S ∈ Sp(d,R) the following estimate holds:

‖µ(S)f‖M1
(γ)

(S(Γ′)) ≤ C(det Σ)1/2
(
‖f‖M1

(g)
(Γ) + (det Σ)r‖f‖M1

v−r (Rd)

)
.

If we specialize the previous result to the free particle propagator we get∥∥ei(t/2π)∆f
∥∥
M1

(γ)
(St(Γ′))

≤ C
(

(1 + |t|)d/2‖f‖M1
(g)

(Γ) + (1 + |t|)d(1/2+r)‖f‖M1
v−r (Rd)

)
,

where St is the classical flow in (1.19). The latter can be regarded as a microlocal
refinement of known estimates, cf. for instance [WHHG11, Proposition 6.6] and
Corollary 6.2.3 below.

1.4 Time-frequency analysis of the Dirac

equation

As already evidenced in the previous sections, the study of dispersive equations may
certainly take advantage from the techniques of modern harmonic analysis. In the
last decades we have witnessed an increasing interest in the application to PDEs
of strategies and function spaces arising in time-frequency analysis. Even if it is
impossible to offer a comprehensive list of results, we suggest the papers [BGOR07;
BO09; CF12; CN08b; CN09; CN14; CNR15b; KKI12; KKI14; WH07; ZCG14] and
the monographs [CR20; WHHG11] as examples of the manifold aspects one can
handle from this perspective.

The relevance of modulation and Wiener amalgam spaces to the study of
dispersive PDEs is closely related to the evolution of the phase-space concentration
under the corresponding propagators. As an example, while the Schrödinger
propagator eit∆ is not bounded on Lp(Rd) except for p = 2, it is a bounded
unimodular Fourier multiplier on any modulation space Mp,q(Rd) [BGOR07]. Many
results of this type, including improved dispersive and Strichartz estimates, are
also known for the wave equation and the Klein-Gordon equation (see the list of
papers above).

In spite of this established trend, little is known concerning the Gabor analysis
of the Dirac equation. Recall that the Cauchy problem for the n-dimensional Dirac
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1.4. Time-frequency analysis of the Dirac equation

equation with a potential V reads{
i∂tψ(t, x) = (Dm + V )ψ(t, x),

ψ(0, x) = ψ0(x),
(t, x) ∈ R× Rd. (1.28)

Here ψ(t, x) = (ψ1(t, x), . . . , ψn(t, x)) ∈ Cn is a vector-valued complex wavefunction
and the Dirac operator Dm is defined by

Dm = 2πmα0 − i
d∑
j=1

αj∂j, (1.29)

where m ≥ 0 (mass) and α0, α1, . . . , αd ∈ Cn×n is a set of Dirac matrices, i.e. n×n
Hermitian matrices satisfying the identities

αiαj + αjαi = 2δijIn, ∀ 0 ≤ i, j ≤ d. (1.30)

For d = 3 and n = 4 the standard choice for such matrices is the so-called Dirac
representation:

αi =

[
0 σi
σi 0

]
, i = 1, 2, 3, α0 =

[
I2 0
0 −I2

]
,

where we introduced the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

In general, for any d there exist several iterative schemes to obtain a set of Dirac
matrices and in general the dependence of the (even) dimension n = n(d) on d is a
consequence of the chosen construction [KY01].

To the best of our knowledge, the only contribution on the Dirac equation
in the perspective discussed above is the recent paper [KN19] by K. Kato and I.
Naumkin. The authors proved estimates for the solutions of the Dirac equation
(1.28) in the free case (Theorem 1.1) and also for quadratic and subquadratic
time-dependent smooth potentials (Theorem 1.2); the latter setting also includes
an electromagnetic potential with linear growth.

Broadly speaking, the main difficulty in dealing with (1.28) lies in that it is a
system of coupled equations, hence a strategy for disentangling the components is
needed. For instance, this can be done approximately at the level of phase space
(see [KN19, (3.17)]) or by projection onto the spectrum of the Dirac operators (see
the proof of the dispersive estimate [KN19, (1.8)]). Another standard procedure
consists of exploiting the connection with the wave and Klein-Gordon equations
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when m = 0 and m > 0 respectively. Nevertheless, when a non-zero potential V is
taken into account most of these procedures loose their usefulness and new ideas
are required (cf. for instance [CD13; CF17; DF07; EGG19]).

Some aspects of the Gabor analysis of the Dirac equation have been considered
by the author in [Tra20] - proofs and further details are to be found in Chapter
7. The first aim of this contribution is to offer a different point of view that does
not require an explicit decoupling technique nor any preliminary knowledge about
the Klein-Gordon equation. A naive look at (1.28) would suggest to treat it like
a Schrödinger-type equation with matrix-valued Hamiltonian H = Dm + V . For
the free case (V = 0) the corresponding propagator U(t) = e−itDm can be formally
viewed as a Fourier multiplier with matrix symbol

µt(ξ) = exp

[
−2πit

(
mα0 +

d∑
j=1

αjξj

)]
. (1.31)

This perspective naturally leads to consider estimates on vector-valued modula-
tion and Wiener amalgam spaces by studying the regularity of µt and extending the
ordinary boundedness results for Fourier multipliers and more general pseudodiffer-
ential operators. Vector-valued modulation spaces were first considered by J. Toft
[Tof04b] and then extensively studied by P. Wahlberg [Wah07]. Roughly speaking,
the E-valued modulation space Mp,q

r,s (Rd, E), E being in general a Banach space,
is defined by above with | · | replaced by the Banach space norm | · |E. We address
the reader to Chapter 3 for a rigorous discussion.

The study of the Dirac equation would only require to consider finite-dimensional
vector spaces such as Cn and Cn×n, so that the subtleties connected with infinite-
dimensional target spaces are not relevant here and most of the proofs reduce
to componentwise computation. Nevertheless, we decided to embrace a wider
perspective and thus in the preparatory Section 3.2 we extended several results of
scalar-valued time-frequency analysis to the vector-valued context; this framework
allows us to derive very natural and compact proofs for the main results on the
Dirac equation. In passing, we remark that the core of results concerning vector-
valued time-frequency analysis is in fact of independent interest and falls into the
larger area of infinite-dimensional harmonic analysis. We plan to devote future
investigations to the topic.

In that spirit, we are then able to prove the following estimates for the free
Dirac propagator.

Theorem 1.4.1. Let 1 ≤ p, q ≤ ∞ and r, s ∈ R; denote by X any of the spaces
Mp,q

r,s (Rd,Cn) or W p,q
r,s (Rd,Cn). Let ψ(t, x) be the solution of (1.28) with V = 0.
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For any t ∈ R there exists a constant CX(t) > 0 such that

‖ψ(t, ·)‖X ≤ CX(t)‖ψ0‖X .

In particular, if X = Mp,q
0,s (Rd,Cn) there exists a constant C ′ > 0 such that

CX(t) ≤ C ′(1 + |t|)d|1/2−1/p|. (1.32)

While the results are not unexpected in themselves in view of the discussion
above on the connection with the Klein-Gordon propagator, we stress that our
method improves the known estimates in two aspects. First, we are able to cover
weighted modulation and Wiener amalgam spaces with no extra effort, resulting in
a more precise description of the action of the propagator (no loss of derivatives in
Theorem 1.4.1 or asymptotic smoothing in Theorem 7.1.1 below). On the other
hand, at least for modulation spaces we are able to explicitly characterize the
time-dependence of the constant C(t) in (1.32) in a straightforward way, essentially
by inspecting the symbol (1.31).

The second purpose of our contribution is to provide boundedness results on
modulation and Wiener amalgam spaces for suitable potentials V in (1.28). We
relax the regularity assumptions in [KN19] in two aspects. First, we replace the
multiplication operator by V with a genuine matrix pseudodifferential operator
σw in the Weyl form, where the matrix symbol σ belongs to the Sjöstrand class
M∞,1(Rd,Cn×n). In addition, while the dependence on the time of the potential V
is assumed to be smooth in [KN19], we require here a milder condition, namely
continuity for the narrow convergence - cf. Definition 3.2.21 below. In the following
claim we use the spacesMp,q

r,s andWp,q
r,s , defined by the closure of the Schwartz class

in the corresponding modulation and Wiener amalgam spaces respectively; they
coincide with the standard spaces except for p =∞ or q =∞. This is necessary
in order to avoid technical difficulties arising in those cases.

Theorem 1.4.2. Let 1 ≤ p, q ≤ ∞, γ ≥ 0 and r, s ∈ R be such that |r|+ |s| ≤ γ;
denote by X any of the spaces Mp,q

r,s(Rd,Cn) or Wp,q
r,s (Rd,Cn). Let T > 0 be fixed

and assume the map [0, T ] 3 t 7→ σ(t, ·) ∈M∞,1
0,γ (Rd,Cn×n), to be continuous for the

narrow convergence. For any ψ0 ∈ X there exists a unique solution ψ ∈ C([0, T ], X)
to (1.28) with V = σ(t, ·)w. The corresponding propagator is bounded on X.

Note that the result stated here contains a slight improvement of the regularity
of the symbol compared to [Tra20, Theorem 1.2].

We then consider the case of potentials with quadratic and sub-quadratic growth
as in [KN19]. As a consequence of a useful splitting lemma, namely Proposition
3.2.20, we are able to prove a generalized rough counterpart of the smooth scenario

25



1. Introduction and Discussion of the Results

considered in [KN19, Theorem 1.2]. In particular, the potential contains non-
smooth functions with a certain number of derivatives in the Sjöstrand class plus a
pseudodifferential perturbation in the Weyl form.

Theorem 1.4.3. Let 1 ≤ p ≤ ∞ and ψ0 ∈Mp(Cn). Consider the Cauchy problem
(1.28) with potential

V = QIn + L+ σw, (1.33)

where

– Q : Rd → C is such that ∂αQ ∈M∞,1(Rd) for α ∈ Nd, |α| = 2,

– L : Rd → Cn×n is such that ∂αL ∈M∞,1(Rd,Cn×n) for α ∈ Nd, |α| = 1, and

– σ ∈M∞,1(Rd,Cn×n).

For any t ∈ R there exists a constant C(t) > 0 such that the solution ψ of (1.28)
satisfies

‖ψ(t, ·)‖Mp ≤ C(t)‖ψ0‖Mp .

Furthermore, if V is as in (1.33) and Q = 0, then for any 1 ≤ p, q ≤ ∞ and t ∈ R
there exists a constant C(t) > 0 such that the solution ψ of (1.28) satisfies

‖ψ(t, ·)‖Mp,q ≤ C(t)‖ψ0‖Mp,q .

Finally, we study the local well-posedness for the nonlinear setting, namely{
i∂tψ(t, x) = Dmψ(t, x) + F (ψ(t, x)),

ψ(0, x) = ψ0(x),
(t, x) ∈ R× Rd, (1.34)

where the nonlinear term F considered below comes in the form of a vector-valued
real-analytic entire function F : Cn → Cn such that F (0) = 0, i.e.

Fj(z) =
∑

α,β∈Nn
cjα,βz

αz̄β, cjα,β ∈ C, j = 1, . . . , n, (1.35)

with absolute convergence for any z ∈ C. We remark that this general choice
includes nonlinearities of power type, such as

F (ψ) = |ψ|2kψ, k ∈ N; (1.36)

and the cubic nonlinearity known as the Thirring model, namely

F (ψ) = (α0ψ, ψ)α0ψ;
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1.5. Gabor analysis meets Feynman path integrals

The choice of even powers in (1.36) and entire functions as in (1.35) are standard
in the context of modulation and amalgam spaces, because of the Banach algebra
property enjoyed by certain spaces of these families [STW11]. On the other
hand, the nonlinear spinor field appearing in the Thirring model has been largely
investigated; cf. for instance [BH16; Huh11; MNO03; Nau16], also in view of its
physical relevance - it is a model for self-interacting Dirac fermions in quantum
field theory [Sol70; Thi58].

The main result in this respect reads as follows.

Theorem 1.4.4. Let 1 ≤ p ≤ ∞ and r, s ≥ 0; denote by X any of the spaces
Mp,1

0,s (Rd,Cn) or W 1,p
r,s (Rd,Cn). If ψ0 ∈ X then there exists T = T (‖ψ0‖X) such

that the Cauchy problem (1.34) with F as in (1.35) has a unique solution ψ ∈
C0([0, T ], X).

We conclude this discussion by emphasizing a few aspects that may be further
developed in the context of modulation spaces, such as Strichartz estimates and
perturbations due to a magnetic field, i.e. the Dirac operator in (1.29) becomes
Dm,A = 2πmα0 − i

∑d
j=1 αj(∂j − iAj), where A(x) = (A1(x), . . . , Ad(x)), x ∈ Rd,

is a static magnetic potential. We also point out that more general nonlinear
terms could be considered, for instance as in the Soler model [Sol70] and other
interactions arising in condensed matter; cf. [Pel11] for the state of the art in 1+1
dimensions.

1.5 Gabor analysis meets Feynman path

integrals

There has been plenty of opportunities to discuss the fruitful interplay between
Gabor analysis and physics for what concerns motivations as well as applications;
the problem of quantization is perhaps the most striking example in this respect. In
fact, another problem arising in mathematical physics has recently benefited from
the techniques of Gabor analysis, that is the rigorous formulation of Feynman path
integrals. From the mathematical point of view, while the quantization problem
deals with the characterization of an operator A in terms of its symbol a and
the correspondence a 7→ A, path integrals are basically a way to provide explicit
representation formulae for the evolution operator e−itA (and also e−tA in general).

The path integral formulation of non-relativistic quantum mechanics is a para-
mount contribution by R. Feynman (Nobel Prize in Physics, 1965) to modern
theoretical physics. The origin of this approach goes back to Feynman’s Ph.D.
thesis of 1942 at Princeton University (recently reprinted, cf. [Bro05]) but was
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1. Introduction and Discussion of the Results

first published in the form of research paper in 1948 [Fey48]; see also [Sau08] for
some historical hints. In rough terms we could say that this approach provides a
quantum counterpart to Lagrangian mechanics, while the standard framework for
canonical quantization as developed by Dirac relies on the Hamiltonian formulation
of classical mechanics. Path integrals and Feynman’s deep physical intuition were
the main ingredients of the celebrated diagrams, introduced in the 1949 paper
[Fey49], which gave a whole new outlook on quantum field theory.

For a first-hand pedagogical introduction we recommend the textbook [FH10],
where it is clarified how the physical intuition of path integrals comes from a deep
understanding of the lesson given by the two-slit experiment. We briefly outline
below the main features of Feynman’s approach.

Recall that the state of a non-relativistic particle in the Euclidean space Rd

at time t is represented by the wave function ψ(t, x), (t, x) ∈ R × Rd, such that
ψ(t, ·) ∈ L2(Rd). The time-evolution of a state f(x) at t = 0 is governed by the
Cauchy problem for the Schrödinger equation:{

i~∂tψ = (H0 + V (t, x))ψ

ψ(0, x) = f(x),
(1.37)

where 0 < ~ ≤ 1 is a parameter2, H0 = −~2∆/2 is the standard Hamiltonian for
a free particle and V is a real-valued potential; we conveniently set m = 1 for
the mass of the particle. The map U(t, s) : ψ(s, ·) 7→ ψ(t, ·), t, s ∈ R, is a unitary
operator on L2(Rd) and is known as propagator 3 or evolution operator ; we set
U(t) for U(t, 0). Since U(t) is a linear operator we can formally represent it as an
integral operator, namely

ψ(t, x) =

∫
Rd
ut(x, y)f(y)dy,

where the kernel ut(x, y) is interpreted as the transition amplitude from the position
y at time 0 to the position x at time t. In a nutshell, Feynman’s prescription is a
recipe for this kernel, the main ingredients being all the possible paths from y to x
that the particle could follow. The contribution of each interfering alternative path

2This is the reduced Planck constant ~ = h/2π. We temporarily keep track of its presence in
view of semiclassical arguments below, but then we restore the harmonic analysis convention
h = 1. We stress that h denotes a dimensionless parameter which should not be systematically
identified with the true Planck constant - the latter being just a physical motivation for this
mathematical scenario.

3We remark that in the physics literature the term “propagator” is usually reserved to the
integral kernel ut of U(t), see below. This may possibly lead to confusion since it is in conflict
with the traditional nomenclature adopted in the analysis of PDEs.
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1.5. Gabor analysis meets Feynman path integrals

to the total probability amplitude is a phase factor involving the action functional
evaluated on the path, that is

S[γ] =

∫ t

0

L(γ(τ), γ̇(τ), τ)dτ, (1.38)

where L is the Lagrangian of the underlying classical system, namely

L(x, v, τ) =
1

2
|v|2 − V (x, τ).

Therefore, the kernel should be formally represented as

ut(x, y) =

∫
e
i
~S[γ]Dγ, (1.39)

that is a sort of integral over the infinite-dimensional space of paths satisfying the
conditions above. This intriguing picture is further reinforced by the following
remark: a formal application of the stationary phase method shows that the
semiclassical limit ~ → 0 selects the classical trajectory, hence we recover the
principle of stationary action of classical mechanics.

0

y

x

t

•

•

γ

~→ 0

Figure 1.1: Some of all the possible trajectories with given endpoints (0, x0) and
(t, x) that a particle could follow (in red). In blue: the classical path, which is
recovered in the semiclassical limit ~→ 0.

It is well known after R. Cameron [Cam60] that Dγ cannot be a Lebesgue-
type measure on the space of paths, neither it can be constructed as a Wiener
measure with complex variance - it would have infinite total variation [Maz09]. The
literature concerning the problem of putting formula (1.39) on firm mathematical
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1. Introduction and Discussion of the Results

ground is huge; the interested reader could benefit from the monographs [AHKM08;
Fuj17; Maz09] as points of departure. We will describe below only two of the several
schemes which have been manufactured in order to give a rigorous meaning to
(1.39); they both rely on operator-theoretic strategies and are called the sequential
approach and the time slicing approach. Basically, one is lead to study sequences
of operators on L2(Rd) which converge to the exact propagator U(t) in a sense to
be specified, the strength of convergence competing against the regularity of the
potential V .

This is the point where time-frequency analysis enters the scene: the accumu-
lated knowledge on the wave packet analysis of operators will be crucial in the
study of approximate propagators arising in the theory of path integrals. Moreover,
function spaces of time-frequency analysis enjoy a fruitful balance between nice
properties (Banach algebra structures, embeddings, decomposition, etc.) and
regularity of their members, so that they can be used as reservoirs of potentials.

We now briefly outline the main features of a pair of mathematical schemes
which are in fact two faces of the same philosophy: the closest approach to Feyn-
man’s original intuition (cf. [FH10]) requires to interpret formula (1.39) by means
of a limiting procedure involving suitably designed finite-dimensional approxi-
mations. While in the literature one may easily notice that different names are
interchangeably used for them, we consider the classification below for the sake of
clarity.

1.5.1 The sequential approach

The so-called sequential approach to path integrals was first introduced by E.
Nelson in [Nel64] and relies on two basic results. First, recall that the free evolution

operator for the Schrödinger equation U0(t) = e−
i
~ tH0 , H0 = −~2∆/2, is a Fourier

multiplier; routine computation yields the following integral representation [RS75,
Section IX.7]:

e−
i
~ tH0f(x) =

1

(2πit~)d/2

∫
Rd

exp

(
i

~
|x− y|2

2t

)
f(y)dy, f ∈ S(Rd). (1.40)

Notice that the phase factor in the integral actually coincides with the action
functional evaluated along the line γcl(τ) = y + (x− y)τ/t, namely the classical
trajectory of a free particle moving from position y at time τ = 0 to position x at
time τ = t in the absence of external forces.

Next, we need a result from the theory of operator semigroups. Provided that
suitable conditions on the domain of H0 and on the potential V are satisfied (see

below), the Trotter product formula holds for the propagator U(t) = e−
i
~ t(H0+V )
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•
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γ

Figure 1.2: The broken line approximation γ introduced in (1.43).

generated by H = H0 + V :

U(t)f = lim
n→∞

En(t)f, f ∈ L2(Rd), En(t) :=
(
e−

i
~
t
n
H0e−

i
~
t
n
V
)n
, (1.41)

hence we have convergence of the approximate propagators En(t) (also called
Feynman-Trotter parametrices) in the strong topology of operators in L2(Rd) to
the exact propagator U(t). Combining these two ingredients yields the following

representation of the complete propagator e−
i
~ tH as limit of integral operators

[RS75, Theorem X.66]:

e−
i
~ t(H0+V )f(x) = lim

n→∞

(
2π~i

t

n

)−nd
2
∫
Rnd

e
i
~Sn(t;x0,...,xn−1,x)f(x0)dx0 . . . dxn−1,

(1.42)
where we set

Sn(t;x0, . . . , xn−1, x) =
n∑
k=1

t

n

[
1

2

(
|xk − xk−1|

t/n

)2

− V (xk)

]
, xn = x.

With the aim of understanding the role of Sn(t;x0, . . . , xn), consider the follow-
ing argument. Given the points x0, . . . , xn−1, x ∈ Rd, let γ be the polygonal path
(broken line) through the vertices xk = γ(kt/n), k = 0, . . . , n, xn = x, parametrized
as

γ(τ) = xk +
xk+1 − xk

t/n

(
τ − k t

n

)
, τ ∈

[
k
t

n
, (k + 1)

t

n

]
, k = 0, . . . , n− 1.

(1.43)
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Hence γ prescribes a classical motion with constant velocity along each segment.
The action for this path is thus given by

S[γ] =
n∑
k=1

1

2

t

n

(
|xk − xk−1|

t/n

)2

−
∫ t

0

V (γ(τ))dτ.

According to Feynman’s interpretation formula (1.42) can be thought of as an
integral over all polygonal paths, where Sn(t;x0, . . . , xn) is a finite-dimensional
approximation of the action functional evaluated on them. The limiting behaviour
for n → ∞ is now intuitively clear: the set of polygonal paths becomes the set
of all paths and in some sense we recover (1.39). We remark that the custom in
the physics community after Feynman is exactly to employ the suggestive formula
(1.39) as a placeholder for (1.42) and the related arguments - see for instance [GS98;
Kle09].

For what concerns the assumptions on the potential perturbation V under which
the Trotter product formula holds, a standard result shows that it is enough to
choose V in such a way that H0 +V is essentially self-adjoint on D = D(H0)∩D(V )
in L2(Rd), cf. for instance [RS72, Theorem VIII.31]. The power of Nelson’s approach
is that one can cover wide classes of wild perturbations, such as Kato potentials,
including finite sums of real-valued functions in Lp(Rd) with 2p > d and p ≥ 2
[Nel64, Theorem 8].

There exist several generalizations of the Trotter formula for semigroups on
Banach spaces, see for instance [EN06, Corollary 2.7]. The following simpler variant
will be enough for our purposes.

Theorem 1.5.1 ([EN06, Exercise 2.9]). Let H0 be a self-adjoint operator on the
domain D(H0) ⊂ L2(Rd) and let V ∈ L(L2(Rd)) be a bounded perturbation. The

Trotter product formula for the propagator U(t) = e−
i
~ t(H0+V ) holds: for any t ∈ R,

U(t)f = lim
n→∞

En(t)f ∀f ∈ L2(Rd), En(t) :=
(
e−

i
~
t
n
H0e−

i
~
t
n
V
)n
.

1.5.2 The time-slicing approximation

We now consider another scheme that could be informally called “the Japanese
way” to rigorous path integrals, in honour of the leading players in its construction:
D. Fujiwara and N. Kumano-go, with further developments by W. Ichinose and T.
Tsuchida. The main references for this approach are the papers [FKg05; Fuj79;
Fuj80; Ich03; Ich97; Kg04; Kg95] and the monograph [Fuj17], to which the reader
is referred for further details.

Let us briefly reconsider equation (1.42) and its interpretation in terms of finite-
dimensional approximations along broken lines; a similar result can be achieved
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1.5. Gabor analysis meets Feynman path integrals

without recourse to the Trotter formula as detailed below. First, let us specify the
class of potentials involved in this approach.

Assumption (A). The potential V : R×Rd → R satisfies ∂αxV ∈ C0(R×Rd)
for any α ∈ Nd and

|∂αxV (t, x)| ≤ Cα, |α| ≥ 2, (t, x) ∈ R× Rd

for suitable constants Cα > 0.

In particular, V (t, x) is smooth in x and has at most quadratic growth. Consider
then the Hamiltonian

H(t, x, ξ) =
1

2
|ξ|2 + V (t, x).

We denote by (x(t, s, y, η), ξ(t, s, y, η)) (s, t ∈ R, y, η ∈ Rd), the solution of the
corresponding classical equations of motion{

ẋ = ξ

ξ̇ = −∇xV (t, x)

with initial condition at time t = s given by x(s, s, y, η) = y, ξ(s, s, y, η) = η. The
flow

(x(t, s, y, η), ξ(t, s, y, η)) = χ(t, s)(y, η)

defines a smooth canonical transformation χ(t, s) : R2d → R2d satisfying for every
T0 > 0 the estimates

|∂αy ∂βη x(t, s, y, η)|+ |∂αy ∂βη ξ(t, s, y, η)| ≤ Cα,β(T0), y, η ∈ Rd

for some constant Cα,β(T0) > 0, if |t − s| ≤ T0 and |α| + |β| ≥ 1 (see [Fuj80,
Proposition 1.1]). In particular the flow is globally Lipschitz and the same holds
for its inverse.

Moreover, there exists δ > 0 such that for 0 < |t− s| ≤ δ and every x, y ∈ Rd,
there exists only one classical path γ such that γ(s) = y, γ(t) = x. By computing
the action functional along this path γ, as in (1.38), we define the generating
function

S(t, s, x, y) = S[γ] =

∫ t

s

L(γ(τ), γ̇(τ), τ)dτ,

for 0 < |t− s| ≤ δ.

Then Fujiwara showed [Fuj80] that the propagator U(t, s) is an oscillatory
integral operator (for short, OIO) provided that |t− s| is small enough, that is

U(t, s)f(x) =
1

(2πi~(t− s))d/2

∫
Rd
e
i
~S(t,s,x,y)a(~, t, s)(x, y)f(y)dy, (1.44)
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1. Introduction and Discussion of the Results

for an amplitude function a(~, t, s) ∈ C∞b (R2d) - the space of smooth functions
with bounded derivatives of any order, also known as the Hörmander class S0

0,0 in
microlocal analysis. Moreover, a(~, t, s) is such that ∂αx∂

β
y a(~, t, s) is of class C1 in

t, s and satisfies

‖a(~, t, s)‖Cmb := sup
|α|≤m

‖∂αa(~, t, s)‖L∞ ≤ Cm,

for 0 < t− s ≤ δ, 0 < ~ ≤ 1, m ∈ N.

In concrete situations, except for a few cases, there is no hope to compute the
exact propagator in an explicit, closed form. Due to this difficulty and inspired by
the free particle operator (1.40), one is lead to consider approximate propagators
(parametrices), such as

E(0)(t, s)f(x) =
1

(2πi~(t− s))d/2

∫
Rd
e
i
~S(t,s,x,y)f(y)dy. (1.45)

As suggested indeed by the case of the free particle, this operator is supposed to
provide a good approximation of the U(t, s) for |t− s| small enough. The case of a
large interval |t− s| can be treated by means of composition of such operators in
the spirit of the time slicing method proposed by Feynman: given a subdivision
Ω = t0, . . . , tL of the interval [s, t] such that s = t0 < t1 < . . . < tL = t and
tj − tj−1 ≤ δ, we define the operator

E(0)(Ω, t, s) = E(0)(tL, tL−1)E(0)(tL−1, tL−2) · · ·E(0)(t1, t0),

whose integral kernel e(0)(Ω, t, s)(x, y) can be explicitly computed from (1.45),
namely

e(0)(Ω, t, s)(x, y)

=
L∏
j=1

1

(2πi(tj − tj−1)~)d/2

∫
Rd(L−1)

exp
( i
~

L∑
j=1

S(tj, tj−1, xj, xj−1)
) L−1∏
j=1

dxj,

with x = xL and y = x0. A detailed analysis can be found in [Fuj17, Chapter 2].

The parametrix E(0)(Ω, t, s) is then expected to converge (in some sense) to
the actual propagator U(t, s) in the limit

ω(Ω) := max{tj − tj−1, j = 1, . . . , L} → 0.

Note that this scheme is definitely more sophisticate than Nelson’s one discussed
before, also because of the fact that the broken line approximation is now replaced
with more refined piecewise classical paths. This issue will be relevant in view of
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s = t0 t1 t2 · · · tj · · · t = tL

•
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•

•

•

y = x0

x1

x = xL

Figure 1.3: A piecewise classical path in spacetime.

the semiclassical limit, as will be shown in a moment. However, a quite complete
theory of path integration for approximations on straight lines in this spirit has
been developed by Kumano-go [Kg04].

Among the large number of results proved in the framework discussed so far
we mention two milestones from forerunner papers by Fujiwara. In [Fuj79] he
proved convergence of E(0)(Ω, t, s) to U(t, s) in the norm operator topology in
L(L2(Rd)). Under the same hypotheses convergence at the level of integral kernels
in a very strong topology was proved in [Fuj80]. It should be emphasized that the
aforementioned results are also given for the higher order parametrices E(N)(t, s),
N = 1, 2, . . ., also known as Birkhoff-Maslov parametrices [Bir33; Mas70] and
defined by

E(N)(t, s)f(x) =
1

(2πi~(t− s))d/2

∫
Rd
e
i
~S(t,s,x,y)a(N)(~, t, s)(x, y)f(y)dy, (1.46)

where a(N)(~, t, s)(x, y) =
∑N

j=1(
i
~)1−jaj(t, s)(x, y) and the functions aj(t, s) ∈

C∞b (R2d) uniformly with respect to 0 < ~ ≤ 1, 0 < |t− s| ≤ δ.

As before, the case of larger |t − s| can be treated by means of composition
over a sufficiently fine subdivision Ω = {t0, . . . , tL} of the interval [s, t] such that
s = t0 < t1 < . . . < tL = t, namely

E(N)(Ω, t, s) = E(N)(tL, tL−1)E(N)(tL−1, tL−2) · · ·E(N)(t1, t0). (1.47)

The core results of the L2 theory for the time slicing approximation read as follows.

Theorem 1.5.2. Let the potential V satisfy Assumption (A) and fix T0 > 0. For
0 < t− s ≤ T0 and any subdivision Ω of the interval [s, t] such that ω(Ω) ≤ δ, the
following claims hold.

(i) There exists a constant C = C(N, T0) > 0 such that∥∥E(N)(Ω, t, s)− U(t, s)
∥∥
L2→L2 ≤ C~Nω(Ω)N+1(t− s), N ∈ N. (1.48)
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(ii) There exists C = C(m,N, T0) > 0 such that∥∥a(~, t, s)− a(N)(Ω, ~, t, s)
∥∥
Cmb
≤ C~Nω(Ω)N+1(t− s), m,N ∈ N

cf. (1.44). In particular,

lim
ω(Ω)→0

a(N)(Ω, ~, t, s) = a(~, t, s) in C∞b (R2d).

The proof of these results ultimately relies on fine analysis of OIOs. The
underlying overall strategy can be condensed as follows:

1. prove that “time slicing approximation is an oscillatory integral” (cf. [Fuj17]),
i.e., that the operators arising from (1.46) are well-defined OIOs under
suitable assumptions;

2. derive precise estimates for the operator norm of such OIOs;

3. deduce corresponding results for the compositions in (1.47).

The last step is extremely delicate because estimates uniform in L, the number of
points in the partition Ω, are required. Moreover, the composition of OIOs results
in an OIO only for short times, due to the occurrence of caustics.

For the sake of completeness we also mention that F. Nicola showed in [Nic19]
how parts of the conclusions in Theorem 1.5.2 still hold under weaker regularity
assumptions for the potential. Assumption (A) is now replaced by the following
one.
Assumption (A’). The potential V : R×Rd → R belongs to L1

loc(R×Rd) and for
almost every t ∈ R and |α| ≤ 2 the derivatives ∂αxV (t, x) exist and are continuous
with respect to x. Furthermore

∂αxV (t, x) ∈ L∞(R;Hd+1
ul (Rd)), |α| = 2,

where Hn
ul(Rd) is the Kato-Sobolev space (also known as uniformly local Sobolev

space) of functions f ∈ L1
loc(Rd) satisfying ‖f‖Hn

ul
= supB‖f‖Hn(B) < ∞, the

supremum being computed on all open balls B ⊂ Rd of radius 1.

Theorem 1.5.3 ([Nic19, Theorem 1.1]). Let the potential V satisfy Assumption
(A’). For any T > 0 there exists C = C(T ) > 0 such that for any 0 < t− s ≤ T
and any subdivision Ω of the interval [s, t] with ω(Ω) ≤ δ and 0 < ~ ≤ 1,∥∥E(0)(Ω, t, s)− U(t, s)

∥∥
L2→L2 ≤ Cω(Ω)(t− s).
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It is natural to wonder whether there exists an Lp analogue of Theorem 1.5.2
with p 6= 2. We cannot expect a naive transposition of the claim for several reasons.
First of all, notice that the Schrödinger propagator is not even bounded on Lp(Rd)
for p 6= 2. The parabolic geometry of its characteristic manifold implies that a
peculiar loss of derivative, ultimately due to dispersion, occurs [BTW75; Miy80]:∥∥ei~∆f

∥∥
Lp
≤ C

∥∥(1− ~∆)k/2f
∥∥
Lp
, k = 2d|1/2− 1/p|, 1 < p <∞.

On the basis of this observation one is lead to consider the following scale of
semiclassical Lp-based Sobolev spaces: for 1 < p <∞ and k ∈ R define

L̃pk(R
d) = {f ∈ S ′(Rd) : ‖f‖L̃pk =

∥∥(1− ~∆)k/2f
∥∥
Lp
<∞}.

This is indeed a suitable setting for the analysis Fourier integral operators arising
as Schrödinger propagators associated with quadratic Hamiltonians, cf. [DN16].

In addition, one is also confronted with another issue: the space of bounded
operators L̃pk → Lp (or viceversa) is clearly not an algebra under composition. This
is a major obstacle for a proficient time slicing approximation, having in mind the
construction of the parametrices E(N)(Ω, t, s) in (1.47) and the role of this feature
in the L2 setting.

A significant breakthrough in this respect comes from Gabor analysis, since all
these issues become manageable as soon as one transfers the problem to the phase
space setting. The first key results in this context are due to Nicola [Nic16] and
read as follows.

Theorem 1.5.4 ([Nic16, Theorem 1.1]). Assume the condition in Assumption (A)
and let 1 < p <∞, k = 2d|1/2− 1/p|.

1. For any T > 0 there exists a constant C = C(T ) > 0 such that for all
f ∈ S(Rd), |t− s| ≤ T and 0 < ~ ≤ 1:

‖U(t, s)f‖Lp ≤ C‖f‖L̃pk , 1 < p ≤ 2,

‖U(t, s)f‖L̃p−k ≤ C‖f‖Lp , 2 ≤ p <∞.

2. For any T > 0 and N ∈ N there exists a constant C = C(T ) > 0 such that
for 0 < t− s ≤ T and any subdivision Ω of the interval [s, t] with ω(Ω) ≤ δ,
f ∈ S(Rd) and 0 < ~ ≤ 1:∥∥(E(N)(Ω, t, s)− U(t, s)

)
f
∥∥
Lp
≤ C~Nω(Ω)N+1(t− s)‖f‖L̃pk , 1 < p ≤ 2,∥∥(E(N)(Ω, t, s)− U(t, s)

)
f
∥∥
L̃p−k
≤ C~Nω(Ω)N+1(t− s)‖f‖Lp , 2 ≤ p <∞.
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1. Introduction and Discussion of the Results

A discussion of this result is beyond the purposes of this introduction. In short,
the strategy goes as follows: one lifts the analysis to the phase space level by
means of non-trivial embeddings relating modulation and Sobolev spaces [KS11],
then proves that the approximate propagators in the form of OIOs belong to a
family of operators characterized by the sparsity of their Gabor matrix - hence
well behaved on modulation spaces. One should also keep track of ~ by means of
suitable dilations (semiclassical modulation and Sobolev spaces).

1.6 Pointwise convergence of integral kernels in

the Feynman-Trotter formula

A concise way to resume the philosophy behind the operator-theoretic approaches
to rigorous path integral discussed in Sections 1.5.1 and 1.5.2 could be the following
one: design suitable sequences of approximation operators and prove that they are
bounded together with their compositions, where the latter should converge to the
exact propagator in a suitable topology on L(L2(Rd)). There are good reasons for
not being completely satisfied with this state of affairs. First of all, looking back at
Feynman’s original paper [Fey48] and the textbook [FH10] one immediately notices
that the entire process of defining path integrals can be read in terms of a sequence
of integral operators (finite-dimensional approximation operators as in (1.42) or
(1.46)); in particular, Feynman’s insight calls for the pointwise convergence of
their integral kernels to the kernel ut of the propagator. This remark strongly
motivates a focus shift from the operators to their kernels, which may appear as an
unaffordable problem in general: approximation operators should be first explicitly
characterized as integral operators, at least in the sense of distributions by some
version of the Schwartz kernel theorem, then one should determine if the kernels
are in fact functions and finally hope for convergence to the integral kernel ut of the
propagator U(t). Both the approximation schemes discussed insofar are well suited
for this purpose and a clue in this direction, already mentioned at the beginning of
the previous section, is that the regularity assumptions in Theorem 1.5.2 imply
convergence in a finer topology at the level of integral kernels.

In this connection, some new results in the framework of the sequential approach
as presented in Section 1.5.1 have been recently obtained by the author and F.
Nicola in the paper [NT20], where techniques of time-frequency analysis of functions
and operators are heavily used. The results are extensively discussed in Chapter
8 below.

In order to state the main results in full generality we need some preparation.
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1.6. Pointwise convergence of integral kernels in the Feynman-Trotter formula

First of all, the Schrödinger equation under our attention (with ~ = 1/2π) is{
i∂tψ = 2πH0ψ

ψ(0, x) = f(x)
,

where H0 = Qw is the Weyl quantization a real-valued, time-independent, quadratic
homogeneous polynomial Q on R2d, cf. (1.21) and (1.22) above. Note that a linear
magnetic potential or a quadratic electric potential are allowed and included in
H0. Moreover, notice that the factor 2π can be harmlessly embedded in Q (or V
below) so that we can formally reduce to the case ~ = 1 in order to have lighter
formulae - semiclassical aspects are not taken into account here.

We already discussed above that the associated propagator is a metaplectic
operator, that is U0(t) = e−itH0 = µ(St), where the mapping

R 3 t 7→ St =

[
At Bt

Ct Dt

]
∈ Sp(d,R) (1.49)

is the phase-space flow determined by the Hamilton equations for the corresponding
classical model with Hamiltonian Q(x, ξ); we refer to Section 4.3.3 for an extensive
account.

It is a standard result of harmonic analysis in phase space (see Theorem 4.3.6
below) that if St is a free symplectic matrix, namely the upper-right block Bt

of St is invertible, then the corresponding metaplectic operator coincides with a
quadratic Fourier transform (up to a phase factor), namely

U0(t)f(x) = c(t)| detBt|−1/2

∫
Rd
e2πiΦt(x,y)f(y)dy, (1.50)

where c(t) is a variable phase factor (c(t) ∈ C, |c(t)| = 1) and we introduced the
quadratic form (also known as generating function of St, cf. (4.3) below)

Φt(x, y) =
1

2
DtB

−1
t x · x−B−1

t x · y +
1

2
B−1
t Aty · y. (1.51)

This representation of µ(St) is a main ingredient of our results, hence we stress
that it does hold for any t ∈ R \ E, where we define the set of exceptional times to
be

E = {t ∈ R : detBt = 0}.

Some of the properties of this set can be immediately deduced from the fact that
it is indeed the zero set of an analytic function: apart from the case E = R (which
trivially happens when H0 = 0), E is a discrete (hence at most countable) subset
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1. Introduction and Discussion of the Results

of R which always includes t = 0 - in particular E = {0} in the case of the free
Schrödinger equation.

It is known that H0 = Qw is a self-adjoint operator on the maximal domain
(see [Hör95])

D(H0) = {f ∈ L2(Rd) : H0f ∈ L2(Rd)}.

We can thus consider the perturbed problem{
i∂tψ = (H0 + V )ψ

ψ(0, x) = f(x),
(1.52)

where we included the potential perturbation V ∈ L(L2(Rd)). We are in the
position to use the Trotter product formula in the form of Theorem 1.5.1: if
U(t) = e−it(H0+V ) denotes the evolution operator associated with (1.52), then

U(t)f = lim
n→∞

En(t)f ∀f ∈ L2(Rd),

where the Feynman-Trotter approximate propagators En(t) are defined by

En(t) :=
(
e−i

t
n
H0e−i

t
n
V
)n
, n ∈ N, n ≥ 1. (1.53)

We denote by en,t(x, y) the distribution kernel of En(t) and by ut(x, y) that of
U(t) = e−it(H0+V ). We study the problem of the convergence of en,t(x, y) to ut(x, y)
as n→ +∞.

Let us first discuss the case where the potential perturbation is just the pointwise
multiplication by a function V ∈ L∞(Rd). There is some room left for tuning the
regularity of potentials and we have indeed available from time-frequency analysis
a scale of decreasing regularity spaces.

1. The best option for our purposes is given by the Hörmander class C∞b (Rd),
the space of smooth bounded functions on Rd with bounded derivatives of
any order.

2. At an intermediate level we have the (scale of) modulation spaces M∞
0,s(Rd),

s > 2d, consisting of distributions f ∈ S ′(Rd) such that for any g ∈ S(Rd) \
{0}

|Vgf(x, ξ)| ≤ C(1 + |ξ|)−s, (x, ξ) ∈ R2d,

for some C > 0. M∞
0,s(Rd) contain bounded continuous functions, becoming

less regular as s↘ 2d - the parameter s can be thought of as a measure of
(fractional) differentiability.
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1.6. Pointwise convergence of integral kernels in the Feynman-Trotter formula

3. We finally consider the Sjöstrand class M∞,1(Rd) as a maximal space, where
the partial regularity of the previous level is completely lost. Recall that
f ∈M∞,1(Rd) if for any g ∈ S(Rd) \ {0}

‖f‖M∞,1 =

∫
Rd

sup
x∈Rd
|Vgf(x, ξ)|dξ <∞.

It is still a space of bounded continuous functions which locally enjoy the
mild regularity of the Fourier transform of a L1 function - cf. Section 3.2.4
for further details.

We have indeed the following chain of strict inclusions for s > d (cf. Proposition
3.2.16):

C∞b (Rd) ⊂M∞
0,s(Rd) ⊂M∞,1(Rd) ⊂ (FL1)loc(Rd) ∩ L∞(Rd) ⊂ Cb(Rd).

It seems worthwhile to highlight that results on the convergence of path integrals
are already known for special elements of the Sjöstrand class; for instance, a class
of potentials widely investigated by means of different approaches in the papers of
S. Albeverio and co-authors [AB93; ABHK82; AHK77; AM16] and K. Itô [Itô61;
Itô67] is FM(Rd), namely the space of Fourier transforms of (finite) complex
measures on Rd. In fact, we have FM(Rd) ⊂ M∞,1(Rd), cf. Proposition 3.2.16,
and the above inclusion is strict; for instance, f(x) = cos |x|, x ∈ Rd, clearly
belongs to C∞b (Rd), but it is easy to realize that f /∈ FM(Rd) as soon as d > 1,
by the known formula for the fundamental solution of the wave equation [Eva10].

We are able to cover a more general family of potential perturbations in the
form of Weyl operators, namely we assume that V = σw where the symbol σ
belongs to any of the spaces C∞b (R2d), M∞

0,s(R2d) with s > 2d, M∞,1(R2d). Notice
indeed that the multiplication by a function V on Rd is an easy example of Weyl
operator with symbol σV (x, ξ) = V (x) = (V ⊗ 1)(x, ξ), and the correspondence
V 7→ σ is continuous from M∞,1(Rd) to M∞,1(R2d) and similarly for the other
spaces mentioned above, cf. Remark 4.2.1 below.

Let us first state our main result on the pointwise convergence at the level of
integral kernels, at the intermediate regularity encoded by M∞

0,s.

Theorem 1.6.1. Consider the problem (1.52) with H0 = Qw as discussed above
and V = σw with σ ∈ M∞

0,s(R2d) and s > 2d. Let St denote the classical flow
associated with H0 as in (1.49). For any t ∈ R \ E:

1. the distributions e−2πiΦten,t, n ≥ 1, and e−2πiΦtut belong to a bounded subset
of M∞

0,s(R2d);
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1. Introduction and Discussion of the Results

2. en,t → ut in (FL1
r)loc(R2d) for any 0 < r < s − 2d, hence uniformly on

compact subsets.

The first part of the claim assures that the kernel convergence problem is well
posed in this case - the amplitudes are bounded continuous functions. The second
part precisely characterizes the regularity at which convergence occurs, hence the
desired pointwise convergence.

We expect to improve the convergence result in the smooth scenario in view of
the characterizations

C∞b (R2d) =
⋂
s≥0

M∞
0,s(R2d), C∞(R2d) =

⋂
r>0

(
FL1

r

)
loc

(R2d)

(cf. Propositions 3.2.16 and (8.6) below).

Corollary 1.6.2. Consider the problem (1.52) with H0 = Qw as discussed above
and V = σw with σ ∈ C∞b (R2d). Let St denote the classical flow associated with H0

as in (1.49). For any t ∈ R \ E:

1. the distributions e−2πiΦten,t, n ≥ 1, and e−2πiΦtut belong to a bounded subset
of C∞b (R2d);

2. en,t → ut in C∞(R2d), hence uniformly on compact subsets together with any
derivatives.

This result should be compared with the second claim in Theorem 1.5.2 by Fujiwara,
which motivated our quest. In spite of the different assumptions and approximation
schemes, we stress that our result is almost global in time - more details on
exceptional times are given below.

We conclude with the analogous convergence result for potentials in the
Sjöstrand class.

Theorem 1.6.3. Consider the problem (1.52) with H0 = Qw as discussed above
and V = σw with σ ∈M∞,1(R2d). Let St denote the classical flow associated with
H0 as in (1.49). For any t ∈ R \ E:

1. the distributions e−2πiΦten,t, n ≥ 1, and e−2πiΦtut belong to a bounded subset
of M∞,1(R2d);

2. en,t → ut in (FL1)loc(R2d), hence uniformly on compact subsets.
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1.6. Pointwise convergence of integral kernels in the Feynman-Trotter formula

The occurrence of a set of exceptional times in Theorems 1.6.1 and 1.6.3
comes not as a surprise from a mathematical point of view. For instance, the
correspondence between free symplectic matrices and quadratic Fourier transforms
as in (1.50) (cf. Proposition 4.3.4 for a precise formulation) can be used to determine
the abundance of free matrices in Sp(d,R): not being free is an exceptional feature
of a symplectic matrix, in the sense that follows.

Proposition 1.6.4 ([Gos17, Proposition 171]). The subset Sp0(d,R) of free sym-
plectic matrices has codimension 1 in Sp(d,R).

Moreover, it may very well happen that the integral kernel of the evolution
operator degenerates into a distribution. A standard example of this phenomenon
is provided by the harmonic oscillator, namely

i

2π
∂tψ =

(
− 1

8π2
∆ +

1

2
|x|2
)
ψ.

The integral kernel of the corresponding evolution operator is known as the Mehler
kernel and can be explicitly characterized [Gos11; KRY97]: for k ∈ Z,

ut(x, y) =

{
c(k)| sin t|−d/2 exp

(
πix

2+y2

tan t
− 2πi x·y

sin t

)
(πk < t < π(k + 1))

c′(k)δ((−1)kx− y) (t = kπ)
,

for suitable phase factors c(k), c′(k) ∈ C. This shows the expected degenerate
behaviour at integer multiples of π, which is consistent with the fact that the
associated classical flow St is given by

St =

[
(cos t)I (sin t)I
−(sin t)I (cos t)I

]
,

and we retrieve E = {t ∈ R : sin t = 0} = {kπ : k ∈ Z}.
It is natural to wonder whether convergence of integral kernels still occurs in

some distributional sense, hopefully better than the broadest one (that is S ′(R2d)).
This question has been settled in the paper [FNT20], joint work with H. Feichtinger
and F. Nicola, where we show that a suitable framework is offered by the Banach-
Gelfand triple (M1, L2,M∞) of modulation spaces, which has better properties
than the standard triple (S, L2,S ′) of real harmonic analysis. This is further
discussed in Section 3.2; see also [FLC08] in this connection.

Our main convergence result at exceptional times reads as follows.

Theorem 1.6.5. Assume V = σw for some σ ∈ M∞,1(R2d). Let {En(t)} be
the sequence of Feynman-Trotter parametrices defined in (1.53) and U(t) be the
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1. Introduction and Discussion of the Results

Schrödinger evolution operator U(t) associated with the Cauchy problem (1.52).
For any fixed t ∈ R we have

lim
n→∞

En(t) = U(t), lim
n→∞

En(t)∗ = U(t)∗

in the strong topology of operators acting on M1(Rd). In particular, for all t ∈ R
and f ∈M1(Rd), the functions

〈en,t(x, ·), f〉, 〈en,t(·, y), f〉, 〈ut(x, ·), f〉, 〈ut(·, y), f〉

belong to M1(Rd), and

〈en,t(x, ·), f〉 → 〈ut(x, ·), f〉, 〈en,t(·, y), f〉 → 〈ut(·, y), f〉

in M1(Rd), hence in Lp(Rd) for every 1 ≤ p ≤ ∞.

Let us conclude this presentation with a few words on the techniques employed
for the proofs. The main idea is to exploit the very rich structure enjoyed by
the modulation spaces M∞

0,s(R2d) (with s > 2d) and M∞,1(R2d): they are Banach
algebras for both pointwise multiplication and Weyl product of symbols (cf. Remark
4.2.4) and the corresponding families of Weyl operators are inverse-closed Banach
subalgebras of L(L2(Rd)) (cf. Theorem 4.2.5 below).

There is a certain number of questions which seem worthy of further considera-
tion. For example, Theorem 1.6.1 and Corollary 1.6.2 should hopefully extend to
Hamiltonians H0 given by the Weyl quantization of a smooth real-valued function
with derivatives of order ≥ 2 bounded, using techniques from [Nic16; Nic19]. We
observe that the strategies introduced here could hopefully be useful to study simi-
lar convergence problems of the integral kernels for other approximation formulas
arising in semigroup theory; cf. [EN06].

1.7 Approximation of Feynman path integrals

with non-smooth potentials

Let us reconsider the time-slicing approximation for Feynman path integrals dis-
cussed in Section 1.5.2, and in particular Theorem (1.5.2) by Fujiwara, in order to
make some important remarks. First, the occurrence of convergence results at two
different levels, a coarser one (parametrices in L(L2(Rd))) and a finer one (OIO
amplitudes in C∞b (R2d)), suggests that the assumptions may be relaxed in order to
preserve convergence in operator norm. A first step in this direction is the aforemen-
tioned paper [Nic19], where a delicate analysis of low-regular potentials leads to the
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1.7. Approximation of Feynman path integrals with non-smooth potentials

desired result. We are now going to consider another class of non-smooth potentials.

Assumption (Ã). V (t, x) is a real-valued function of (t, x) ∈ R × Rd and
there exists N ∈ N, N ≥ 1, such that4

∂kt ∂
α
xV ∈ Cb(R,M∞,1(Rd)),

for any k ∈ N and α ∈ Nd satisfying 2k + |α| ≤ 2N.

Roughly speaking, potentials satisfying Assumption (Ã) are bounded continu-
ous functions together with a certain number of derivatives. Assumptions in the
same spirit, or even stronger (e.g., smooth potentials with compact support), are
quite popular in scattering theory [Mel95].

In the second place, the estimate (1.48) reveals other interesting aspects of
the parametrices E(N). In particular, notice that while the approximation power
increases with N from the point of view of semiclassical analysis (positive powers of
~), the rate of convergence with respect to the length of the time interval does not
enjoy any improvement. Moreover, sophisticate parametrices like those introduced
in (1.46) have limited applicability to concrete situations and computational
problems since the knowledge of the exact action functional is required, the latter
being an intractable problem except for a number of simple systems. These remarks
lead one to consider short-time approximations for the action by means of the
so-called midpoint rules [Sch81]. In short, given the action functional corresponding
to the standard Hamiltonian H(x, ξ) = |ξ|2/2 + V (x), that is

S(t, s, x, y) =
|x− y|2

2(t− s)
− V(t, s, x, y), V =

∫ t

s

V (γ(τ))dτ,

the latter integral involving paths with γ(s) = y and γ(t) = x, V is replaced with
approximate expressions such as

V1 =
V (x) + V (y)

2
(t− s), or V2 = V

(
x+ y

2

)
(t− s).

A simple test in the case of known models reveals that, in spite of their popularity
within the physics literature, these procedures are not sufficiently accurate. For
the harmonic oscillator and the corresponding approximate actions S1, S2 one has
indeed

S(t, s, x, y)− Sj(t, s, x, y) = O(t− s), j = 1, 2.

4Cb(R, E) is the space of bounded continuous functions f : R→ E, see Chapter 2.

45



1. Introduction and Discussion of the Results

The quest for a correct short-time approximation was initiated by N. Makri and
W. Miller [Mak91; MM88a; MM88b], leading to the integral average

V(s, x, y) =

∫ 1

0

V (τx+ (1− τ)y, s)dτ.

This procedure satisfies a correct first-order approximation, i.e. S(t, s, x, y) −
S(t, s, x, y) = O((t − s)2) for small t − s. We refer the interested reader to the
aforementioned papers and the recent one [Gos18] by de Gosson.

Chapter 9 of this dissertation is based on the joint article [NT19] with F.
Nicola. Inspired by this discussion and the current practice in physics and chemistry,
we considered different time slicing approximation operators than (1.46), namely

Ẽ(N)(t, s)f(x) =
1

(2πi~(t− s))d/2

∫
Rd
e
i
~S

(N)(t,s,x,y)f(y)dy, (1.54)

where the approximate action S(N) ultimately is a Taylor-like expansion of the
exact action S at t = s:

S(N)(t, s, x, y) =
|x− y|2

2(t− s)
+

N∑
k=1

Wk(s, x, y)(t− s)k. (1.55)

The coefficients Wk(s, x, y) are recursively constructed after careful analysis of
power series solutions for the modified Hamilton-Jacobi equation

∂S

∂t
+

1

2
|∇xS|2 + V (t, x) +

i~d
2(t− s)

− i~
2

∆xS = 0.

The last two terms are tailored to enhance the approximating power of Ẽ(N) as
parametrix. Nevertheless, the “counterterm” is first order in ~ and identically
vanishes in the free particle case (V = 0). Plus, we remark that W1(s, x, y) =
V(s, x, y) as expected. All these aspects are discussed in detail in Section 9.1,
which is devoted to a rigorous short-time analysis of the action functional.

Given a subdivision Ω = {t0, . . . , tL} of the interval [s, t] such that s = t0 <
t1 < . . . < tL = t, we introduce the long-time composition

Ẽ(N)(Ω, t, s) = Ẽ(N)(tL, tL−1)Ẽ(N)(tL−1, tL−2) · · · Ẽ(N)(t1, t0), (1.56)

which has integral kernel

K(N)(Ω, t, s, x, y) =
L∏
j=1

1

(2πi(tj − tj−1)~)d/2

×
∫
Rd(L−1)

exp
(
i
~

L∑
j=1

S(N)(tj, tj−1, xj, xj−1)
) L−1∏
j=1

dxj,
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1.7. Approximation of Feynman path integrals with non-smooth potentials

with x = xL and y = x0. It is reasonable to believe that the operators Ẽ(N)(Ω, t, s)
converge to the actual propagator as ω(Ω) = sup{tj − tj−1 : j = 1, . . . , L} → 0, in
line with Feynman’s insight. The main result in [NT19] reads as follows.

Theorem 1.7.1 ([NT19, Theorem 1]). Let V satisfy Assumption (Ã) above. For
any T > 0 there exists a constant C = C(T ) > 0 such that, for 0 < t − s ≤ T~,
0 < ~ ≤ 1, and any sufficiently fine subdivision Ω of the interval [s, t], we have

‖Ẽ(N)(Ω, t, s)− U(t, s)‖L2→L2 ≤ Cω(Ω)N .

We remark that the increasing semiclassical approximation power of Birkhoff-
Maslov parametrices (1.46) is lost when one considers rougher parametrices as those
in (1.54), where the balance weights in favour of accelerated rate of convergence

with respect to time. A cursory glance at the estimates for the operators Ẽ(N)

reveals that negative powers of ~ are involved, making them completely unfit for
semiclassical arguments. Nevertheless, one can also notice that all the estimates
are uniform in ~ as soon as time is measured in units of ~, which is a particularly
interesting feature.
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Chapter 2

Basic Facts of Real, Functional
and Fourier Analysis

The purpose of this chapter is to fix the notation used in the manuscript, as well as
to collect the basic facts and main results of real, functional and harmonic analysis
that are needed below.

2.1 General notation

We denote the set of positive integer numbers by N = {0, 1, 2, . . .}, while Z, R
and C are the usual sets of integers, real and complex numbers respectively. In
particular, i denotes the imaginary unit and z is the complex conjugate of z ∈ C.
We also set R = R ∪ {−∞,+∞}.

If f is a function from some set A with values in some set B we write f : A→ B.
We assume to deal with complex-valued functions, i.e. B = C, if not otherwise
specified. The characteristic function of a set A is denoted with χA, hence

χA(a) =

{
0 (a /∈ A)

1 (a ∈ A)
.

Given two real numbers x, y ∈ R, the symbol x . y means that the underlying
inequality holds up to a universal positive constant factor, namely

x . y =⇒ ∃C > 0 : x ≤ Cy.

If the constant C = C(a) > 0 depends on some “allowable” parameter a ∈ A we
write x .a y. Moreover, x � y means that x and y are equivalent quantities, that
is both x . y and x . y hold.
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2. Basic Facts of Analysis

We will be mainly concerned with the d-dimensional real Euclidean space Rd.
The standard inner product on Rd and the induced Euclidean norm are denoted by

x · y :=
d∑
j=1

xjyj, |x| :=
√
x · x = (x2

1 + . . . x2
d)

1/2.

We write x2 in place of |x|2 = x · x. Notice that |x| is the absolute value of x in
the case where d = 1. Examples of equivalent norms on Rd are

|x|1 := |x1|+ . . . |xd|, |x|∞ := max{|x1|, . . . , |xd|}.

The open ball of radius R > 0 and center x0 ∈ Rd is the set

BR(x0) := {x ∈ Rd : |x− x0| < R}.

We use several symbols for partial differential operators on Rd:

∂j = ∂xj =
∂

∂xj
, Dj :=

1

2πi
∂j, j = 1, . . . , d.

We employ the multi-index notation: given α = (α1, . . . , αd) ∈ Nd and x ∈ Rd, we
write

|α| = |α|1 = α1 + . . .+ αd, α! = α1! · · ·αd!, xα = xα1
1 · · ·x

αd
d .

∂αx = ∂α1
x1
· · · ∂αdxd , Dα

x = Dα1
x1
· · ·Dαd

xd
.

The following relations between multi-indices α, β ∈ Nd are defined:

α ≤ β ⇔ αj ≤ βj, j = 1, . . . , d, α < β ⇔ α 6= β and α ≤ β,(
α

β

)
=

d∏
j=1

(
αj
βj

)
=

α!

β!(α− β)!
(if β ≤ α).

If x ∈ R and α ∈ Nd we write xα in place of x|α| to lighten the notation.

We repeatedly make use of the Japanese brackets to denote the inhomogeneous
magnitude of x ∈ Rd, namely 〈x〉 := (1 + x2)1/2. Given m > 0 we similarly define
〈x〉m := (m2 +x2)1/2; note that 〈x〉 = 〈x〉1. It is useful to remark that the so-called
Peetre inequality holds:

〈x+ y〉s .s 〈x〉s〈y〉|s|, x, y ∈ Rd, s ∈ R. (2.1)

The set of real matrices of dimension d× d is denoted by Rd×d. In particular,
I = Id ∈ Rd×d is the identity matrix and O = Od ∈ Rd×d is the null matrix.
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Recall that the canonical symplectic matrix J ∈ R2d×2d is the nonsingular and
skew-symmetric block matrix

J =

[
O I
−I O

]
.

The direct sum A⊕B of A,B ∈ Rd×d is the 2d× 2d matrix defined by

A⊕B =

[
A O
O B

]
.

Given a list a1, . . . , ad of real numbers, we define the matrix diag(a1, . . . , ad) ∈ Rd×d

by

[diag(a1, . . . , ad)]ij :=

{
aj (i = j)

0 (i 6= j)
,

where [M ]ij is the element on the i-th row and the j-th column of the matrix
M ∈ Rd×d, 1 ≤ i, j ≤ d. Accordingly, we extend the notation to block matrices by
setting diag(A,B) := A⊕B.

We will thoroughly work with invertible matrices, namely elements of the group

GL(2d,R) = {M ∈ R2d×2d | detM 6= 0}.

We employ the following symbol to denote the transpose of an inverse matrix:

M# = (M−1)> = (M>)−1, M ∈ GL(2d,R).

2.1.1 Function spaces

In general we denote by E a complex Banach space with norm | · |E, whereas
the symbol H is usually reserved for a complex separable Hilbert space. The
topological dual space of E is denoted by E ′. The brackets (·, ·) are used for the
duality between E ′ and E and in particular for the inner product in H - we assume
(·, ·) to be conjugate-linear in the second argument.

Consider the space L(X, Y ) of all the continuous linear mappings between two
Hausdorff topological vector spaces X and Y (we write L(X) if Y = X). It can be
endowed with different topologies [Tre67], in which cases we write:

(i) Lb(X, Y ), if equipped with the topology of bounded convergence, that is
uniform convergence on bounded subsets of X;

(ii) Lc(X, Y ), if equipped with the topology of compact convergence, that is
uniform convergence on compact subsets of X;
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2. Basic Facts of Analysis

(iii) Ls(X, Y ), if equipped with the topology of pointwise convergence, that is
uniform convergence on finite subsets of X.

Notice that if Y = C, Lb(X, Y ) = X ′b (the strong dual of X), while Ls(X, Y ) = X ′s
(the weak dual of X). It is tacitly assumed that L(X, Y ) = Lb(X, Y ) unless
otherwise specified.

The symbol E1 ' E2 means that E1 and E2 are isomorphic Banach spaces,
namely there exists a bijective linear operator T : E1 → E2 such that T ∈ L(E1, E2)
and T−1 ∈ L(E2, E1).

Recall that the singular values sj(T ) of a compact operator T ∈ L(H) are the
positive eigenvalues of |T | :=

√
T ∗T , where T ∗ denotes the adjoint operator of T ; we

arrange them in a sequence s(T ) = (sj(T ))j≥1 in such a way that s1 ≥ s2 . . . ... > 0.
The p-th order Schatten class Sp(H), 1 ≤ p < ∞, is the subset of all compact
operators T on H such that ‖T‖Sp(H) := ‖s(T )‖`p(N) <∞. In particular, operators
in S1(H) are said to be in the trace class, while S2(H) is known as the set of
Hilbert-Schmidt operators. We also recall that an equivalent norm for S2(H) is
given by ‖‖Tψj‖H‖`2(N), for any orthonormal basis {ψj}j∈N of H. Similarly, for
T ∈ S1(H) we have ‖T‖S1 = Tr|T |, where the trace of an operator A ∈ S1(H) is

Tr(A) :=
∑
j∈N

(Aψj, ψj)H ,

for any orthonormal basis {ψj} of H. We also recall that if S ∈ L(H) and
T ∈ S1(H) then ST, TS ∈ S1(H) and Tr(ST ) = Tr(TS).

We will occasionally make use of the Dirac notation for projection operators:
given φ, ψ ∈ H, we define

|ψ〉〈φ| ∈ S1(H), |ψ〉〈φ|(w) := (w, φ)ψ, w ∈ H.

Given a triple E1, E2 and E3 of complex Banach spaces, we say that the map

• : E1 × E2 → E3, (x1, x2) 7→ x3 = x1 • x2

is a multiplication [Ama19] if it is a continuous bilinear operator such that
‖•‖L(E1×E2,E3) ≤ 1. The following are common examples of multiplications that
will be used below:

(i) multiplication with scalars: C× E → E, (λ, x) 7→ λx;

(ii) the duality pairing: E ′ × E → C, (u, x) 7→ u(x);

(iii) the evaluation map: L(E1, E2)× E1 → E2, (T, x) 7→ Tx;
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(iv) multiplication in a Banach algebra.

Remark 2.1.1. To unambiguously fix the notation: whenever concerned with a
product of elements a1, . . . , aN in a Banach algebra (A, ?), we write

N∏
k=1

ak := a1 ? a2 ? . . . ? aN .

This relation is meant to hold even when (A, ?) is a non-commutative algebra,
provided that the symbol on the LHS exactly designates the ordered product on the
RHS. Moreover, if A is a unital algebra, it is a well known general fact that one
can provide an equivalent norm on A for which the identity element has norm equal
to 1 (cf. [Rud91, Theorem 10.2]). From now on, we assume to work with such
equivalent norm whenever concerned with a Banach algebra.

2.2 Function spaces

We collect below some fundamental results of real analysis and fix the related
notation once for all. We also devote a part of this section to the presentation of
such results in the broadest setting of vector-valued analysis. The reason behind
this choice is that some tools are directly needed below in order to extend the results
of scalar time-frequency analysis. In fact, the main parts of this dissertation would
only require to consider the standard case E = C or at most finite-dimensional
vector spaces such as E = Cn and E = Cn×n, so that the subtleties related to
infinite-dimensional target spaces are not relevant here and most of the proofs
ultimately reduce to componentwise arguments. Nevertheless, we decided to
embrace this wider perspective because developing these tools in full generality
does not require an excessive effort. Moreover, this approach is repaid by a unifying
and powerful framework which provides very natural and compact proofs also in
the cases E = Cn or E = Cn×n.

The notation and the basic results of analysis on infinite-dimensional spaces
are rather standard. All the proofs and further details on the results mentioned
below may be found for instance in [Ama19; GW03; HNVW16].

In what follows we always consider functions f : Rd → E, where Rd is provided
with the Lebesgue measure and E is a Banach space.

2.2.1 Weight functions

We will constantly employ weight functions, that is families of non-negative func-
tions, to precisely tune the decay or the regularity of other functions. Several types
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2. Basic Facts of Analysis

of weight functions are used in harmonic and time-frequency analysis depending
on the need. We collect below some basic definitions and facts, possibly under
slightly more restrictive assumptions than usual. We refer the reader to [Grö07]
for generalizations and further details.

Definition 2.2.1. (i) We say that v : Rd → (0,+∞) is a weight function if it
is a continuous and symmetric function in each coordinate:

v(±x1, . . . ,±xd) = v(x1, . . . , xd), x ∈ Rd.

(ii) v is called submultiplicative if

v(x+ y) ≤ v(x)v(y), x, y ∈ Rd.

(iii) Given a submultiplicative weight v, we say that a weight function m is v-
moderate if

m(x+ y) . v(x)m(y), x, y ∈ Rd.

In general, we say that m is moderate if it is v-moderate for some submulti-
plicative weight v.

(iv) A weight v satisfies the Gelfand-Raikov-Shilov (GRS) condition if

lim
n→∞

v(nx)1/n = 1, x ∈ Rd.

A standard family of weights is

ma,b,s,t(x) := ea|x|
b

(1 + |x|)s logt(e+ |x|), a, b, s, t ∈ R.

Note that tuning the parameters allows us to control polynomial, (sub)logarithmic
and (sub)exponential rates of decay/growth. In particular,

(i) if a, s, t ≥ 0 and 0 ≤ b ≤ 1 then ma,b,s,t is submultiplicative;

(ii) if a, s, t ∈ R and |b| ≤ 1 then ma,b,s,t is moderate;

(iii) if a, s, t ≥ 0 and 0 ≤ b < 1 then ma,b,s,t satisfies the GRS condition.

Moreover, a convenient characterization of the GRS property is as follows: if v is a
submultiplicative weight, then v is a GRS weight if and only if v(x) . e−εx for any
ε > 0 [FGT14].

Weights of particular relevance for our purposes are those of polynomial type,
namely

vs(x) := (1 + |x|)s, s ∈ R, x ∈ Rd.

56



2.2. Function spaces

Note that
vs(x) � 〈x〉s � (1 + |x1|+ . . .+ |xd|)s, x ∈ Rd,

hence we will tacitly switch from one form to another one whenever convenient. In
particular, for a polynomial weight vs on R2d we have

vs(z) � 〈z〉s � (1 + |x|+ |ξ|)s, z = (x, ξ) ∈ R2d.

We collect below some elementary properties of weight functions that will be
used below.

Lemma 2.2.2. Let v be a submultiplicative weight and m be a v-moderate weight
on Rd.

(i) The weight 1/v is v-moderate.

(ii) v grows at most exponentially, namely there exist C > 0 and a ≥ 0 such that
v(x) ≤ Cea|x|, x ∈ Rd.

(iii) For any x, y ∈ Rd,

m(x)

v(y)
. m(x− y) . m(x)v(y).

In particular, 1/v . m . v and 1/v . 1/m . v.

(iv) If s ≥ 0 then vs is submultiplicative. Moreover, if 0 ≤ |r| ≤ s, then both vs
and v−s are vr-moderate.

Important. In order to avoid the technical difficulties related with the expo-
nential growth of general submultiplicative weights, in the rest of the dissertation
all the weight functions are always assumed to grow at most polynomially. We thus
denote by Mv(R2d) the space of all the weight functions on R2d which are moderate
with respect to an admissible weight function v, that is a submultiplicative weight
satisfying the GRS condition and of temperate growth (that is, v . vs for some
s ∈ R); the same applies when we say that m is a moderate weight.

2.2.2 Lebesgue spaces

Fix 1 ≤ p < ∞ and let m be a moderate weight on Rd. Consider the set Lpm of
measurable functions f : Rd → C such that

‖f‖Lpm :=

(∫
Rd
|f(x)|pm(x)p

)1/p

<∞.
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2. Basic Facts of Analysis

The Lebesgue space Lpm(Rd) is the quotient set of Lpm by the equivalence relation

f ∼ g ⇐⇒ ‖f − g‖Lpm = 0.

The space L∞m (Rd) is defined similarly, where

‖f‖L∞m := ess sup
x∈Rd

|f(x)|m(x).

As usual, we write f ∈ Lpm(Rd) instead of [f ] ∈ Lpm(Rd), where [f ] is the equivalence
class of functions which coincide with f ∈ Lpm almost everywhere on Rd.

The family of Lebesgue-Bochner spaces is the natural analogue of Lebesgue
spaces for vector-valued functions Rd → E. They are defined by above with | · |
replaced by | · |E. When there is no risk of confusion, we will write Lp for Lp(Rd)
and Lpm(E) for Lpm(Rd, E); we omit the subscript for the weight when m = 1 and
write Lp(E). In the case where m = vs, s ∈ R, we write Lps(E).

Most of the usual properties from the scalar-valued case extend in a natural
way (with the remarkable exception of duality [HNVW16]). We list those that are
needed below.

Proposition 2.2.3. (i) For any 1 ≤ p ≤ ∞ and m ∈ Mv(Rd), Lpm(E) is a
Banach space with the norm ‖f‖Lpm(E) = ‖|f(·)|E‖Lpm.

(ii) L2(H) is a Hilbert space with inner product given by

〈f, g〉L2(H) =

∫
Rd

(f(t), g(t))Hdt.

(iii) (Hölder inequality) Given a multiplication • : E1 × E2 → E3, s1, s2 ∈ R and
1 ≤ p1, p2, p ≤ ∞ such that 1/p1+1/p2 = 1/p, if f ∈ Lp1s1 (E1) and g ∈ Lp2s2 (E2)
then f • g ∈ Lps1+s2(E3) and ‖f • g‖Lps1+s2 (E3) ≤ ‖f‖Lp1s1 (E1)‖g‖Lp2s2 (E2).

(iv) (Duality) For 1 ≤ p ≤ ∞ define the conjugate index p′ in such a way that
1/p + 1/p′ = 1 - with the understanding that p′ = 1 if p = ∞. If m ∈ Mv

and E is reflexive then (Lpm(E))′ ' Lp
′

1/m(E ′) for 1 ≤ p < ∞, the duality
being given by

〈f, g〉 =

∫
Rd

(f(t), g(t))dt,

for f ∈ Lpm(E), g ∈ Lp
′

1/m(E ′).

(v) Fix s ∈ R and 1 ≤ p ≤ ∞. Then f = (f1, . . . , fn) ∈ Lps(Cn) if and only if
fj ∈ Lps for any j = 1, . . . , n.
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For 1 ≤ p, q ≤ ∞ and a moderate weight m on R2d, we introduce weighted
mixed-norm Lebesgue-Bochner spaces Lp,qm (Rd, E) as above, the norm being

‖f‖Lp,qm (E) :=

(∫
Rd

(∫
Rd
|f(x, ξ)|pEm(x, ξ)pdx

)q/p
dξ

)1/q

,

with trivial modifications for the cases p = ∞ or q = ∞. In the case where
m = vr ⊗ vs for some r, s ∈ R we write Lp,qr,s(E).

Most of mixed-norm Lebesgue spaces coincide with vector-valued Lebesgue
spaces as above. Precisely:

Proposition 2.2.4 ([Wah07, Lemma 3.8]). If 1 ≤ p, q <∞ and m is a moderate
weight on R2d then Lp,qm (Rd, E) = Lq(Rd, Lpm(Rd, E)) with equal norms. If p =∞
or q = ∞ then Lq(Rd, Lpm(Rd, E)) ⊂ Lp,qm (Rd, E) with equal norms and possibly
strict inclusion.

As a result, such spaces enjoy most of the expected properties from the scalar-
valued case, cf. [Grö01, Lemma 11.1.2] and [Wah07, Lemma 3.5-8].

2.2.3 Differentiable functions and distributions

Recall that a function f : Rd → E is said to be differentiable at x0 ∈ Rd if there
exist v1, . . . , vd ∈ E such that

lim
|x−x0|→0

f(x)− f(x0)−
∑d

j=1(xj − (x0)j)vj

|x− x0|
= 0.

The vectors v1, . . . , vd are called first partial derivatives of f at x0, that is we set
∂jf(x0) := vj . A differentiable function at x0 is clearly continuous there; a function
f is said to be differentiable (on Rd) if it is differentiable at every x ∈ Rd.

Let C(Rd, E) = C0(Rd, E) denote the space of continuous maps Rd → E. We
also write Cu(Rd, E) for the set of uniformly continuous maps, Cb(Rd, E) [resp.
Cub(Rd, E)] for the set of [resp. uniformly] bounded continuous functions and
C0(Rd, E) for the set of continuous functions vanishing at infinity, namely such
that |f(x)|E → 0 as |x| → +∞.

Given k ∈ N, k ≥ 1, we recursively define the vector space Ck(Rd, E) as
the space of differentiable functions f : Rd → E such that ∂jf ∈ Ck−1(Rd, E),
j = 1, . . . , d. We similarly define Ck

b(Rd, E) as the space of k times continuously
differentiable E-valued bounded functions on Rd with bounded derivatives up to
k-th order; it is a Banach space with norm

‖f‖Ckb (E) := max
|α|≤k

sup
x∈Rd
|∂αf(x)|E.
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We denote by C∞(Rd, E) :=
⋂
k≥0C

k(Rd, E) the space of smooth functions. We

also introduce the space C∞≥k(Rd, E) of smooth functions with bounded derivatives
of any order larger than k ∈ N, namely

C∞≥k(Rd, E) :=
{
f ∈ C∞(Rd, E) : |∂αf(x)| ≤ Cα ∀x ∈ Rd, α ∈ Nd, |α| ≥ k

}
.

Notice that C∞b (Rd) := C∞≥0(Rd) = ∩k≥0C
k
b(Rd) coincides with the well-known

Hörmander class S0
0,0(Rd) [GR08; Hör85]. Recall that the latter is a Fréchet space

under the family of seminorms {‖ · ‖Ckb (E)}k∈N. We emphasize that the class C∞≥k is

also known as S
(k)
0,0 in microlocal analysis [Tat04].

The set Ck
c (Rd, E), k ∈ N ∪ {∞}, is the subspace of functions in Ck(Rd, E)

with compact support.

Recall that the Schwartz class of E-valued rapidly decreasing functions S(Rd, E)
is the subset of C∞(Rd, E) such that

pm,E(f) := max
|α|+|β|≤m

sup
x∈Rd

∣∣xα∂βf(x)
∣∣
E
<∞, ∀m ∈ N.

It is a Fréchet space with the topology induced by the family of seminorms
{pm,E}m∈N and is a dense subset of Lp(Rd, E) for any 1 ≤ p <∞.

The space of E-valued temperate distributions S ′(Rd, E) consists of bounded
(complex-)linear maps from S(Rd) to E, that is S ′(Rd, E) = L(S(Rd), E), and we
set

〈f, g〉 = f(φ) ∈ E, f ∈ S ′(Rd, E), φ ∈ S(Rd).

Example 2.2.5. 1. For 1 ≤ p ≤ ∞ any p-integrable E-valued function f can
be identified with a E-valued temperate distribution as usual:

〈f, φ〉 =

∫
Rd
f(t)φ(t)dt, g ∈ S(Rd).

Notice that this is a further meaning for the brackets 〈·, ·〉.

2. Recall that a vector measure µ on Rd is a E-valued σ-additive map on
the Borel σ-algebra BRd of Rd satisfying µ(∅) = 0. The total variation
|µ| : BRd → [0,+∞] of a vector measure µ is defined by

|µ|(B) := sup
π(B)

∑
A∈π(B)

|µ(A)|E,

where the supremum is taken over all the partitions π(B) of B into a finite
number of pairwise disjoint Borel subsets. The space M(Rd, E) of all the E-
valued measures on Rd such that |µ|(Rd) <∞ (bounded variation) is provided
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with the norm ‖µ‖M := |µ|(Rd) <∞. We have that M(Rd, E) ⊂ S ′(Rd, E)
(cf. [Ama19, Appendix 2]):

〈µ, φ〉 =

∫
Rd
φ(t)dµ(t), φ ∈ S(Rd).

We will use the following results concerning approximation of distributions and
extension of functionals, which are slight modifications of [Ama19, Theorems 1.3.3
and 1.7.2] - cf. [Wah07].

Theorem 2.2.6. 1. Fix u ∈ S ′(Rd, E). There exists a sequence un ∈ S(Rd, E)
such that un → u in S ′(Rd, E).

2. Let • : E1×E2 → E3 a multiplication on Banach spaces and consider the map
F : S(Rd, E1)×S(Rd, E2)→ E3 defined by F (u, v) =

∫
Rd u(x)•v(x)dx. There

exists a unique continuous bilinear extension of F to S ′(Rd, E1)× S(Rd, E2).

We restrict now to the case E = C for future reference. Given a normed linear
space of distributions X ⊂ S ′(Rd), we set

Xcomp := {u ∈ X : supp(u) is a compact subset of Rd},

Xloc := {u ∈ S ′(Rd) : φu ∈ X ∀φ ∈ C∞c (Rd)}.

2.2.4 Basic operations on functions and distributions

Consider a function f : Rd → E and let x, ξ ∈ Rd. The translation and modulation
operators Tx and Mξ are respectively defined by

Txf(t) := f(t− x), Mξf(t) := e2πit·ξf(t), t ∈ Rd.

Note that such operators do not commute unless x · ξ ∈ Z, since

TxMξf(t) = e−2πix·ξMξTxf(t).

Composition of translation and modulation operators are of primary relevance
in time-frequency analysis. We fix the ordering once for all and define the time-
frequency shift operator along z = (x, ξ) ∈ R2d as π(z) := MξTx.

The reflection operator I acts on a function f : Rd → E as If(t) := f(−t),
t ∈ Rd. We usually write f∨ in place of If for the sake of readability. We also
define the involution f ∗ of f as f ∗(t) := f(−t), t ∈ Rd.
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Recall that the tensor product of two functions f, g : Rd → C is defined by

f ⊗ g : R2d → C : (x, y) 7→ (f ⊗ g)(x, y) = f(x)g(y).

The tensor product ⊗ maps S(Rd)× S(Rd) into S(R2d). The tensor product
of two temperate distributions f, g ∈ S ′(Rd) is the distribution f ⊗ g ∈ S ′(R2d)
acting on any Φ ∈ S(R2d

(x,y)) as

〈f ⊗ g,Φ〉 = 〈f, 〈g,Φ(x, y)〉y〉x,

meaning that g acts on the section Φ(x, ·) and then f acts on 〈g,Φ(x, ·)〉 ∈ S(Rd
x).

In particular, f ⊗ g is the unique distribution such that

〈f ⊗ g, φ1 ⊗ φ2〉 = 〈f, φ1〉〈g, φ2〉, ∀φ1, φ2 ∈ S(Rd).

In conclusion, recall that the complex conjugate of a temperate distribution
f ∈ S ′(Rd) is denoted by f ∈ S ′(Rd) and defined by the rule

〈f, φ〉 = 〈f, φ〉, φ ∈ S(Rd).

Given a matrix A ∈ Rd×d, the dilation operator DA acts on a function f : Rd →
E as DAf(t) := f(At). If A = Aλ = λI for some λ ∈ R we write Dλ for DAλ . In
Section 5.3 we will use the notation TA for DA as it is customary in that context.
We also introduce the unitary dilation UAf(t) := | detA|1/2f(At); if A = Aλ = λI
for some λ ∈ R we write Uλ for UAλ .

2.3 The Fourier transform

The Fourier transform can be initially defined by a Bochner integral for f ∈
L1(Rd, E). Precisely, it is the operator F : L1(Rd, E)→ L∞(Rd, E) defined by

F(f)(ξ) = f̂(ξ) :=

∫
Rd
e−2πix·ξf(x)dx, ξ ∈ Rd.

As a rule of thumb, the results which holds in the L1 scalar-valued case
generally extend to the vector-valued case, but this principle does not hold in
the L2 framework. For instance, we have the Riemann-Lebesgue lemma (that is

f̂ ∈ C0(Rd, E) and ‖f̂‖L∞(E) ≤ ‖f‖L1(E)) and the inversion formula, namely if

f, f̂ ∈ L1(Rd, E) then

f(x) =

∫
Rd
e2πix·ξf̂(ξ)dξ, for a.e. x ∈ Rd,
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but the Hausdorff-Young inequality does not hold in general [HNVW16]. In partic-
ular, it is a deep result by Kwapień [Kwa72] that the Plancherel theorem holds
only for Hilbert spaces. To be precise, F : L1(Rd, E) ∩ L2(Rd, E) → L2(Rd, E)
extends to a unitary operator on L2(Rd, E) if and only if E is isomorphic to a
Hilbert space, namely E ' H. In that case we have ‖f̂‖L2(H) = ‖f‖L2(H).

The restriction of F to S(Rd, E) yields a continuous automorphism that enjoys
the usual properties, in particular the inversion formula F−1 = IF . Moreover, the
Fourier transform extends by duality to an isomorphism on S ′(Rd, E) as follows:

〈f̂ , ĝ〉 = 〈f, g〉, f ∈ S ′(Rd, E), g ∈ S(Rd).

For future reference we also define the (Bochner-)Fourier-Lebesgue spaces
FLqs(Rd, E), where 1 ≤ q ≤ ∞ and s ∈ R, consisting of distributions f ∈ S ′(Rd, E)
such that

‖f‖FLqs(E) :=
∥∥F−1f

∥∥
Lqs(E)

<∞.

The following Bernstein-type lemma can be proved just as in the scalar-valued
case, cf. [WHHG11, Proposition 1.11].

Lemma 2.3.1. Let N > d/2 be an integer and ∂kj f ∈ L2(Rd, H) for any j =
1, . . . , d and 0 ≤ k ≤ N . Then

‖f‖FL1(H) . ‖f‖
1−d/2N
L2(H)

(
d∑
j=1

∥∥∂Nj f∥∥L2(H)

)d/2N

. (2.2)

The symplectic Fourier transform Fσ of a function F ∈ L1(R2d, E) is defined
by

FσF (x, ξ) := FF (J(x, ξ)) = FF (ξ,−x), (x, ξ) ∈ R2d.

Note that this is an involution, that is Fσ(FσF ) = F .

2.3.1 Convolution and Fourier multipliers

The convolution of vector-valued functions can be meaningfully defined as long as
the target spaces are provided with a multiplication structure. We consider some
easy examples and refer to [Ama19; HNVW16] for extensive accounts on the topic.

The convolution of two functions f ∈ Lp(Rd, E), 1 ≤ p ≤ ∞, and g ∈ L1(Rd),
is defined by

f ∗ g(x) :=

∫
Rd
f(x− y)g(y)dy.
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It is a well-defined Bochner integral for a.e. x ∈ Rd and satisfies the Young
inequality ‖f ∗ g‖Lp(E) ≤ ‖f‖Lp(E)‖g‖L1 .

The convolution of f ∈ S ′(Rd, E) with a Schwartz function g ∈ S(Rd) is defined
by the distribution f ∗ g ∈ S ′(Rd, E) such that

〈f ∗ g, φ〉 = 〈f, g∗ ∗ φ〉, ∀φ ∈ S(Rd).

In fact, f ∗ g ∈ C∞(Rd, E) is a function of polynomial growth together with all its
derivatives.

In general, the •-convolution f1 ∗• f2 of f1 ∈ S(Rd, E1) and f2 ∈ S ′(Rd, E2)
can be similarly defined by a smooth E3-valued function for any multiplication
• : E1×E2 → E3 [Ama19, Theorem 1.9.1]. We state some results that will be used
below; the proofs of more general versions of these facts can be found in [Ama19,
Sec. 1.9] and [Ker83].

Proposition 2.3.2. (i) (Young inequality) Let 1 ≤ p, q, r ≤ ∞ satisfy 1/p +
1/q = 1 + 1/r and s1, s2, s3 ∈ R satisfy

s1 + s3 ≥ 0, s2 + s3 ≥ 0, s1 + s2 ≥ 0.

If f ∈ Lps1(R
d, E1) and g ∈ Lqs2(R

d, E2), then f ∗• g ∈ Lr−s3(R
d, E3), with

‖f ∗• g‖Lr−s3 (E3) . ‖f‖Lps1 (E1)‖g‖Lqs2 (E2).

(ii) For any f ∈ S ′(Rd, E1) and g ∈ S(Rd, E2):

F(f ∗• g) = f̂ • ĝ.

In the standard scalar-valued setting we have the following version of Young
inequality for mixed-norm spaces, cf. [BP61].

Proposition 2.3.3. Let m ∈ Mv(R2d) be a v-moderate weight on R2d, and 1 ≤
pi, qi, p, q ≤ ∞, i = 1, 2. If F ∈ Lp1,q1v (R2d) and G ∈ Lp2,q2m (R2d) then F ∗ G ∈
Lp,qm (R2d), with 1/p1 + 1/p2 = 1 + 1/p, 1/q1 + 1/q2 = 1 + 1/q and

‖F ∗G‖Lp,qm ≤ ‖F‖Lp1,q1v
‖G‖Lp2,q2m

. (2.3)

We also introduce for future convenience the twisted convolution [Grö01] of
F,G ∈ L1(R2d) to be

(F\G)(x, ξ) :=

∫
R2d

eπi(x,ξ)·J(x′,ξ′)F (x′, ξ′)G(x− x′, ξ − ξ′) dx′dξ′. (2.4)
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2.3. The Fourier transform

We finally define the Fourier multiplier with symbol µ ∈ S ′(Rd, E1) to be the
linear map

µ(D)f := F−1(µ • f̂) = F−1µ ∗• f ∈ S ′(Rd, E3),

the domain consisting of all f ∈ S ′(Rd, E2) such that the latter convolution is well
defined.
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Chapter 3

Preliminaries of Time-Frequency
Analysis

In this chapter we provide an exposition of the main results of time-frequency
analysis of functions and distributions. We do not always provide pointers to
the literature for each result, not even proofs and heuristic comments, since our
presentation is largely inspired to the reference monographs [BO20; CR20; Grö01]
and the papers [Tof04a; Tof04b; Wah07]. The reader is invited to consult these
references for further details.

3.1 Time-frequency representations

3.1.1 The short-time Fourier transform

The first example of a phase-space representation of a signal f ∈ L2(Rd) is provided
by the short-time Fourier transform (STFT), also known as windowed/sliding
Fourier transform or Gabor transform. As already mentioned in the introductory
Chapter 1, it does ultimately amount to a decomposition of f along the uniform
boxes in phase space occupied by the Gabor atoms π(z)g, z ∈ R2d, for some fixed
window function g ∈ L2(Rd) \ {0}. Precisely, it is defined by

Vgf(x, ξ) := 〈f, π(x, ξ)g〉 =

∫
Rd
e−2πiy·ξf(y) g(y − x) dy, (x, ξ) ∈ R2d.

Recall the following equivalent representations:

Vgf(x, ξ) = F(f · Txg)(ξ) = e−2πix·ξ(f ∗Mξg
∗)(x). (3.1)

Note that the while we assumed g 6= 0 in the definition of the STFT, that is
natural in view of the related motivational discussions, is not essential from the
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3. Preliminaries of Time-Frequency Analysis

mathematical point of view. The case g = 0 is clearly of little significance, but
still admissible, and the same holds for most of the properties given below. For
this reason we usually do not explicitly require the condition g 6= 0 to hold, unless
strictly necessary.

We stress that if f ∈ Lp(Rd), 1 ≤ p ≤ ∞, and g ∈ Lp′(Rd), then Vgf is defined
pointwise on R2d. In general, Vgf is defined pointwise by duality if f ∈ S ′(Rd)
and g ∈ S(Rd), and also if f ∈ X ′ and g ∈ X for any Banach space X such
that S(Rd) ↪→ X with dense inclusion (so that X ′ ↪→ S ′(Rd)) and such that X
is invariant under time-frequency shifts. It can also be defined by a temperate
distribution in the case where f, g ∈ S ′(Rd), see Section 5.3 below. Note that
the definition also extends to the infinite-dimensional case for f ∈ Lp(Rd, E) and
g ∈ Lp′(Rd) or f ∈ S ′(Rd, E) and g ∈ S(Rd).

In any case where the STFT is defined in some sense, notice that the map
(f, g) 7→ Vgf is a sesquilinear mapping - namely linear in f and conjugate-linear in
g. In particular, for a fixed window g, the map Vg : f 7→ Vgf is linear.

As far as the regularity of the STFT is concerned, we have the following result.

Proposition 3.1.1. 1. If f ∈ Lp(Rd), 1 < p < ∞, and g ∈ Lp
′
(Rd) then

Vgf ∈ C0(R2d) and
‖Vgf‖∞ ≤ ‖f‖Lp‖g‖Lp′ .

2. If f ∈ S ′(Rd, E) and g ∈ S(Rd) then Vgf ∈ C∞(R2d) and there exist N ∈ N
and C > 0 such that

|Vgf(z)|E ≤ C(1 + |z|)N , z ∈ R2d.

Moreover Vg : S ′(Rd)→ S ′(R2d) is continuous.

3. Fix g ∈ S(Rd) \ {0}. If f ∈ S ′(Rd) then f ∈ S(Rd) if and only if Vgf ∈
S(R2d), or equivalently: for all N ≥ 0 there exists CN > 0 such that

|Vgf(z)| ≤ CN(1 + |z|)−N , z ∈ R2d.

Moreover Vg : S(Rd)→ S(R2d) is continuous.

The following fundamental properties of the STFT will be used below.

Proposition 3.1.2. 1. (The fundamental STFT identity)

Vgf(x, ξ) = e−2πix·ξVĝf̂(ξ,−x),

for all f, g ∈ L2 and (x, ξ) ∈ R2d.
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2. (Switching identity) If f, g ∈ S(Rd) then Vgf(x, ξ) = e−2πix·ξVfg(−x,−ξ),
(x, ξ) ∈ R2d.

3. (Covariance property) Fix (u, v) ∈ R2d. Then

Vg(π(u, v)f)(x, ξ) = e−2πiu·(ξ−v)Vgf(x− u, ξ − v),

for all f, g ∈ L2 and (x, ξ) ∈ R2d.

4. (Orthogonality relations) If f1, f2 ∈ L2(H) and g1, g2 ∈ L2, then Vgifi ∈
L2(H), i = 1, 2, and

〈Vg1f1, Vg2f2〉L2(H) = 〈f1, f2〉L2(H)〈g1, g2〉L2 .

5. (Adjoint STFT) The adjoint STFT with window g is the operator V ∗g which
maps a measurable function F : R2d → E of at most polynomial growth (i.e.,
|F (z)|E = O(|z|N)) for some N ∈ N) into the temperate distribution

V ∗g F =

∫
R2d

F (z)π(z)g dz ∈ S ′(Rd, E)

which satisfies 〈V ∗g F, φ〉 = 〈F, Vgφ〉, φ ∈ S(Rd). If F ∈ S(R2d) then V ∗g F ∈
S(Rd).

6. (Inversion formula) Let f ∈ S ′(Rd, E) and g, γ ∈ S(Rd) be such that 〈g, γ〉 6=
0. Then,

f =
1

〈γ, g〉
V ∗γ Vgf =

1

〈γ, g〉

∫
R2d

Vgf(z)π(z)γdz. (3.2)

In particular, the STFT is injective on S ′(Rd, E).

7. (Change-of-window identity) Let g, h, γ ∈ S(Rd) be such that 〈h, γ〉 6= 0.
Then, for any f ∈ S ′(Rd, E),

|Vgf(z)|E ≤
1

|〈h, γ〉|
(|Vhf |E ∗ |Vgγ|)(z), z ∈ R2d. (3.3)

8. (Tensor product) Let f1, f2 ∈ S ′(Rd) and g ∈ S(R2d) be such that g = g1⊗ g2

for some g1, g2 ∈ S(Rd). Then

Vg1⊗g2(f1 ⊗ f2)(z, ζ) = Vg1f1(z1, ζ1)Vg2f2(z2, ζ2),

for any z = (z1, z2) ∈ R2d, ζ = (ζ1, ζ2) ∈ R2d.

It is easy to see that the definition of V ∗g F , g ∈ S(Rd), extends naturally
to F ∈ S ′(R2d), and defines continuous mappings V ∗g : S ′(R2d) → S ′(Rd) and
V ∗g : S(R2d)→ S(Rd).
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3.1.2 Quadratic representations

It is useful in several settings to produce time-frequency representations that depend
quadratically on the signal. For instance, similar functions are interpreted as phase-
space energy densities in signal analysis or as quasi-probability distributions in
quantum physics.

A standard way to obtain a quadratic representation given a sesquilinear one,
say L(f, g), is to consider either Q(f) = |L(f, g)|2 for fixed g or Q(f) = L(f, f) -
possibly up to complex factors. In the latter case, for any α1, α2 ∈ C and suitable
functions f1, f2 we have

Q(α1f1 + α2f2) = |α1|2Q(f1) + α1α2L(f1, f2) + α1α2L(f2, f1) + |α2|2Q(f2).

The non-linear behaviour due to the occurrence of interference cross-terms is
distinctive of quadratic representations. It is a major drawback both for applications
and theoretical purposes, but it is somehow compensated by other nice features as
showed below.

The most common quadratic representations (also called quadratic functions,
distributions or transforms) in signal analysis are the spectrogram and the radar
ambiguity distribution, which are derived from the short-time Fourier transform
as described above. In particular, the spectrogram of the signal f ∈ L2(Rd) with
respect to a window g ∈ L2(Rd) such that ‖g‖L2 = 1 is defined by Sg(f)(z) :=
|Vgf(z)|2, z ∈ R2d, while the ambiguity function of the signal f ∈ L2(Rd) is defined
by

Ambf(x, ξ) :=

∫
Rd
e−2πiy·ξf(x+ y/2)f(x− y/2)dy, (x, ξ) ∈ R2d.

In general, the cross-ambiguity function of the signals f, g ∈ L2(Rd) is

Amb(f, g)(x, ξ) :=

∫
Rd
e−2πiy·ξf(x+ y/2)g(x− y/2)dy, (x, ξ) ∈ R2d.

A trivial substitution in the previous definitions reveal that

Ambf(x, ξ) = eπix·ξVff(x, ξ), Amb(f, g)(x, ξ) = eπix·ξVgf(x, ξ).

It is then clear that most of the properties of the short-time Fourier transform
are inherited by the spectrogram and the ambiguity function, hence we omit an
explicit description here; we also mention that further properties are established in
Section 5.3 below.

The Wigner distribution (WD) of a signal f ∈ L2(Rd) is defined to be

Wf(x, ξ) :=

∫
Rd
e−2πiy·ξf(y + x/2)f(y − x/2)dy, (x, ξ) ∈ R2d,
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while its polarized version (also known as the cross-Wigner distribution) for signals
f, g ∈ L2(Rd) is given by

W (f, g)(x, ξ) :=

∫
Rd
e−2πiy·ξf(y + x/2)g(y − x/2)dy, (x, ξ) ∈ R2d.

It is not difficult to show that the Wigner transform is related to the STFT as
follows:

W (f, g)(x, ξ) = 2de4πix·ξVg∨f(2x, 2ξ), (x, ξ) ∈ R2d. (3.4)

Moreover, it is related to the ambiguity function by means of the symplectic Fourier
transform:

W (f, g) = FσAmb(f, g), Amb(f, g) = FσW (f, g).

As a result of these connections, most of the properties of the STFT in Propositions
3.1.1 and 3.1.2 extend to the Wigner distribution. Nevertheless, there are some
properties which are quite distinctive of this representation; we list below those
which are used in the rest of this dissertation.

Proposition 3.1.3. Let g, g1, g2 ∈ L2(Rd) \ {0} and f, f1, f2 ∈ L2(Rd). For any
z = (x, ξ) ∈ R2d:

1. We have
W (f, g) = F2Ts(f ⊗ g),

where F2 is the partial Fourier transform with respect to the second variable
on R2d and Ts acts on F : R2d → C as

TsF (x, y) = F

(
x+ y

2
, x− y

)
.

These operators are automorphisms of S(R2d), hence extend to S ′(R2d) and
allow one to define W (f, g) for f, g ∈ S ′(Rd) (see also Chapter 5 below).

2. (Schwartz regularity) If f, g ∈ S(Rd) then W (f, g) ∈ S(R2d). In particular,
the correspondence S(Rd)×S(Rd) 3 (f, g) 7→ W (f, g) ∈ S(R2d) is continuous.

3. (The fundamental WD identity) W (f, g)(x, ξ) = W (f̂ , ĝ)(ξ,−x).

4. (Real-valuedness) W (f, g)(z) = W (g, f)(z). In particular, Wf : R2d → R.

5. (Covariance property) Fix u, v ∈ R2d. Then

W (π(u)f, π(v)g)(z) = eπi(v1+u1)·(v2−u2)MJ(u−v)Tu+v
2
W (f, g)(z). (3.5)

In particular,
Wf(π(u)f)(z) = Wf(z − u).
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6. (Moyal’s formula) W (fi, gi) ∈ L2(Rd), i = 1, 2, and

〈W (f1, g1),W (f2, g2)〉 = 〈f1, f2〉〈g1, g2〉. (3.6)

In particular, ‖Wf‖L2 = ‖f‖2
L2.

7. (Marginal densities) If f, g ∈ S(Rd) then∫
Rd
W (f, g)(x, ξ)dξ = f(x)g(x),

∫
Rd
W (f, g)(x, ξ)dx = f̂(ξ)ĝ(ξ).

8. (Projective identification) If Wf = Wg then there exists c ∈ C, |c| = 1, such
that f = cg.

9. (The “magic formula” [Grö06a]) Let φ ∈ S(Rd) and set Φ = Wφ ∈ S(R2d).
For all z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d,

VΦW (g, f)(z, ζ) = e−2πiz2·ζ2Vφf(z1 + ζ2/2, z2 − ζ1/2)Vφg(z1−ζ2/2, z2+ζ1/2).
(3.7)

10. (Hudson’s theorem) W (f, g)(z) ≥ 0 for all z ∈ R2d if and only if f = cg for
some c ≥ 0 and g is a generalized Gaussian function, namely g(t) = eQ(t)

where Q : Rd → C is a quadratic polynomial such that ReQ(x) → +∞ as
|x| → ∞.

We stress once again that finding a remedy to the lack of positivity of the
Wigner distribution is a central issue in signal analysis and mathematical physics.
Inspired by heuristic arguments on the uncertainty principle, the following class of
phase-space representations were introduced by L. Cohen [Coh95]. The following
definition is widely accepted in the mathematical literature.

Definition 3.1.4 ([Grö01]). A sesquilinear form Q : S(Rd) × S(Rd) → S(R2d)
belongs to the Cohen class if there exists θ ∈ S ′(R2d) (the Cohen kernel) such that

Q(f, g) = Qθ(f, g) = W (f, g) ∗ θ, ∀f, g ∈ S(Rd).

More details on this topic may be found in Chapter 5 below.

We conclude this section with a brief description of the Wigner distribution in
the infinite-dimensional setting (in addition to the obvious considerations related
to (3.4)). Given f, g ∈ L2(Rd, H), the Wigner distribution W (f, g)(x, ξ) ∈ L(H),
x, ξ ∈ Rd, is defined by follows:

W (f, g)(x, ξ) = [FTpP (f, g)(x, ·)](ξ),
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where we introduced the projector-valued function

P (f, g) : R2d → S1(H), P (f, g)(x, y) := |f(x)〉〈g(y)|,

and Tp acts on F : R2d → H as TpF (x, y) = F (x + y/2, x− y/2). It is therefore
clear that W (f, g) : R2d → S1(H) and in particular [Fol89; Wah07]

(W (f, g)(x, ξ)u, v)H =

∫
Rd
e−2πiy·ξ(f(x+ y/2), v)H(g(x− y/2), u)Hdy,

for any u, v ∈ H. More concisely, we have (W (f, g)(x, ξ)u, v)H = W (f̃v, g̃u)(x, ξ),
where on the right-hand side we have the ordinary Wigner distribution of the
functions f̃v(t) = (f(t), v)H and g̃u(t) = (g(t), u)H .

The following properties of the Wigner distributions are similar to those listed
in Proposition 3.1.3 and can be easily derived in the vector-valued context.

Proposition 3.1.5. For any f, g ∈ S(Rd, H) and x, ξ ∈ Rd:

(i) W (f, g) ∈ S(R2d,S1(H)).

(ii) W (f, g)(x, ξ) = W (f̂ , ĝ)(ξ,−x).

(iii)
∫
RdW (f, g)(x, ξ)dx = |f̂(ξ)〉〈ĝ(ξ)|.

(iv)
∫
RdW (f, g)(x, ξ)dξ = |f(x)〉〈g(x)|.

The Wigner transform can be extended to f, g ∈ S ′(Rd, H) as follows [Wah07].
Let Φ = W (φ1, φ2) for φ1, φ2 ∈ S(Rd); then W (f, g) ∈ S ′(R2d,S1(H)) is the
distribution satisfying

(〈W (f, g),Φ〉u, v)H = (〈f, φ1〉, v)H(〈g, φ2〉, u)H , u, v ∈ H.

The following result is crucial for the results on pseudodifferential operators. It
is the parallel of the magic formula (3.7).

Proposition 3.1.6 ([Wah07, Lemma 4.5]). Let f, g ∈ S ′(Rd, H), φ ∈ S(Rd) and
Φ = Wφ ∈ S(R2d). For all z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d,

‖VΦW (g, f)(z, ζ)‖S1(H) = ‖Vφf(z1 +ζ2/2, z2−ζ1/2)‖H‖Vφg(z1−ζ2/2, z2 +ζ1/2)‖H .
(3.8)
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3.2 Modulation spaces

Modulation spaces were introduced by H. Feichtinger in the early 1980s [Fei03;
Fei81]. According to the inventor [Fei06], the original motivation in defining
modulation spaces is rooted in the theory of harmonic analysis over locally compact
Abelian groups; in particular, the need of a whole family of Banach spaces closed
under duality and complex interpolation lead to the definition of modulation spaces
in terms of uniform decompositions on the spectral side of their members. Therefore,
in the first instance they can be thought of as Besov spaces with isometric boxes in
the frequency domain instead of dyadic annuli. A much more insightful definition
is given in terms of the global decay/summability of the phase-space concentration
of a function or a distribution; this is in fact the so-called coorbit representation
of modulation spaces, which falls in the perspective of the general coorbit theory
developed by Feichtinger and Gröchenig around 1990 [FG88; FG89a; FG89b].

Definition 3.2.1. Let m ∈Mv(R2d) be a moderate weight and 1 ≤ p, q ≤ ∞, and
fix g ∈ S(Rd) \ {0}. The modulation space Mp,q

m (Rd) is the set of all temperate
distributions f ∈ S ′(Rd) such that

‖f‖Mp,q
m

:= ‖Vgf‖Lp,qm =

(∫
Rd

(∫
Rd
|Vgf(x, ξ)|pm(x, ξ)pdx

)q/p
dξ

)1/q

<∞, (3.9)

with suitable modifications in the cases p = ∞ or q = ∞. If p = q we write
Mp

m(Rd); we omit the subscript for the weight if m = 1 and write Mp(Rd). If
m(x, ξ) = vr(x)vs(ξ), r, s ∈ R, we write Mp,q

r,s (Rd).

Remark 3.2.2. 1. The name “modulation space” comes from noticing that
|Vgf(x, ξ)| = |f ∗Mξg

∗(x)|. The test function g is thus deformed by means of
modulation, while in context of Besov spaces one is ultimately concerned with
the Lebesgue regularity of f ∗ Dξg, where Dξg is a suitable dilation. Such
characterizations were used by Peetre and Triebel and lead to develop the
theory of modulation spaces by paralleling that of the Besov spaces, cf. [Pee76;
Tri78].

2. The definition of modulation spaces can be given in more general settings.
A definition of Mp,q in the case 0 < p, q ≤ ∞ (quasi-Banach setting) was
provided by Galperin and Samarah in [GS04], while mixed modulation spaces
were considered in [CN19].

3. Recall that we always restrict to weights of temperate growth in order to frame
the theory of modulation spaces in the context of temperate distributions. More
general weights can be taken into account, at the price of enlarging the universe
space to ultra-distributions [Teo06].
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We collect in the following result the main properties of modulation spaces that
will be used throughout the dissertation.

Proposition 3.2.3. Let m ∈Mv(R2d) be a moderate weight.

1. (Banach space property) For any 1 ≤ p, q ≤ ∞, the modulation space Mp,q
m (Rd)

is a Banach space with the norm (3.9) which is invariant under time-frequency
shifts. The definition does not depend on the window function g in (3.9), in
the sense that ‖Vφf‖Lp,qm is an equivalent norm for Mp,q

m for any choice of

φ ∈M1
v (Rd).

2. (Density of S) The Schwartz space S(Rd) is a subset of Mp,q
m (Rd) for any

1 ≤ p, q ≤ ∞, in particular a dense subset if p, q 6= ∞. Moreover, the
following characterization holds for any 1 ≤ p, q ≤ ∞:

S(Rd) =
⋂
s≥0

Mp,q
vs (Rd), S ′(Rd) =

⋃
s≥0

Mp,q
vs (Rd). (3.10)

3. (Reconstruction formula) If g, γ ∈ M1
v (Rd) \ {0}, then Vg : Mp,q

m (Rd) →
Lp,qm (R2d) and V ∗γ : Lp,qm (Rd)→Mp,q

m (R2d) are bounded operators. Moreover,
if 〈g, γ〉 6= 0 then the inversion formula (3.2) holds for any f ∈Mp,q

m (Rd); in
short, IdMp,q

m (Rd) = 〈γ, g〉−1V ∗γ Vg.

4. (Duality) If 1 ≤ p, q < ∞ then (Mp,q
m (Rd))′ ' Mp′,q′

1/m (Rd) and the duality
pairing is given by

〈f, h〉 =

∫
R2d

Vgf(z)Vgh(z)dz,

for f ∈Mp,q
m (Rd), h ∈Mp′,q′

1/m (Rd) and g ∈M1
v (Rd) \ {0}. As a consequence,

for any 1 < p, q ≤ ∞,

‖f‖Mp,q
m

= sup
h∈Mp′,q′

1/m

|〈f, h〉|.

5. (Inclusions) If p1 ≤ p2, q1 ≤ q2 and m1 & m2 then Mp1,q1
m1

(Rd) ⊂Mp2,q2
m2

(Rd).
In particular, for any 1 ≤ p, q ≤ ∞,

M1
v (Rd) ⊂Mp,q

m (Rd) ⊂M∞
1/v(Rd).

6. (Local properties) For any 1 ≤ p, q ≤ ∞,

(Mp,q(Rd))loc = (FLq(Rd))loc, (Mp,q(Rd))comp = (FLq(Rd))comp.
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7. (Complex interpolation) Let 0 < θ < 1, 1 ≤ p1, p2, q1, q2 ≤ ∞ and m1,m2 ∈
Mv(R2d). Then [Mp1,q1

m1
(Rd),Mp2,q2

m2
(Rd)][θ] = Mp,q

m (Rd), where

1

p
=

1− θ
p1

+
θ

p2

,
1

q
=

1− θ
q1

+
θ

q2

, m = m1−θ
1 mθ

2.

The boundedness of some operations on modulation spaces is established in
the following result.

Proposition 3.2.4. 1. (Convolution) Let 1 ≤ p, q, p1, q1, p2, q2 ≤ ∞. Then

‖f ∗ g‖Mp,q . ‖f‖Mp1,q1‖g‖Mp2,q2

if and only if
1

p1

+
1

p2

≥ 1 +
1

p
,

1

q1

+
1

q2

≥ 1

q
.

2. (Multiplication) Let 1 ≤ p, q, p1, q1, p2, q2 ≤ ∞. Then

‖f · g‖Mp,q . ‖f‖Mp1,q1‖g‖Mp2,q2

if and only if
1

p1

+
1

p2

≥ 1

p
,

1

q1

+
1

q2

≥ 1 +
1

q
.

3. (Dilation) Let A ∈ GL(d,R) and 1 ≤ p, q ≤ ∞. For any f ∈Mp,q(Rd),

‖DAf‖Mp,q . Cp,q(A)‖f‖Mp,q ,

where Cp,q(A) = | detA|−(1/p+1/q′)(det(I + A>A))1/2.

4. (Tensor product) Let mi ∈Mvi(R2d) and fi ∈Mp,q
mi

(Rd), i = 1, 2. Then

‖f1 ⊗ f2‖Mp,q
m
. ‖f1‖Mp,q

m1
‖f2‖Mp,q

m2
, (3.11)

where m(z, ζ) := m1(z1, ζ1)m2(z2, ζ2) for z = (z1, z2) ∈ R2d and ζ = (ζ1, ζ2) ∈
R2d.

In conclusion, we mention that many common function spaces are embedded in
modulation spaces.

Proposition 3.2.5. (i) If m ∈Mv(Rd), then M2
m⊗1(Rd) coincides with L2

m(Rd),
while M2

1⊗m(Rd)
coincides with FL2

m(Rd). In particular, M2
0,s(Rd) coincides

with the usual L2-based Sobolev space Hs(Rd), s ∈ R.

(ii) The following continuous embeddings with Lebesgue spaces hold:

Mp,q1(Rd) ⊂ Lp(Rd) ⊂Mp,q2(Rd), q1 ≤ min{p, p′}, q2 ≥ max{p, p′}.
Similarly,

M q1,p(Rd) ⊂ FLp(Rd) ⊂M q2,q(Rd), q1 ≤ min{2, p′}, q2 ≥ max{2, p′}.
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3.2. Modulation spaces

3.2.1 Vector-valued modulation spaces

The generalization of modulation spaces in the infinite-dimensional setting is quite
natural.

Definition 3.2.6. Let 1 ≤ p, q ≤ ∞ and m ∈Mv(R2d). The E-valued modulation
space Mp,q

m (Rd, E) consists of distributions f ∈ S ′(Rd, E) such that

‖f‖Mp,q
m (E) =

(∫
Rd

(∫
Rd
|Vgf(x, ξ)|pEm(x, ξ)pdx

)q/p
dξ

)1/q

<∞, (3.12)

for some g ∈ S(Rd), with suitable modification for p =∞ or q =∞.

We will mainly focus on the case where m = vr ⊗ vs for some r, s ∈ R. In this
case we write Mp,q

r,s (Rd, E). Furthermore, when there is no risk of confusion we
write Mp,q

m in the ordinary setting E = C and Mp,q
m (E) in general.

Most of the ordinary theory extends to the vector-valued context by simply
substituting | · | with | · |E in the proofs. For our purposes, it is enough to mention
the following properties.

Proposition 3.2.7. Let 1 ≤ p, q ≤ ∞ and m ∈Mv(R2d) be a moderate weight.

(i) Mp,q
m (E) is a Banach space with the norm (3.12), which is independent of the

window function g ∈M1
v (i.e., different windows yield equivalent norms).

(ii) If p, q <∞ the Schwartz class S(Rd, E) is dense in Mp,q
m (E).

(iii) If p1 ≤ p2, q1 ≤ q2 and m2 & m1, then Mp1,q1
m1

(E) ⊂Mp2,q2
m2

(E).

(iv) If f1 ∈ S(Rd, E ′), f2 ∈ S(Rd, E) and g1, g2 ∈ S(Rd), then∫
R2d

〈Vg1f1(z), Vg2f2(z)〉dz = 〈g1, g2〉
∫
Rd
〈f1(y), f2(y)〉dy.

(v) If g, γ ∈ M1
v (Rd) \ {0}, then Vg : Mp,q

m (Rd, E) → Lp,qm (R2d, E) and V ∗γ :
Lp,qm (R2d, E) → Mp,q

m (Rd, E) are bounded operators. Moreover, if 〈g, γ〉 6=
0 then the inversion formula (3.2) holds for any f ∈ Mp,q

m (E); in short,
IdMp,q

m (E) = 〈γ, g〉−1V ∗γ Vg.

(vi) If E = Ca×b, then f ∈ Mp,q
m (Ca×b) if and only if fij ∈ Mp,q

m for any i =
1, . . . , a, j = 1, . . . , b.
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3. Preliminaries of Time-Frequency Analysis

Remark 3.2.8. In contrast to the aforementioned properties, duality is a quite
subtle question (cf. [Wah07]). In order to avoid related issues, which usually occur
when p, q ∈ {1,∞}, it is convenient to introduce the space Mp,q

m (E), namely the
closure of S(E) with respect to the Mp,q

m norm. In particular we have Mp,q
m (E) =

Mp,q
m (E) for 1 ≤ p, q <∞.

3.2.2 Modulation spaces as Wiener amalgams on the
Fourier side

Let us consider the action of the Fourier transform on f ∈Mp,q
m , where 1 ≤ p, q ≤ ∞

and m ∈Mv(R2d). Recall from Proposition 3.1.2 that, for g ∈ S,

|Vgf(z)| = |Vĝf̂(Jz)|,

hence

‖f‖Mp,q
m

=

(∫
Rd

(
|Vĝf̂(x, ξ)|pm(−ξ, x)pdξ

)q/p
dx

)1/q

.

Therefore, the space FMp,q
m comes with a Banach norm given by

‖h‖FMp,q
m

=

(∫
Rd

(|Vgh(x, ξ)|pm(ξ,−x)pdξ)q/pdx

)1/q

.

We see that this norm is similar to that of the corresponding modulation space but
with reversed order of integration over time and frequency and a swap of variables
in the weight function.

We define in general the space W p,q
m (Rd, E) as W p,q

m (Rd, E) := FMp,q
DJm

(Rd, E).
The related notation is derived from that of modulation spaces, in particular we
write W p,q

m when E = C, W p,q
r,s (E) in the case where m = u⊗w, u = vr and w = vs

for some r, s ∈ R, and W p(E) for p = q and m = 1.

It is worth mentioning that if m = u ⊗ w, where u, v are (even) moderate
weights on Rd, then for f ∈Mp,q

u⊗v(E) we have

‖f̂‖W p,q
u⊗v(E) = ‖‖f̂ · Txĝ(ξ)‖FLpu(Rdξ ,E)‖Lqw(Rdx) = ‖f‖Mp,q

u⊗v(E).

Note that the norm of this space is defined by imposing a global Lq-regularity
condition on a “sliding” local FLp-regularity measure. This structure in fact
characterizes the norm of Wiener amalgam spaces, where global and local features
of functions are “amalgamated”. The seminal papers on the topic date back to the
work of N. Wiener [Wie26; Wie32; Wie88]; for a systematic review of the subject
we address to the references [BS81; Fei90; FS85; Hei03; Hol75].

The formulation of amalgam spaces can be given in greater generality, we
restrict to those spaces appearing in the dissertation.
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3.2. Modulation spaces

Definition 3.2.9. Let (B, ‖ · ‖B) any of the spaces Lpu(Rd, E), FLpu(Rd, E) or
Lp,qm (R2d, E) for some 1 ≤ p, q ≤ ∞ and moderate weights u,m. Let (C, ‖ · ‖C)
be any of the spaces Lpu(Rd, E) or Lp,qm (R2d, E) for some 1 ≤ p, q ≤ ∞ and vs-
moderate weights u,m for some s ≥ 0. The Wiener amalgam space W (B,C) with
local component B and global component C is defined by

W (B,C)(Rd) = {f ∈ Bloc : Fg(f) ∈ C},

where g ∈ C∞c (Rd) \ {0} is a fixed window function and Fg is the associated
control function: Fg(f)(x) := ‖f · Txg‖B. The natural norm on W (B,C) is
‖f‖W (B,C) := ‖Fg‖C.

It turns out that W p,q
u⊗v(Rd) = W (FLpu, Lqv)(Rd). This should not come as a

surprise, since Wiener amalgam spaces were introduced before modulation spaces
and in fact Feichtinger admitted that the latter were originally designed as amalgam
spaces on the Fourier side [Fei06]. Note that W p(E) = Mp(E) for any 1 ≤ p ≤ ∞,
in particular M2(E) = W 2(E) = L2(E).

We now state the more important properties of Wiener amalgam spaces.

Proposition 3.2.10. Let B,Bi be local component spaces and C,Ci be global
component spaces, (i = 1, 2, 3).

1. (Banach space property) (W (B,C)(Rd), ‖ · ‖W (B,C)) is a Banach space con-
tinuously embedded into S ′(Rd); moreover, different window functions provide
equivalent norms.

2. (Embeddings) If B1 ↪→ B2 and C1 ↪→ C2, then W (B1, C1) ↪→ W (B2, C2).

3. (Complex interpolation) For 0 < θ < 1 we have

[W (B1, C1),W (B2, C2)][θ] = W ([B1, B2][θ], [C1, C2][θ])

if C1 or C2 has absolutely continuous norm1.

4. (Duality) If B′, C ′ are the topological dual spaces of B, C respectively, and
the space of test functions C∞c is dense in both B and C, then W (B,C)′ =
W (B′, C ′).

1Recall that a Banach space (Y, ‖ ‖Y ) of functions Rn → C has an absolutely continuous norm
if the Banach dual Y ′ coincides with Y ∗ := {g : Rn → C measurable : gf ∈ L1(Rd), ∀f ∈ Y }.
For instance, Lp(Rd) has an absolutely continuous norm for 1 ≤ p <∞. See [BS88] for further
details.

79



3. Preliminaries of Time-Frequency Analysis

5. (Admissible windows) If ui ∈Mvi(Rd), i = 1, 2, and 1 ≤ p, q ≤ ∞, the class
of admissible windows for the norm in the definition of W p,q

u1⊗u2(E) can be
extended from C∞c to W 1

v1⊗v2.

Note that this general framework allows one to use the tools of decomposition
spaces to further study the properties of such spaces. In order to exploit this
connection for future purposes we introduce a useful equivalent discrete norm for
the amalgam spaces W p,q

r,s (Rd, E); the general case is covered in [Fei83]. Recall that
a bounded uniform partition of function (BUPU) ({ψi}i∈I , (xi)i∈I , U) consists of
a family of non-negative functions in FL1

|r|(Rd) {ψi}i∈I such that the following
conditions are satisfied:

1.
∑

i∈I ψi(x) = 1, for any x ∈ Rd;

2. supi∈I‖ψi‖FL1
|r|
<∞;

3. there exist a discrete family (xi)i∈I in Rd and a relatively compact set U ⊂ Rd

such that supp(ψi) ⊂ xi + U for any i ∈ I, and

4. supi∈I #{j : xi + U ∩ xj + U 6= ∅} <∞.

A general result in the theory of amalgam spaces is the following norm equivalence
in the spirit of decomposition spaces:

‖f‖W p,q
r,s (E) �

(∑
i∈I

‖f ψi‖qFLpr(E)
〈xi〉sq

)1/q

. (3.13)

A similar characterization holds for modulation spaces [Fei03; WZG06], provid-
ing a norm comparable to that of Besov spaces:

‖f‖Mp,q
r,s (E) �

(∑
i∈I

‖�if‖qLpr(E)
〈xi〉sq

)1/q

(3.14)

where we introduced the frequency-uniform decomposition operators

�i := F−1ψiF , i ∈ I.

In particular, a Young type result can be obtained after a suitable modification
of the proof of [Fei83, Thmeorem 3].
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3.2. Modulation spaces

Theorem 3.2.11. Let • : E1×E2 → E3 be a multiplication for the triple of Banach
spaces (E1, E2, E3). For any 1 ≤ p1, p2, p3, q1, q2, q3 ≤ ∞ and r1, r2, r3, s1, s2, s3 ∈ R
such that

FLp1r1 (Rd, E1) ∗• FLp2r2 (Rd, E2) ↪→ FLp3r3 (Rd, E3),

Lq1s1(R
d) ∗ Lq2s2(R

d) ↪→ Lq3s3(R
d),

the following inclusion holds:

W p1,q1
r1,s1

(Rd, E1) ∗•W p2,q2
r2,s2

(Rd, E2) ↪→ W p3,q3
r3,s3

(Rd, E3).

Proof. For the benefit of the reader we sketch here a short proof in the spirit
of [Hei03, Theorem 11.8.3]. We consider as a BUPU for W p,q

r,s (Rd, E) the family
{ψk}k∈Zd ⊂ C∞c (Rd) ⊂ FL1

|r|(Rd) defined by

ψk(t) =
φ(t− k)∑
k∈Zd φ(t− k)

, t ∈ Rd,

for a fixed φ ∈ C∞c (Rd), φ ≥ 0, such that φ(t) = 1 for t ∈ [0, 1]d and φ(t) = 0 for
t ∈ Rd \ [−1, 2]d. After introducing the control functions

Ψf,p,r,E(k) := ‖f ψk‖FLpr(Rd,E), k ∈ Zd,

the equivalent norm (3.13) becomes

‖f‖W p,q
r,s (E) �

(∑
k∈Zd
‖f ψk‖qFLpr(Rd,E)

〈k〉qs
)1/q

� ‖Ψf,p,r,E‖`qs(Zd).

For f ∈ W p1,q1
r1,s1

(Rd, E1) and g ∈ W p2,q2
r2,s2

(Rd, E2) set fm = fψm, gn = gψn for
m,n ∈ Zd. In view of the support property [Ama19, Remark 1.9.6(f)] and the
properties of BUPUs, we have

supp(fm ∗• gn) ⊂ supp(fm) + supp(gn) = m+ n+ 2 suppψ.

It is then clear that the cardinality of the set Jk := {(m,n) ∈ Z2d : supp((fm ∗•
gn)ψk) 6= ∅} is finite for any k ∈ Zd and is uniformly bounded with respect to
m,n, k. In fact, notice that

Jk = {(m,n) ∈ Z2d : m = k − n+ α, |α| ≤ N(d)},

for a fixed constant N(d) ∈ N depending only on the dimension d. Therefore, an
easy computation yields

Ψf∗•g,p3,r3,E3(k) =
∑

|α|≤N(d)

Ψf,p1,r1,E1 ∗Ψg,p2,r2,E2(k + α),
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3. Preliminaries of Time-Frequency Analysis

and hence
‖f ∗• g‖W p3,q3

r3,s3
(E3) . ‖f‖W p1,q1

r1,s1
(E1)‖g‖W p2,q2

r2,s2
(E2),

that is the claim.

Remark 3.2.12. In view of the relation with modulation spaces and Young in-
equality for convolution, under the same assumptions of the previous theorem we
also have

Mp1,q1
r1,s1

(Rd, E1) •Mp2,q2
r2,s2

(Rd, E2) ↪→Mp3,q3
r3,s3

(Rd, E3).

An interesting relation between modulation and Wiener amalgam spaces is
given by the following set of generalized Hausdorff-Young inequalities, which are a
direct consequence of Minkowski’s integral inequality:

Mp,q
r,s (E) ↪→ W q,p

s,r (E), 1 ≤ q ≤ p ≤ ∞, r, s ∈ R. (3.15)

W p,q
r,s (E) ↪→Mp,q

s,r (E), 1 ≤ p ≤ q ≤ ∞, r, s ≥ 0.

3.2.3 A Banach-Gelfand triple of modulation spaces

The modulation space M1(Rd) has a rather special role in the theory of modulation
spaces. It is in fact the first kind of modulation space introduced by Feichtinger
as a special, new Segal algebra [Fei81]. It is known since then as the Feichtinger
algebra; we address the reader to the recent paper [Jak18] for a comprehensive
survey on the topic.

Note that M1 ⊂ Mp,q ⊂ M∞ for any 1 ≤ p, q ≤ ∞, and in particular
M1(Rd) ⊂ L2(Rd) ⊂ M∞(Rd). There has been an increasing interest for the
triple (M1,M2,M∞) as a replacement of the standard Gelfand triple (S, L2,S ′)
of real harmonic analysis [FLC08]. Recall that a Gelfand triple (also known as
rigged Hilbert space in quantum mechanics) consists of a separable Hilbert space
H and a topological vector space Q such that the inclusion i : Q → H is an
injective bounded operator with dense image [Ant98]; note that the adjoint map
i∗ : H ' H ′ → Q′ is injective too and the inner product on H extends to the
duality pairing Q−Q′ in a natural way.

In particular, Feichtinger’s algebra is a good substitute of the Schwartz class of
test functions for the purposes of Gabor analysis - except for applications to PDEs
or to situations where a control on the regularity is required [Fei19; FJ20]. We list
below the main properties of M1 as a function space - it may be helpful to recall
that M1 = W 1.

Proposition 3.2.13. 1. f ∈ M1 if and only if f ∈ L2 and Vgf ∈ L1 for all
g ∈M1. In particular f ∈M1 ⇐⇒ Ambf ∈ L1.
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3.2. Modulation spaces

2. If f ∈M1, then f, f̂ ∈ L1 and f is continuous.

3. M1 is a time-frequency homogeneous Banach space: for any z ∈ R2d, f ∈
M1(Rd), one has π(z)f ∈ M1(Rd) and ‖π(z)f‖M1 = ‖f‖M1. In particular,
it is the smallest time-frequency homogeneous Banach space containing the
Gaussian function.

4. The Schwartz class S is a dense subset of M1 and L2 is the completion of
M1 with respect to the L2 norm.

5. M1 is invariant under the Fourier transform, i.e. for any f ∈M1(Rd) one
has f̂ ∈M1(Rd) and ‖f̂‖M1 = ‖f‖M1.

6. M1 is a Banach algebra under both convolution and pointwise multiplication.

The Feichtinger algebra is also well behaved under tensor products and we list
a few results in this respect.

Proposition 3.2.14. (i) The tensor product ⊗ : M1(Rd)×M1(Rd)→M1(R2d)
is a bilinear bounded operator.

(ii) M1 enjoys the projective tensor factorization property:

M1(R2d) 'M1(Rd)⊗̂M1(Rd),

namely the space M1(R2d) consists of all functions of the form

f =
∑
n∈N

gn ⊗ hn,

where {gn}, {hn} are (sequences of) functions in M1(Rd) such that∑
n∈N

‖gn‖M1‖hn‖M1 <∞.

(iii) The tensor product is well defined on M∞: for any f, g ∈M∞(Rd), f ⊗ g is
the unique element of M∞(R2d) such that

〈f ⊗ g, φ1 ⊗ φ2〉 = 〈f, φ1〉〈g, φ2〉, ∀φ1, φ2 ∈M1(Rd).

The parallel with the standard triple (S, L2,S ′) is further reinforced by a
fundamental kernel theorem; just as the (temperate) distributions are related to
the Schwartz kernel theorem, the Feichtinger kernel theorem [FG97] characterizes
operators M1 →M∞ as follows - see also [CN19].
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Theorem 3.2.15. (i) Every distribution k ∈M∞(R2d) defines a bounded linear
operator Tk : M1(Rd)→M∞(Rd) according to the rule

〈Tkf, g〉 = 〈k, g ⊗ f〉, ∀f, g ∈M1(Rd),

with ‖Tk‖M1→M∞ ≤ ‖k‖M∞.

(ii) For any bounded operator T : M1(Rd) → M∞(Rd) there exists a unique
kernel kT ∈M∞(R2d) such that

〈Tf, g〉 = 〈kT , g ⊗ f〉, ∀f, g ∈M1(Rd).

3.2.4 The Sjöstrand class and related spaces

Another special member of the family of modulation spaces is M∞,1. This is
also known as the Sjöstrand class after the seminal paper [Sjö94], where it was
introduced as an exotic symbol class still yielding bounded pseudodifferential
operators on L2. It was later recognized that operators with symbols in this space
enjoy several other properties, see Section 5.8 for a thorough account.

Pseudodifferential operators with Sjöstrand symbols have also been used as
potential perturbations for the Schrödinger equation, since they are particularly
well suited to the Gabor analysis of the corresponding propagator - cf. Chapter 4
below.

For the moment we highlight some important properties that will be used
below.

Proposition 3.2.16. 1. M∞,1(E) ⊂ (FL1(E))loc ∩ L∞(E) ⊂ Cb(E).

2. (M∞,1(E))loc = (FL1(E))loc.

3. If k ∈ N and k > d then Ck
b(E) ⊂ M∞,1(E). Moreover, C∞b (E) =⋂

s≥0M
∞
0,s(E) =

⋂
s≥0M

∞,1
0,s (E).

4. FM(E) ⊂M∞,1(E), where M(E) is the space of E-valued vector measures
of bounded variation on Rd.

Proof. 1. It is a direct consequence of the definition.

2. See Proposition 3.2.3 - for the proof, see [BO20, Proposition 2.9].

3. The proof in the scalar-valued case can be found in [Grö01, Theorem 14.5.3]
and [GR08, Lemma 6.1]. The proof in the vector-valued case goes exactly as
the previous one, with | · | replaced by | · |E.
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4. We prove equivalently that M(E) ⊂ W∞,1(E). Recall that M(E) ⊂ S ′(E),
hence for any non-zero window g ∈ S we can explicitly write the STFT of
µ ∈M(E):

Vgµ(x, ξ) = 〈µ,MξTxg〉 =

∫
Rd
e−2πiy·ξg(y − x)dµ(y).

Therefore,

‖µ‖W∞,1(E) =

∫
Rd

sup
ξ∈Rd
|Vgµ(x, ξ)|Edx

≤
∫
Rd

sup
ξ∈Rd

∫
Rd
|e−2πiy·ξg(y − x)|d|µ|(y) dx

=

∫
Rd

∫
Rd
|g(y − x)|d|µ|(y) dx

=

∫
Rd

∫
Rd
|g(y − x)|dx d|µ|(y)

= ‖g‖L1|µ|(Rd) <∞.

We mention that the (scalar-valued) Sjöstrand class is provided with a Banach
algebra structure with respect to the pointwise multiplication, as a result of the
following characterization - in fact, it also enjoys a non-commutative algebra
structure under Weyl product of symbols, see Section 4.2 below.

Proposition 3.2.17 ([RS16, Theorem 3.5 and Corollary 2.10]). Let 1 ≤ p, q ≤ ∞
and s ∈ R. The following facts are equivalent.
(i) Mp,q

0,s is a Banach algebra for pointwise multiplication.
(ii) Mp,q

0,s ↪→ L∞.
(iii) Either s = 0 and q = 1 or s > d/q′.

Remark 3.2.18. We clarify once for all that the preceding results concern the
conditions under which the embedding Mp,q

0,s ·M
p,q
0,s ↪→ Mp,q

0,s is continuous, hence
there exists a constant C > 0 such that

‖fg‖Mp,q
0,s
≤ C‖f‖Mp,q

0,s
‖g‖Mp,q

0,s
, ∀f, g ∈Mp,q

0,s .

Thus, the algebra property holds up to a constant. Recall that we always assume to
normalize the norm in such a way that C = 1, in according with Remark 2.1.1.

Functions in M∞,1 enjoy nice low-pass decompositions, in the sense of the
following results.
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Proposition 3.2.19. For any ε > 0 and f ∈ M∞,1(E), there exist f1 ∈ C∞b (E)
and f2 ∈M∞,1(E) such that

f = f1 + f2, ‖f2‖M∞,1(E) ≤ ε.

Proof. Fix g ∈ S with ‖g‖L2 = 1, and set

f1(y) = V ∗g (Vgf · 1AR)(y) =

∫
AR

Vgf(x, ξ)e2πiy·ξg(y − x)dxdξ, (3.16)

in the sense of distributions, where AR = {(x, ξ) ∈ R2d : |ξ| ≤ R}, and R > 0 will
be chosen later, depending on ε.

The integral in (3.16) actually converges for every y and defines a bounded
function. Indeed, setting S(ξ) = supx∈Rd |Vgf(x, ξ)|E, we have S ∈ L1 by the
assumption f ∈M∞,1(E), and for any y ∈ Rd,

|f1(y)|E ≤
∫
AR

|Vgf(x, ξ)|E|g(y − x)|dxdξ

≤ ‖g‖L1‖S‖L1 .

Similarly one shows that all the derivatives ∂αf1 are bounded, using that ξαS(ξ) is
integrable on |ξ| ≤ R. Differentiation under the integral sign is permitted because
for y in a neighbourhood of any fixed y0 ∈ Rd and every N ,

|Vgf(x, ξ)∂αy [e2πiy·ξg(y − x)]|E ≤ CN(1 + |ξ|)|α|S(ξ)(1 + |y0 − x|)−N ,

which is integrable in AR. Hence f1 ∈ C∞b (E).

Now, let f2 = f − f1 = V ∗g (Vgf · 1AcR), where in the second equality we used
the inversion formula for the STFT (3.2). The continuity of V ∗g : L∞,1(R2d, E)→
M∞,1(Rd, E) yields

‖f2‖M∞,1(E) = ‖V ∗g (Vgf · 1AcR)‖M∞,1(E)

. ‖Vgf · 1AcR‖L∞,1(E)

=

∫
|ξ|>R

S(ξ)dξ ≤ ε

provided that R = Rε is large enough.

Proposition 3.2.20. Let f : Rd → E be such that ∂αf ∈M∞,1(E) for any α ∈ Nd

such that |α| = k for some k ∈ N. Then there exist f1 ∈ C∞≥k(E) and f2 ∈M∞,1(E)
such that f = f1 + f2.
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3.2. Modulation spaces

Proof. Fix a smooth cut-off function χ ∈ C∞c (Rd) supported in a neighbourhood
of the origin and such that χ = 1 near zero, then consider the Fourier multiplier
χ(D) with symbol χ. Set f1 = χ(D)f and f2 = (I − χ(D))f . Clearly f = f1 + f2

and we argue that f1 and f2 satisfy the claimed properties.

Indeed, f1 ∈ C∞(E) and for any α ∈ Nd, |α| = k, we have

∂αf1 = ∂α(χ(D)f) = χ(D)(∂αf) ∈M∞,1(E),

since ∂αχ(D) is a Fourier multiplier with symbol (2πiξ)αχ(ξ) ∈ C∞c (Rd), hence
∂αχ(D) = χ(D)∂α and χ(D) is continuous on M∞,1(E) by Proposition 4.1.1 below.
Furthermore, similar arguments imply that for any α ∈ Nd, |α| ≥ k,

∂αf1 = ∂α−β∂β(χ(D)f) = (∂α−βχ(D))(∂βf) ∈M∞,1(E).

where β ∈ Nd satisfies |β| = k. In order to prove the claim for f2 consider the finite
smooth partition of unity {ϕj}Nj=1 of the unit sphere Sd−1 ⊂ Rd subordinated to

the open cover {Uj}dj=1, where Uj = {x ∈ Sd−1 : xj 6= 0}. Then we extend each
function ϕj on Rd \ {0} by zero-degree homogeneity, namely

d∑
j=1

ϕj(x) = 1, ϕj(αx) = ϕj(x), ∀x ∈ Sd−1, α > 0.

This procedure gives a finite partition of unity {ϕj}dk=1 on Rd \ {0}. Then

f2(x) =

∫
Rd
e2πix·ξ(1− χ(ξ))f̂(ξ)dξ

=
d∑
j=1

[∫
Rd
e2πix·ξ

(
1− χ(ξ)

(2πiξj)k
ϕj(ξ)

)
∂̂kj f(ξ)dξ

]

=
d∑
j=1

χ̃j(D)(∂kj f)(x)

and thus f2 ∈ M∞,1(E) since each χ̃j(D) is a Fourier multiplier with symbol
(1− χ(ξ))ϕj(ξ)/(2πiξj)

k ∈ C∞≥0(Rd), hence bounded on M∞,1(E).

Narrow convergence. Convergence in M∞,1 norm is a quite strong requirement.
For instance, it is well known that C∞c is not dense in M∞,1 with the norm topology
[Sjö94]; this fact inhibits the standard approximation arguments and leads to restrict
to subspaces such as M∞,1. Another way to cope with this problem consists in
weakening the notion of convergence as follows [CNR15b; Sjö94].
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3. Preliminaries of Time-Frequency Analysis

Definition 3.2.21. Let m ∈ Mv(R2d) and let Ω be a subset of some Euclidean
space and s ∈ R. The map Ω 3 ν 7→ σν ∈ M∞,1

m (Rd, E) is said to be continuous
for the narrow convergence if:

1. it is a continuous map in S ′(Rd, E) (weakly), and

2. there exists a function h ∈ L1(Rd) such that for some (hence any) nonzero
window g ∈ S(Rd) one has supx∈Rd |Vgσν(x, ξ)m(x, ξ)|E ≤ h(ξ) for any ν ∈ Ω
and a.e. ξ ∈ Rd.

The advantages of narrow convergence will be used below in connection with
the Weyl quantization. For the moment, we just stress that S(Rd) is dense in M∞,1

with respect to the narrow convergence [Sjö94].

3.3 Gabor frames

We already stressed that the STFT Vgf may be heuristically interpreted as a
continuous expansion of the function f with respect to the system {π(z)g : z =
(x, ξ) ∈ R2d} of highly localized wave packets on phase space. The theory of Gabor
frames may be used to give a precise meaning to this suggestion in terms of discrete
samples and expansions.

To be precise, given a non-zero window function g ∈ L2(Rd) and a full-rank
lattice Λ ⊂ R2d (namely, a countable and discrete additive subgroup of R2d with
compact quotient group R2d/Λ), the Gabor system G(g,Λ) is the collection of
time-frequency shifts of g along Λ, namely

G(g,Λ) = {π(z)g : z ∈ Λ}.

Standard examples of lattices are Λ = MZ2d where M ∈ GL(2d,R), in particular
separable lattices such as

Λ = αZ× βZ = {(αk, βn) : k, n ∈ N},

for suitable lattice parameters α, β > 0; we write G(g, α, β) for the corresponding
Gabor system.

Recall that a frame for L2(Rd) is a sequence {φj}j∈J ⊂ L2(Rd), J being a
countable index set, such that for all f ∈ L2(Rd)

A‖f‖2
L2 ≤

∑
j∈J

|〈f, φj〉|2 ≤ B‖f‖2
L2 ,
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3.3. Gabor frames

for some positive constants A,B > 0 (frame bounds). We say that a frame is tight
if A = B and Parseval if A = B = 1.

One may naturally define some bounded linear operators related to a given
frame:

– The analysis operator C : L2(Rd)→ `2(J), Cf = {〈f, φj〉}j∈J .

– The synthesis operator D : `2(J)→ L2(Rd), Da =
∑

j∈J ajφj.

– The frame operator S : L2(Rd)→ L2(Rd), Sf = DCf =
∑

j∈J〈f, φj〉φj.

If a Gabor system G(g,Λ) is a frame for L2(Rd) it is called Gabor frame. Notice
that the Gabor frame operator reads

Sf =
∑
λ∈Λ

Vgf(λ)π(λ)g,

and is a positive, bounded invertible operator on L2(Rd). A remarkable result of
frame theory is that a function can be reconstructed from its Gabor coefficients, in
the sense that

f =
∑
λ∈Λ

Vgf(λ)π(λ)γ, (3.17)

where γ = S−1g is the canonical dual window and the sum is unconditionally
convergent in L2.

Discrete Gabor analysis can be extended to modulation spaces under suitable
assumptions (cf. [Grö01, Corollary 12.2.6 and Corollary 12.2.8]); for instance, if
g ∈M1(Rd) and G(g, α, β) is a tight frame for L2(Rd) then for any 1 ≤ p ≤ ∞,

‖f‖Mp,q
m

=
1

A

∑
n∈Zd

(∑
k∈Zd
|Vgf(αk, βn)|pm(αk, βn)p|

)q/p
1/q

,

and the Gabor expansion (3.17) holds with γ = g/A and unconditional convergence
if 1 ≤ p <∞ (weak*-convergence if p =∞).
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Chapter 4

The Gabor Analysis of Operators

The inversion formula for the short-time Fourier transform given in (3.2) enables
an efficient phase-space analysis of operators. Consider a bounded linear operator
A : S(Rd) → S ′(Rd) and g, γ ∈ S(Rd) \ {0}; it is not restrictive to assume
‖g‖L2 = ‖γ‖L2 = 1. Therefore, have that

A = V ∗γ VγAV
∗
g Vg = V ∗γ ÃVg, (4.1)

where Ã := VγAV
∗
g is an integral operator in R2d with integral kernel given by the

Gabor matrix KA, that is

ÃF (w) =

∫
R2d

KA(w, z)F (z)dz, KA(w, z) = 〈Aπ(z)g, π(w)γ〉, w ∈ R2d.

(4.2)
This decomposition will be of primary concern for the time frequency-analysis
of operators. We consider below some special classes of operators and derive
fundamental boundedness estimates that will be repeatedly used to prove the main
results.

4.1 Fourier multipliers

We provide sufficient conditions on the symbol of a Fourier multiplier in order for
it to be bounded on modulation and Wiener amalgam spaces.

Proposition 4.1.1. Let • : E0 × E1 → E2 be a multiplication and µ ∈ W 1,∞
|r|,δ (E0)

for some r, δ ∈ R. The Fourier multiplier µ(D) is bounded from Mp,q
r,s (E1) to

Mp,q
r,s+δ(E2) for any 1 ≤ p, q ≤ ∞ and s ∈ R. In particular,

‖µ(D)f‖Mp,q
r,s+δ(E2) . ‖µ‖W 1,∞

|r|,δ (E0)‖f‖Mp,q
r,s (E1), f ∈Mp,q

r,s (E1).
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4. The Gabor Analysis of Operators

Proof. The proof is a straightforward generalization of the argument used in the
scalar-valued case; see for instance [BGOR07, Lemma 8]; we report it here for the
sake of completeness. Choose as window a function g ∈ S that factors as g = g0 ∗g0

for some g0 ∈ S - consider for instance g0(t) = e−πt
2
. It is then easy to prove that

Mξg
∗ = Mξg

∗
0 ∗Mξg

∗
0. Thanks to (3.1), Proposition 3.2.11 and the associativity of

convolutions [Ama19, Remark 1.9.6(c)] we have

‖µ(D)f‖Mp,q
r,s+δ(E2) =

(∫
Rd
‖µ(D)f ∗Mξg

∗‖q
Lpr(E2)

〈ξ〉s+δdξ
)1/q

=

(∫
Rd
‖µ̌ ∗• f ∗Mξg

∗
0 ∗Mξg

∗
0‖

q
Lpr(E2)

〈ξ〉s+δdξ
)1/q

=

(∫
Rd
‖µ̌ ∗Mξg

∗
0 ∗• f ∗Mξg

∗
0‖

q
Lpr(E2)

〈ξ〉s+δdξ
)1/q

≤
(∫

Rd
‖µ̌ ∗Mξg

∗
0‖

q

L1
|r|(E0)

‖f ∗Mξg
∗
0‖

q
Lpr(E1)

〈ξ〉s+δdξ
)1/q

≤

(
sup
ξ∈Rd
‖µ̌ ∗Mξg

∗
0‖L1

|r|(E0)〈ξ〉
δ

)(∫
Rd
‖f ∗Mξg

∗
0‖

q
Lpr
〈ξ〉sdξ

)1/q

= ‖µ‖W 1,∞
|r|,δ (E0)‖f‖Mp,q

r,s (E1).

The cases where p =∞ or q =∞ can be handled after slight modifications.

A similar result holds for Fourier multipliers on Wiener amalgam spaces.

Proposition 4.1.2. Let • : E0×E1 → E2 be a multiplication and µ ∈M∞,1
δ,|s| (R

d, E0)

for some s, δ ∈ R. The Fourier multiplier with symbol µ is bounded from W p,q
r,s (Rd, E1)

to W p,q
r+δ,s(Rd, E2) for any 1 ≤ p, q ≤ ∞ and r ∈ R. In particular,

‖µ(D)f‖W p,q
r+δ,s(E2) . ‖µ‖M∞,1

δ,|s| (E0)‖f‖W p,q
r,s (E1), f ∈ W p,q

r,s (E1).

Proof. Recall that W p,q
r,s (Rd, E) = W (FLpr(Rd, E), Lqs(Rd)). Theorem 3.2.11 and

the relation FMp,q
r,s = W p,q

r,s thus yield

‖µ(D)f‖W p,q
r+δ,s(E2) =

∥∥F−1µ ∗• f
∥∥
W p,q
r+δ,s(E2)

.
∥∥F−1µ

∥∥
W∞,1
δ,|s| (E0)

‖f‖W p,q
r,s (E1)

. ‖µ‖M∞,1
δ,|s| (E0)‖f‖W p,q

r,s (E1).
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4.2. The Weyl quantization

4.2 The Weyl quantization

In this section we provide some basic results on the Weyl transform from the
perspective of time-frequency analysis. The topic of quantization will be thoroughly
developed in Chapter 5, hence here we confine ourselves to provide the essential
notions.

The standard definition of the Weyl transform σw = opw(σ) of the symbol
σ : R2d → C is

σwf(x) :=

∫
R2d

e2πi(x−y)·ξσ

(
x+ y

2
, ξ

)
f(y)dydξ.

The meaning of this formal integral operator heavily relies on the function space
to which the symbol σ belongs; the classical symbol classes investigated within
the long tradition of pseudodifferential calculus are usually defined by means of
decay/smoothness conditions (such as the general Hörmander classes Smρ,δ(R2d) in
[Hör85]).

We adopt below the perspective of time-frequency analysis [Grö06a] and define
the Weyl quantization of a rough symbol σ ∈ S ′(R2d) via duality as follows:

σw : S(Rd)→ S ′(Rd), 〈σwf, g〉 = 〈σ,W (g, f)〉, ∀f, g ∈ S(Rd).

Equivalently, σw can be defined in terms of the so-called spreading representa-
tion:

σwf :=

∫
R2d

σ̂(ξ, u)eπiξ·uπ(−u, ξ)f dudξ.

Remark 4.2.1. The multiplication by a function V is a special example of Weyl
operator with symbol

σV (x, ξ) = V (x) = (V ⊗ 1)(x, ξ), (x, ξ) ∈ R2d.

It is not difficult to prove that the correspondence V 7→ σV is continuous from
M∞,q

0,s (Rd) to M∞,q
0,s (R2d) for any 1 ≤ q ≤ ∞ and s ∈ R, cf. (3.11). This identi-

fication shall be implicitly assumed whenever needed below; by a slight abuse of
notation, we will write V also for σw

V for the sake of legibility.

One may similarly prove that a Fourier multiplier with symbol µ(ξ) is a Weyl
operator with symbol σ̃µ(x, ξ) = (1⊗ µ)(x, ξ).

Modulation spaces can be used both as symbol classes as well as target spaces
for pseudodifferential operator. For instance, we mention that symbols in the
Sjöstrand class yield Weyl operators which are bounded on any modulation space.
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4. The Gabor Analysis of Operators

Theorem 4.2.2 ([Grö01, Theorem 14.5.2]). If σ ∈M∞,1(R2d) then σw is bounded
on Mp,q(Rd) for all 1 ≤ p, q ≤ ∞, with

‖σw‖Mp,q→Mp,q ≤ ‖σ‖M∞,1 .

The symbolic calculus relies on the composition of Weyl transforms, which
provides a bilinear form on symbols known as the Weyl (or twisted) product :

σw ◦ ρw = (σ#ρ)w, σ#ρ = F−1(σ̂\ρ̂),

where the twisted convolution is defined in (2.4). Although explicit formulas for
the twisted product of symbols can be derived (cf. [Won98]), we will not need
them hereafter. Nevertheless, this is a fundamental notion in order to establish
an algebra structure on symbol spaces; the problem has been studied in several
papers (cf. for instance [CTW14; Grö06b; HTW07]). For the sake of completeness
we provide here sufficient conditions in a simplified form.

Theorem 4.2.3 ([HTW07, Theorem 0.3’]). Let r, s ∈ R be such that 0 ≤ r ≤ 2s.
Let 1 ≤ pj, qj ≤ ∞, j = 0, 1, 2, satisfy

1

p1

+
1

p2

+
1

q1

+
1

q2

= 1 +
1

p0

+
1

q0

, q1, q2 ≤ q0,

0 ≤ 1

p1

+
1

p2

− 1

p0

≤ 1

pj
,

1

qj
≤ 1

q1

+
1

q2

− 1

q0

, j = 0, 1, 2.

The map S(R2d)× S(R2d) 3 (σ, ρ) 7→ σ#ρ ∈ S(R2d) uniquely extends to a contin-
uous map Mp1,q1

r,s (R2d)×Mp2,q2
r,s (R2d)→Mp0,q0

r,s (R2d) and there exists C > 0 such
that

‖σ#ρ‖Mp0,q0
r,s
≤ C‖σ‖Mp1,q1

r,s
‖ρ‖Mp2,q2

r,s
.

Remark 4.2.4. It is a quite distinctive property of M∞,1(R2d) as well as the scale
of spaces M∞

0,s(R2d) with s > 2d, to enjoy a double Banach algebra structure:

• a commutative one with respect to the pointwise multiplication as detailed in
Proposition 3.2.17;

• a non-commutative one with respect to the twisted product of symbols [GR08;
Sjö94].

In fact, much more is true, as detailed in the following statement.

Theorem 4.2.5 ([GR08; Sjö94]). Let X be any of the spaces C∞b (R2d), M∞
0,s(R2d)

with s > 2d or M∞,1(R2d). The corresponding family of Weyl operators opw(X) is
a Wiener subalgebra of L(L2(Rd)) under composition, that is:
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4.2. The Weyl quantization

(i) (Boundedness) If σ ∈ X, then σw is a bounded operator on L2(Rd).

(ii) (Algebra property) If σ1, σ2 ∈ X then σw
1 ◦ σw

2 is a Weyl operator with symbol
σ1#σ2 ∈ X.

(iii) (Wiener property) If σ ∈ X and σw is invertible on L2(Rd), then there exists
ρ ∈ X such that (σw)−1 = ρw.

New proofs of this and more general results (see Theorem 5.8.1 below) in the
spirit of time-frequency analysis were provided by Gröchenig [Grö06c], unravelling a
deep and fascinating analogy between Weyl operators with symbols in the Sjöstrand’s
class and Fourier series with `1 coefficients. Similarities of this kind come under
the multifaceted problem of spectral invariance, a topic thoroughly explored by
Gröchenig in [Grö10]; see also the related papers [CGNR13; GR08].

We stress that the latter algebra structure has been deeply investigated from a
time-frequency analysis perspective. Indeed, it is subtly related to a characterizing
property satisfied by pseudodifferential operators with symbols in those spaces,
namely almost diagonalization of the Gabor matrix by time-frequency shifts. We
address the reader to [CGNR13; CGNR14; GR08; Grö06c] for further discussions
on these aspects and to Section 5.8 below for generalizations.

Theorem 4.2.6. Fix g, γ ∈ S(Rd) and consider σ ∈ S ′(R2d).

1. σ ∈M∞
0,s(R2d) if and only if

|〈σwπ(z)g, π(w)γ〉| ≤ C(1 + |w − z|)−s, z, w ∈ R2d.

2. σ ∈M∞,1(R2d) if and only if there exists a function H ∈ L1(R2d) such that

|〈σwπ(z)g, π(w)γ〉| ≤ H(w − z), z, w ∈ R2d.

The controlling function H can be chosen as

H(w) = sup
z∈R2d

|VΦσ(z, w)|, Φ = W (γ, g),

hence ‖H‖L1 � ‖σ‖M∞,1.
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4. The Gabor Analysis of Operators

4.2.1 Vector-valued Weyl transform

Let H be a separable Hilbert space and consider an operator-valued Schwartz
function σ ∈ S(R2d,L(H)). The Weyl transform σw of f ∈ S(Rd, H) is well defined
by a Bochner integral by

σwf(x) :=

∫
R2d

e2πi(x−y)·ξσ

(
x+ y

2
, ξ

)
f(y)dydξ ∈ H.

As in the scalar-valued setting, we wish to extend this definition in order to cover
more general symbols σ ∈ S ′(R2d,L(H)) and to make a connection with the
vector-valued Wigner function. In this respect we note that, under the previous
assumptions, a straightforward computation yields

〈σwf, g〉 =

∫
R2d

Tr[σ(x, ξ)W (f, g)(x, ξ)]dxdξ, f, g ∈ S(Rd, H).

Motivated by this identity, let us first consider σ ∈ S ′(R2d,L(H)) and fix
f ∈ S(Rd, H). Recall from Theorem 2.2.6 that there exists a sequence σn ∈
S(R2d,L(H)) such that σn → σ in S ′. We thus define the H-valued functional
σwf in such a way that

〈σwf, φ〉 = 〈σ,W (φ, f)〉, φ ∈ S(Rd),

where the multiplication on the RHS denotes the unique extension to S ′(R2d,L(H))×
S(R2d, H) of the underlying functional, originally defined on S(R2d,L(H)) ×
S(R2d, H), in according with Theorem 2.2.6 - that is 〈σ,W (φ, f)〉 = limn→∞〈σn,W (φ, f)〉.
It is easy to prove that σw : S(Rd, H)→ S ′(Rd, H).

Under the same assumptions and again in view of the extension Theorem 2.2.6
(with the multiplication by scalars H × C → H) one also has that the sequence
{σw

n f} ⊂ S(Rd, H) converges to σwf in S ′(Rd, H). Therefore, once again by the
extension theorem 2.2.6 (with the multiplication H ×H → C given by the inner
product on H) we define

〈σwf, g〉 = lim
n→∞
〈σw

n f, g〉, g ∈ S(Rd, H).

Arguing as before one can prove that

〈σwf, g〉 = lim
n→∞

∫
R2d

Tr[σn(x, ξ)W (f, g)(x, ξ)|H0 ]dxdξ,

where H0 is the largest closed separable subspace of H where σn(x, ξ)W (f, g)(x, ξ) :
H0 → H0 for all n and almost all (x, ξ) ∈ R2d - see [Wah07] for more details.
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4.2. The Weyl quantization

Moreover, by enlarging H0 and using the magic formula (3.8) and Proposition
3.2.7, for any Φ ∈ S(R2d) with ‖Φ‖L2 = 1 we can write

〈σwf, g〉 =

∫
R2d

∫
R2d

Tr[VΦσ(z, ζ)VΦW (f, g)(z,−ζ)|H0 ]dzdζ.

This representation is the main ingredient for proving boundedness results for
symbols in modulation and amalgam spaces. For instance, the classical result of
Theorem 4.2.2 for symbols in the Sjöstrand class extends to the vector valued case
as follows.

Theorem 4.2.7. Let 1 ≤ p, q ≤ ∞, γ ≥ 0 and r, s ∈ R be such that |r| +
|s| ≤ γ; denote by X any of the spaces Mp,q

r,s(Rd, H) or Wp,q
r,s (Rd, H). If σ ∈

M∞,1
0,2γ (R2d,L(H)) then the Weyl operator σw is bounded on X.

If H = Cn then, under the same assumptions, the same claim holds for
σ ∈M∞,1

0,γ (R2d,Cn×n).

Proof. The case X =Mp,q
r,s(H) is covered in [Wah07, Corollary 4.8], and it is stated

here with small modifications in the spirit of [Grö01, Theorem 14.5.6] in order to
take the weights into account. In the case where H = C the regularity of the symbol
can be improved using the characterization in Theorem 5.8.1 and and convolution
relations for weighted Lebesgue spaces, in particular Lp,qm (R2d)∗L1

v(R2d) ⊂ Lp,qm (R2d)
(cf. Theorem 2.3.3). The case H = Cn, n > 1, follows arguing as above for each
component.

For the case X =Wp,q
r,s (H) we need a special case of the symplectic covariance of

Weyl calculus, namely

Fσw = σw
J−1F , σ ∈ S ′(R2d,L(H)),

where σJ−1 = σ ◦ J−1; the proof is a straightforward application of Proposition
3.1.5 above. In view of this property, consider the following diagram:

Mp,q
r,s(Rd, H)

σw
J //Mp,q

r,s(Rd, H)

F
��

Wp,q
r,s (Rd, H) σw

//

F−1

OO

Wp,q
r,s (Rd, H)

It is easy to prove that if σ ∈ M∞,1
0,2γ (R2d,L(H)) then σJ ∈ M∞,1

0,2γ (R2d,L(H)) too
(cf. for instance the proof of Lemma 5.9.6 below in the scalar setting), hence the
preceding case implies that σw

J is bounded on Mp,q
r,s(Rd, H) for any 1 ≤ p, q ≤ ∞

and r, s ∈ R such that |r|+ |s| ≤ γ.

The case H = Cn is covered by identical arguments.
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4. The Gabor Analysis of Operators

To conclude, we mention that the benefits of narrow continuity in the scalar-
valued case carry over to the Hilbert-valued case. The following property will be
used below.

Theorem 4.2.8. For any 1 ≤ p, q ≤ ∞ and γ ≥ 0, r, s ∈ R such that |r| +
|s| ≤ γ, let X denote either Mp,q

r,s(Rd, H) or Wp,q
r,s (Rd, H). If Ω 3 ν 7→ σν ∈

M∞,1
0,2γ (R2d,L(H)) is continuous for the narrow convergence then the corresponding

map of operators ν 7→ σw
ν is strongly continuous on X.

If H = Cn then, under the same assumptions, the same claim holds for
σ ∈M∞,1

0,γ (R2d,Cn×n).

Proof. The proof for X = Mp,q
r,s(Rd, H) is a suitable adaption of the one given

in [CNR15b, Proposition 3]. For the strong continuity on X = Wp,q
r,s (Rd, H) we

reduce to the latter case by the same arguments in the proof of Proposition 4.2.7,
which imply that σw

ν u = F(σν)
w
JF−1u for u ∈ Wp,q

r,s (Rd, H). The claimed result
easily follows from the continuity of the map ν 7→ (σν)

w
JF−1u onMp,q

r,s(Rd, H).

4.3 Metaplectic operators

4.3.1 Notable facts on symplectic matrices

We recall the definition and the main properties of symplectic matrices, cf. [Gos11]
and the references therein for further details.

The canonical symplectic matrix J ∈ R2d×2d is defined by

J =

[
O I
−I O

]
.

Note that J> = J−1 = −J . An invertible matrix S ∈ GL(2d,R) is said to be
symplectic if S>JS = J . In this case, the matrices S> and S−1 are symplectic too;
note that the product of two symplectic matrices is clearly symplectic. As a result,
the set of all symplectic matrices is a (Lie) group: we define the real symplectic
group Sp(d,R) as

Sp(d,R) = {S ∈ GL(2d,R) : S>JS = J}.

We list below some well-known properties of symplectic matrices.

Proposition 4.3.1. 1. The eigenvalues of a symplectic matrix S ∈ Sp(d,R)
occur in quadruples, meaning that if λ ∈ C \ {0} is an eigenvalue of S then
so are λ and 1/λ - hence 1/λ.
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4.3. Metaplectic operators

2. If S ∈ Sp(d,R) then detS = 1.

3. Let S ∈ GL(2d,R) have the following block structure:

S =

[
A B
C D

]
.

Then S ∈ Sp(d,R) if and only if any of the two sets of conditions are satisfied:

A>C, B>D are symmetric, and A>D − C>B = I;

AB>, CD> are symmetric, and AD> − CB> = I.

Moreover, in that case the inverse matrix is explicitly given by

S−1 =

[
D> −B>
−C> A>

]
.

4. The complex unitary group U(d,C) is isomorphic to the subgroup of symplectic
rotations U(2d,R) of Sp(d,R) defined by U(2d,R) = Sp(d,R) ∩O(2d,R). In
particular, the following characterization holds:

U(2d,R) =

{[
A −B
B A

]
∈ R2d×2d : AA> +BB> = I, AB> = B>A

}
.

We recall a result on a SVD-like decomposition of symplectic matrices, also
known as the Euler decomposition in the literature; see [Ser17, Appendix B.2] for
details and proofs.

Proposition 4.3.2. For any S ∈ Sp(d,R) there exist U, V ∈ U(2d,R) such that

S = U>DV, D = Σ⊕ Σ−1,

where Σ = diag(σ1, . . . , σd) and σ1 ≥ . . . ≥ σd ≥ σ−1
d ≥ . . . ≥ σ−1

1 are the singular
values of S.

We stress that while Σ is uniquely determined for given S once the order of
the singular values is fixed, the matrices U and V appearing in such factorization
are not unique in general due to possible occurrence of degenerate singular values.
We identify any Euler decomposition of S as U>DV with the triple (U, V,Σ).

Let us introduce the notion of free symplectic matrix.

Definition 4.3.3. Let S ∈ Sp(d,R). We say that S is a free symplectic matrix if
any of the following equivalent conditions is satisfied:
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4. The Gabor Analysis of Operators

(i) If S =

[
A B
C D

]
then detB 6= 0.

(ii) Given (x, y) ∈ R2d, there exists a unique (ξ, η) ∈ R2d such that (x, ξ) =
S(y, η).

(iii) Set (x, ξ) = S(y, η), (y, η) ∈ R2d. Then det(∂ηx) 6= 0.

The subset of free symplectic matrices is denoted by Sp0(d,R).

Free symplectic matrices are naturally associated with quadratic forms. These
are also called generating functions, in connection with those of canonical transfor-
mations in classical mechanics [Gol80].

Proposition 4.3.4. Let S ∈ Sp0(d,R) and define the generating function

ΦS(x, y) :=
1

2
DB−1x · x−B−1x · y +

1

2
B−1Ay · y. (4.3)

Therefore,

(x, ξ) = S(x′, ξ′)⇐⇒

{
ξ = ∂xΦS(x, y)

ξ′ = −∂yΦS(x, y)
.

Conversely, let L, P,Q ∈ Rd×d be such that P = P>, Q = Q> and detL 6= 0, and
set

Φ(x, y) =
1

2
Px · x− Lx · y +

1

2
Qy · y.

Then,

SΦ :=

[
L−1Q L−1

PL−1Q− L> PL−1

]
∈ Sp0(d,R).

We finally recall a factorization result in terms of free matrices and provide a
special set of generators of symplectic matrices.

Proposition 4.3.5. 1. For any S ∈ Sp(d,R) there exist (non unique) S1, S2 ∈
Sp0(d,R) such that S = S1S2.

2. Given P,L ∈ Rd×d with P = P> and detL 6= 0, define

VP :=

[
I 0
P I

]
, UP :=

[
P I
−I 0

]
, ML :=

[
L 0
0 L#

]
. (4.4)

If S =

[
A B
C D

]
∈ Sp0(d,R) then

S = VDB−1MBUB−1A = VDB−1MBJVB−1A.
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4.3. Metaplectic operators

As a consequence, any of the sets {VP ,ML, J : P = P>, detL 6= 0} and
{UP ,ML : P = P>, detL 6= 0} generates Sp(d,R).

4.3.2 Metaplectic operators: definitions and basic
properties

The metaplectic group Mp(d,R) is the double cover of the symplectic group
Sp(d,R) and the corresponding faithful, strongly continuous unitary representation
in L2(Rd) allows us to identify Mp(d,R) with its range, the subgroup of unitary
operators on L2 consisting of metaplectic operators. Comprehensive accounts on
the topic can be found in [Fol89; Gos11]; below we prefer to pay some precision and
omit the technicalities since the finer aspects of the construction of the metaplectic
representation will not be relevant to the applications in this dissertation.

By a slight abuse of language we use the notation µ(S) to denote meta-
plectic operators defined up to sign, where S = ρMp(µ(S)) ∈ Sp(d,R) and
ρMp : Mp(d,R)→ Sp(d,R) is the group projection, hence

µ(AB) = ±µ(A)µ(B), A,B ∈ Sp(d,R).

Depending on the need, we think of µ(S) both as a pair of operators that differ
only in sign or as one of the members of this pair.

Note that an operator µ(S) satisfies the intertwining relation

π′(Sz) = µ(S)π′(z)µ(S)−1, z ∈ R2d,

where we introduced the symmetric time-frequency shifts [Grö01] (also known as
Weyl-Heisenberg operators [Gos11])

π′(x, ξ) := Mξ/2TxMξ/2 = e−πix·ξπ(x, ξ), (x, ξ) ∈ R2d.

To be concrete, we recall the following representation result for metaplectic
operators associated with free symplectic matrices in terms of quadratic Fourier
transforms [Gos11].

Theorem 4.3.6 ([Fol89, Theorems 4.51 and 4.53]). Let S =

[
A B
C D

]
∈ Sp(d,R).

1. If detB 6= 0 then

µ(S)f(x) = c|detB|−1/2

∫
Rd
e2πiΦS(x,y)f(y)dy, f ∈ S(Rd), (4.5)

for some c ∈ C with |c| = 1, where ΦS is the generating function of S defined
in (4.3).
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2. If detA 6= 0 then

µ(S)f(x) = c|detA|−1/2

∫
Rd
e2πiΦSJ−1 (x,y)f̂(y)dy, f ∈ S(Rd),

for some c ∈ C with |c| = 1, where

ΦSJ−1 =
1

2
CA−1x · x+ A−1x · y − 1

2
A−1By · y. (4.6)

In fact, the metaplectic group can be equivalently designed as the subgroup of
unitary operators on L2 generated by quadratic Fourier transforms [Gos11].

Metaplectic operators have been thoroughly studied in the framework of phase-
space analysis. We mention below two relevant results concerning the Gabor matrix
of a metaplectic operator and the boundedness on modulation spaces.

Theorem 4.3.7 ([CGNR13]). Consider µ(S) ∈ Mp(d,R) and g, γ ∈ S(Rd). For
any N ≥ 0 we have

|〈µ(S)π(z)g, π(w)γ〉| .N,S (1 + |w − Sz|)−N , w, z ∈ R2d.

As a consequence, for any 1 ≤ p ≤ ∞ and s ∈ R, the operator µ(S) is bounded
from Mp

vs(R
d) into itself; the continuity of µ(S) on Mp,q(Rd) with p 6= q fails in

general, cf. [CNR10, Proposition 7.1].

In view of Theorem 4.3.7 we observe that the Gabor matrix 〈µ(S)π(z)g, π(w)γ〉
of a metaplectic operator µ(S) ∈ Mp(d,R) is well defined in the case where

g ∈Mp(Rd), γ ∈M q(Rd),
1

p
+

1

q
≥ 1. (4.7)

To be precise,

‖µ(S)π(z)g‖Mp ≤ ‖µ(S)‖Mp→Mp‖π(z)g‖Mp = ‖µ(S)‖Mp→Mp‖g‖Mp , z ∈ Rd,

hence by Proposition 3.2.3 (iv)

|〈µ(S)π(z)g, π(w)γ〉| ≤ ‖µ(S)‖Mp→Mp‖g‖Mp‖π(w)γ‖Mp′

≤ ‖µ(S)‖Mp→Mp‖g‖Mp‖γ‖Mp′

≤ ‖µ(S)‖Mp→Mp‖g‖Mp‖γ‖Mq ,

since from (4.7) we infer q ≤ p′ and the inclusion M q(Rd) ⊂Mp′(Rd) (Proposition
3.2.3 (v)) yields the last inequality.
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4.3. Metaplectic operators

4.3.3 Important examples of metaplectic operators

Using the results in Theorem 4.3.6 we provide some elementary examples of
metaplectic operators which are associated with the special elements of Sp(d,R)
highlighted in (4.4). In the sequel we let c ∈ C be a phase factor, namely |c| = 1,
which can be different from time to time.

1. The Fourier transform is a metaplectic operator associated with the canonical
symplectic matrix, that is µ(J)f = cF(f). Notice in particular that µ(−J) =
cF−1.

2. Let L ∈ GL(d,R). The metaplectic operator µ(ML) acts as a rescaling by L:

µ(ML)f(x) = c| detL|−1/2f(L−1x).

3. Let P ∈ Rd×d be a symmetric matrix. The metaplectic operator µ(VP ) is a
chirp multiplication:

µ(VP )f(x) = ceπix·Pxf(x).

In fact, it turns out that {µ(VP ), µ(ML), J : P = P>, detL 6= 0} is a set of
generators of Mp(d,R), cf. [Gos11, Corollary 112].

An important example of metaplectic operator is provided by the Schrödinger
propagator for the free particle U(t) = e−i(t/2π)∆, t ∈ R. This can be easily derived
from the examples above since U(t) is a Fourier multiplier with chirp symbol
mt(ξ) = e2πit|ξ|2 on Rd, hence

U(t) = F−1mtF = c(t)µ(St), St =

[
I 2tI
O I

]
∈ Sp(d,R), t ∈ R, (4.8)

where c(t) ∈ C satisfies |c(t)| = 1. In general, let Q : R2d → R be a homogeneous
quadratic polynomial, namely

Q(x, ξ) =
1

2
Aξ · ξ +Bx · ξ +

1

2
Cx · x,

for some A,B,C ∈ Rd×d with A = A> and C = C>. Let us consider the Schrödinger
equation (with the normalization ~ = 1/2π){

i∂tf(t, x) = 2πQwf(t, x)

f(0, x) = f0(x)
, (t, x) ∈ R× R2d,
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4. The Gabor Analysis of Operators

where the Hamiltonian is the Weyl quantization of Q, namely

Qw = − 1

8π2

d∑
j,k=1

Aj,k∂j∂k −
i

2π

d∑
j,k=1

Bj,kxj∂k −
i

4π
Tr(B) +

1

2

d∑
j,k=1

Cj,kxjxk.

It turns out that the propagator U(t) = e−2πitQw
is an example of metaplectic

operator [Gos11, Section 15.1.3]. In particular, the classical phase-space flow
determined by the Hamilton equations (the factor 2π derives from the normalization
of the Fourier transform adopted here)

2πż = J∇zQ(z) =

[
B A
−C −B>

]
=: S, z = (x, y) ∈ R2d,

defines a mapping R 3 t 7→ St := e(t/2π)S ∈ Sp(d,R). It follows from the general
theory of covering manifolds that this path can be lifted in a unique way to a
mapping R 3 t 7→ M(t) ∈ Mp(d,R), M(0) = I; hence ρMp(M(t)) = St and we
have U(t) = e−2πitQw

= µ(St).

4.3.4 Symplectic covariance of the Weyl calculus

The Weyl quantization satisfies a special intertwining property involving metaplectic
operators, called symplectic covariance.

Proposition 4.3.8 ([Gos11, Theorem 215]). For any S ∈ Sp(d,R) and σ ∈
S ′(R2d),

(σ ◦ S)w = µ(S)−1σwµ(S). (4.9)

Symplectic covariance is in fact a distinctive property of the Weyl quantization
among all possible quantization rules, as detailed below.

Theorem 4.3.9 ([Won98]). Let op : S ′(R2d)→ L(S(Rd),S ′(Rd)) be a continuous
linear operator such that:

1. if σ(x, ξ) = m(x) and m ∈ L∞(Rd) then op(σ)f(x) = m(x)f(x);

2. for any S ∈ Sp(d,R) and σ ∈ S ′(R2d), op(σ ◦ S) = µ(S)−1op(σ)µ(S).

Then, op(σ) = σw.
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4.3. Metaplectic operators

4.3.5 Generalized metaplectic operators

General families of operators characterized by the sparsity of their phase-space
representation were introduced in [CGNR13; CGNR14]. Given S ∈ Sp(d,R),
g ∈ S(Rd) and s ≥ 0, we say that a linear operator A : S(Rd)→ S ′(Rd) is in the
class FIO(S, vs) of generalized metaplectic operators if there exists H ∈ L1

s(R2d)
such that

|〈Aπ(z)g, π(w)g〉| ≤ H(w − Sz), w, z ∈ R2d. (4.10)

We write FIO(S) in the case where s = 0. The definition of FIO(S, vs) does not
depend on the choice of g ∈ S(Rd) \ {0}. In fact, careful inspection of the proof of
[CGNR14, Proposition 3.1] reveals that for s = 0 the class of admissible windows
for FIO(S) may be extended to M1(Rd), hence the estimate (4.10) is equivalent
to its polarized version with two arbitrary windows g, γ ∈M1(Rd), that is,

|〈Aπ(z)g, π(w)γ〉| ≤ H(w − Sz), w, z ∈ R2d.

Sparsity of the Gabor matrix of generalized metaplectic operators provides
non-trivial algebraic properties for FIO(S) in the spirit of Theorem 4.2.6, as
detailed in the following result.

Theorem 4.3.10. Let S, S1, S2 ∈ Sp(d,R) and s ≥ 0.

1. An operator T ∈ FIO(S, vs) is bounded on Mp
vs(R

d) for any 1 ≤ p ≤ ∞.

2. If T1 ∈ FIO(S1, vs) and T2 ∈ FIO(S2, vs), then T1T2 ∈ FIO(S1S2, vs).

3. If T ∈ FIO(S, vs) is invertible on L2(Rd) then T−1 ∈ FIO(S−1, vs).

4. Let T : S(Rd)→ S ′(Rd) be a linear continuous operator. T ∈ FIO(S, vs) if
and only if there exist σ1, σ2 ∈M∞,1

0,s (R2d) such that

T = σw
1 µ(S) = µ(S)σw

2 .

In particular, σ2 = σ1 ◦ S.

5. Let S =

[
A B
C D

]
∈ Sp(d,R) be such that detA 6= 0 and T : S(Rd)→ S ′(Rd)

be a linear continuous operator. T ∈ FIO(S, vs) if and only if there exists
σ ∈M∞,1

0,s (R2d) such that it can be represented as a Fourier integral operator,
namely

Tf(x) =

∫
Rd
e2πiΦSJ−1 (x,y)σ(x, y)f̂(y)dy,

where ΦSJ−1 is given in (4.6).
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In view of Theorem 4.3.10 and arguing as we did before for metaplectic operators,
we observe that the Gabor matrix 〈Tπ(z)g, π(w)γ〉 of a generalized metaplectic
operator T ∈ FIO(S) is well defined in the case where

g ∈Mp(Rd), γ ∈M q(Rd),
1

p
+

1

q
≥ 1.
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Part II

Time-Frequency Analysis of
Operators and Applications
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Chapter 5

Linear Perturbations of the
Wigner Transform and the Weyl
Quantization

5.1 Outline

In this chapter we provide a systematic survey of the accumulated knowledge about
the matrix Wigner transforms and their pseudodifferential calculi introduced in
Chapter 1. In the first part we discuss the general properties of the matrix Wigner
transforms.

1. We state the main formulas for covariance, the behaviour with respect to
the Fourier transform, the analogue of Moyal’s formulas, and the inversion
formula.

2. It is well known that, up to normalization, the ambiguity function and the
short-time Fourier transform are just different versions and names for the
Wigner transform. This is no longer true for the matrix Wigner transforms,
so we give precise conditions on the parametrizing matrix A so that BA can
be expressed as a short-time Fourier transform, up to a phase factor and a
change of coordinates.

3. Of special importance is the intersection of the class of matrix Wigner
transforms with Cohen’s class. The main result in this respect is that BA
belongs to Cohen’s class, if and only if A =

[
I T
I −(I − T )

]
for some T ∈ Rd×d,

namely is a matrix generalization of the τ -Wigner transform. A thorough
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5. Matrix-Wigner Distributions and Operators

time-frequency analysis of the corresponding Cohen kernel and the related
properties is carried out.

4. A further item is the boundedness of the bilinear mapping (f, g)→ BA(f, g)
on various function spaces. These results are quite useful in the analysis of
the mapping properties of the pseudodifferential operators σA.

In the second part we study the pseudodifferential calculi defined by the rule
(1.17).

1. We first show that every “reasonable” operator can be represented as a
pseudodifferential operator σA. We remark that the map (σ,A) 7→ σA is
highly non-injective and, given two matrices A and B and two symbols σ, ρ,
we obtain formulas characterizing the condition σA = ρB.

2. A large section is devoted to the mapping properties of the pseudodifferential
operator σA on various function spaces, in particular on Lp-spaces and on
modulation and amalgam spaces. Sharp results for τ -operators derived in
[CDT19] are highlighted.

3. Finally, we extend the boundedness results for symbols in the Sjöstrand class
and related spaces to those pseudodifferential operators for which BA is in
Cohen’s class, in the spirit of [CNT19b].

For most results we will include proofs, but we will omit those proofs that only
require a formal computation. The organization of the chapter follows the structure
of the paper [BCGT20].

5.2 Preliminary results

5.2.1 Bilinear coordinate transformations

Let us summarize the properties of bilinear coordinate transformations in the

time-frequency plane. Given a matrix A =

[
A11 A12

A21 A22

]
∈ R2d×2d with d× d blocks

Aij ∈ Rd×d, i, j = 1, 2, we use the symbol TA to denote the corresponding dilation
of F : R2d → C, namely

TAF (x, y) := F (Ax) = F (A11x+ A12y, A21x+ A22y).
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For A ∈ GL(d,R) and u ∈ S ′(Rd), the dilated distribution TAu ∈ S ′(Rd) is
defined by follows:

〈TAu, φ〉 :=
〈
u, |detA|−1TA−1φ

〉
, φ ∈ S

(
Rd
)
.

The following lemma collects elementary facts on such transformations.

Lemma 5.2.1. (i) For any A,B ∈ R2d×2d we have TATB = TBA.

(ii) If A ∈ GL(2d,R), the transformation TA is a topological isomorphism on
L2(R2d) with inverse T−1

A = TA−1 and adjoint T∗A = |detA|−1TA−1.

(iii) If A ∈ GL(2d,R), the transformation TA is an isomorphism on M1(R2d).

(iv) For any A ∈ GL(d,R), f ∈ L2(Rd) and x, ξ ∈ Rd,

TATxf = TA−1xTAf, TAMξf = MA>ξTAf.

(v) For any A ∈ GL(d,R) and f ∈ L2(Rd),

FTAf = |detA|−1TA#Ff.

(vi) For any A ∈ GL(d,R) and u ∈ S ′(Rd),

TAF−1u = |detA|−1F−1TA#u.

Proof. The only non-trivial issue is the continuity on M1. By Proposition 3.2.4 we
have

‖TAF‖M1 ≤ C|detA|−1(det
(
I + A>A

))1/2‖F‖M1 ,

for some constant C > 0.

Two special transformations deserve a separate notation. The first is the flip
operator

F̃ (x, y) = TĨF (x, y) = F (y, x), Ĩ =

[
0 I
I 0

]
∈ GL(2d,R),

while the other one is the reflection operator:

IF (x, y) = T−IF (x, y) = F (−x,−y).

Sometimes we will also write I = −I ∈ GL(2d,R).
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5.2.2 Partial Fourier transforms

Given F ∈ L1(R2d), we use the symbols F1 and F2 to denote the partial Fourier
transforms

F1F (ξ, y) :=

∫
Rd
e−2πiξ·tF (t, y)dt, ξ, y ∈ Rd,

F2F (x, ξ) :=

∫
Rd
e−2πiξ·tF (x, t)dt, x, ξ ∈ Rd.

The partial Fourier transforms of F are well defined pointwise as a consequence
of Fubini’s theorem. The Fourier transform F is related to the partial Fourier
transforms as

F = F1F2 = F2F1.

Using Plancherel’s theorem and properties of modulation spaces (Proposition
3.2.13), the following extension of the partial Fourier transform is routine. For a
different proof in a more general context see [FK98, Lemma 7.3.6].

Lemma 5.2.2. (i) The partial Fourier transform F2 is a unitary operator on
L2(R2d). In particular, after setting I2 = I ⊕ (−I),

F∗2F (x, y) = F−1
2 F (x, y) = F2F (x,−y) = TI2F2F (x, y).

(ii) The partial Fourier transform F2 is an isomorphism on S(R2d) and M1(R2d),
hence on S ′(R2d) and M∞(R2d).

5.3 Matrix-Wigner distributions

Let us define the main characters of this chapter.

Definition 5.3.1. Let A =

[
A11 A12

A21 A22

]
∈ GL(2d,R). The time-frequency distri-

bution of Wigner type for f and g associated with A (in short: matrix-Wigner
distribution, MWD) is defined for suitable functions f, g as

BA(f, g)(x, ξ) = F2TA(f ⊗ g)(x, ξ). (5.1)

When g = f , we write BAf for BA(f, f).

Explicitly, BA is given by

BA(f, g)(x, ξ) =

∫
Rd
e−2πiξ·yf(A11x+ A12y)g(A21x+ A22y)dy.
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This definition is meaningful on many function spaces. We state a result for
the Banach triple (M1, L2,M∞), but it also holds if the latter is replaced by the
standard (S, L2,S ′).

Proposition 5.3.2. Assume A ∈ GL(2d,R).

(i) If f, g ∈M1(Rd), then BA(f, g) is defined pointwise and belongs to M1(R2d).
Moreover, the mapping BA : M1(Rd)×M1(Rd)→M1(R2d) is continuous.

(ii) If f, g ∈ L2(Rd), then BA(f, g) ∈ L2(R2d) and the mapping BA : L2(Rd) ×
L2(Rd)→ L2(R2d) is continuous. Furthermore, span

{
BA(f, g) | f, g ∈ L2(Rd)

}
is a dense subset of L2(R2d).

(iii) If f, g ∈M∞(Rd), then BA(f, g) ∈M∞(R2d) and the mapping BA : M∞(Rd)×
M∞(Rd)→M∞(R2d) is continuous.

The standard time-frequency representations covered within this framework
include for instance:

• the short-time Fourier transform:

Vgf(x, ξ) =

∫
Rd
e−2πiξ·yf(y)g(y − x)dy = BAST (f, g)(x, ξ),

where

AST =

[
0 I
−I I

]
;

• the cross-ambiguity function:

Amb(f, g)(x, ξ) =

∫
Rd
e−2πiξ·yf

(
y +

x

2

)
g
(
y − x

2

)
dy = BAAmb

(f, g)(x, ξ),

(5.2)
where

AAmb =

[
I/2 I
−I/2 I

]
;

• the Wigner distribution:

W (f, g)(x, ξ) =

∫
Rd
e−2πiξ·yf

(
x+

y

2

)
g
(
x− y

2

)
dy;

• the Rihaczek distribution:

R(f, g)(x, ξ) =

∫
Rd
e−2πiξ·yf(x)g(x− y)dy = e−2πix·ξf(x)ĝ(ξ).
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5. Matrix-Wigner Distributions and Operators

The latter two distributions are special cases of the τ -Wigner distribution introduced
in [BDDO10]. For any τ ∈ [0, 1], we have

Wτ (f, g)(x, ξ) = BAτ (f, g)(x, ξ),

where

Aτ =

[
I τI
I −(1− τ)I

]
. (5.3)

It is well known that the Wigner distribution and the ambiguity transform
coincide with the STFT up to normalization. It is natural to wonder whether
a similar relation holds for general matrix-Wigner distributions. Note that a
characteristic which is common to the corresponding matrices is right-regularity :

we say that a block matrix A =

[
A11 A12

A21 A22

]
∈ R2d×2d is left-regular (resp. right-

regular) if the submatrices A11, A21 ∈ Rd×d (resp. A12, A22 ∈ Rd×d) are invertible.

The right-regularity of A is an essential condition to express BA(f, g) as a
short-time Fourier transform. In fact, this characterization is very strong, as stated
in the subsequent results. Beware that (A#)ij 6= A#

ij = (A>ij)
−1, i, j = 1, 2.

Theorem 5.3.3 ([Bay10, Theorem 1.2.5]). Assume that A ∈ GL(2d,R) is right-
regular. For every f, g ∈M1(Rd) the following formula holds:

BA(f, g)(x, ω) = |detA12|−1e2πiA#
12ω·A11xVg̃f(c(x), d(ω)), x, ω ∈ Rd, (5.4)

where c(x) =
(
A11 − A12A

−1
22 A21

)
x, d(ω) = A#

12ω and g̃(t) = g
(
A22A

−1
12 t
)
.

An equivalent and slightly more clear formulation is the following one.

Theorem 5.3.4. Given matrices M,N,P ∈ Rd×d and Q,R ∈ GL(R, d), set

A =

[
Q#N>M Q#

R
(
Q#N>M − P

)
RQ#

]
.

Then A is right-regular and for any f, g ∈M1(Rd) we have

BA(f, g)(x, ω) = |detQ|e2πiMx·NωVg◦R(Px,Qω), x, ω ∈ Rd.

The peculiar way the blocks of A are combined in c(x) = (A11−A12A
−1
22 A21)x is

a well-known construction in linear algebra and is usually called Schur complement.
The Schur complement comes up many times in our results, ultimately because of
its distinctive role in the inversion of block matrices (cf. [LS02, Theorem 2.1]).

The right-regularity of A is not only a technical condition required for (5.4) to
hold, but also has unexpected effects on the continuity of BA.
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5.3. Matrix-Wigner distributions

Theorem 5.3.5 ([Bay10, Theorem 1.2.9]). Assume A ∈ GL(2d,R) such that
detA22 6= 0 but detA12 = 0. Then there exist f, g ∈ L2(Rd) such that BA(f, g) is
not a continuous function on R2d.

The study of the properties satisfied by general bilinear time-frequency distri-
butions (including orthogonality relations, inversion and reconstruction formulae,
algebraic identities, etc.) is mostly a matter of computation; it has been carried
out in Bayer’s Ph.D. thesis [Bay10] and slightly expanded in [CT20]. Moreover,
a complete survey with all pointers can be found in [BCGT20]. We confine our-
selves to mention two results that will be heavily used below. The first one is the
behaviour under phase-space shifts, leading to the covariance formula.

Theorem 5.3.6 ([Bay10, Theorem 1.5.1]). Let A ∈ GL(2d,R). For any f, g ∈
M1(Rd) and a, b, α, β ∈ Rd, the following formula holds:

BA(MαTaf,MβTbg)(x, ξ) = e2πiσ·sM(ρ,−s)T(r,σ)BA(f, g)(x, ξ) (5.5)

= e2πiσ·se2πi(x·ρ−ξ·s)BA(f, g)(x− r, ξ − σ),

where [
r
s

]
= A−1

[
a
b

]
,

[
ρ
σ

]
= A>

[
α
−β

]
.

This result clearly encompasses the covariance formula for the τ -Wigner dis-
tribution with A = Aτ as in (5.3), cf. [CNT19b, Proposition 3.3] and also for the
STFT with A = AST , cf. 3.1.2.

We mention an amazing representation result for the STFT of a bilinear time-
frequency distribution, sometimes called the short-time product formula or magic
formula in similar contexts (cf. [Grö06a]).

Theorem 5.3.7 ([Bay10, Theorem 1.7.1]). Assume A ∈ GL(2d,R) and f, g, ψ, φ ∈
M1(Rd), and set z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d. Then,

VBA(φ,ψ)BA(f, g)(z, ζ) = e−2πiz2·ζ2Vφf(a, α)Vψg(b, β), (5.6)

where [
a
b

]
= AI2

[
z1

ζ2

]
=

[
A11z1 − A12ζ2

A21z1 − A22ζ2

]
,

[
α
β

]
= I2A

#

[
ζ1

z2

]
=

[
(A#)11ζ1 + (A#)12z2

−(A#)21ζ1 − (A#)22z2

]
.
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5. Matrix-Wigner Distributions and Operators

We also mention the following generalized Moyal formula, which extends the
Parseval identity to matrix-Wigner distributions. In fact, the generalization of
the orthogonality relations was one of the main motivations for introducing BA in
[Bay10].

Theorem 5.3.8 ([Bay10, Theorem 1.3.1]). Let A ∈ GL(2d,R) and f1, f2, g1, g2 ∈
L2(Rd). Then

〈BA(f1, g1),BA(f2, g2)〉L2(R2d) =
1

|detA|
〈f1, f2〉L2(Rd)〈g1, g2〉L2(Rd). (5.7)

In particular,

‖BA(f, g)‖L2(R2d) =
1

|detA|1/2
‖f‖L2(Rd)‖g‖L2(Rd).

Thus, the representation BA,g : L2(Rd) 3 f 7→ BA(f, g) ∈ L2(R2d) is a non-trivial
constant multiple of an isometry whenever g 6= 0.

The proof follows directly from the definition in (5.1), since F2 is unitary and
TA is a multiple of a unitary operator.

Let us underline that the benefits of linear algebra should be appreciated in view
of the very short and simple proofs. This aspect should not be underestimated: the
proof of similar results for certain special members has lead to quite cumbersome
computations (cf. the proofs for the τ -Wigner distributions in [CNT19b]).

5.4 Cohen class members as perturbations of

the Wigner transform

We already described the heuristics behind the Cohen class of distributions in
Section 1.2.1. Although the Wigner distribution was the main inspiration for the
bilinear distributions studied so far, the connection to the Cohen class is by no
means clear. This question is the point of departure of the paper [CT20] and the
following result completely characterizes the intersection between these families1

Theorem 5.4.1 ([CT20, Theorem 1.1]). Let A ∈ GL(2d,R). The distribution BA
belongs to the Cohen class if and only if there exists M ∈ Rd×d such that

A = AM =

[
I M + (1/2)I
I M − (1/2)I

]
,

1We take this opportunity to highlight a minor mistake in the published proof, namely the
expression of A−1 is wrong. This issue does not affect the result, as showed in the corrected
proof below. Moreover, the explicit formula for θM in [CT20, Eq. (7)] and [BCGT20, Eq. 31]
has been mistakenly reported with M−1 in place of M# in the exponent.
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5.4. Cohen class members as perturbations of the Wigner transform

Furthermore, in this case we have

WM(f, g) := BAM (f, g) = W (f, g) ∗ θM , f, g ∈ S(Rd),

where the Cohen kernel θM ∈ S ′(R2d) is

θM = F−1ΘM , with ΘM(u, v) = e−2πiu·Mv, (u, v) ∈ R2d.

If M is invertible, the kernel θM is explicitly given by

θM(x, ξ) = | detM |−1e2πiξ·M−1x, (x, ξ) ∈ R2d. (5.8)

We say that A = AM is a Cohen-type matrix associated with M ∈ Rd×d.

Proof. We prove necessity first. It follows directly from the definition that a
member of Cohen’s class must satisfy the covariance property:

Q(π(z)f) = TzQf, z ∈ R2d, f ∈M1(Rd).

For fixed z = (x, ξ) ∈ Rd, by Theorem 5.3.6 with α = β = ξ, a = b = x and f = g
we get [

ρ
σ

]
= A>

[
ξ
−ξ

]
=

[
0
ξ

]
,

[
r
s

]
= A−1

[
x
x

]
=

[
x
0

]
.

Converting the relations for ρ and σ into conditions for the blocks of A yields

A11 = A21, A12 − A22 = I.

Moreover, the conditions on r and s yield that A11 = A21 = I. In conclusion, if
BA belongs to the Cohen class, then A has the form

A =

[
I M + (1/2)I
I M − (1/2)I

]
,

where M ∈ Rd×d is such that A22 = M − (1/2)I; other parametrizations are of
course allowed, provided that A12 − A22 = I.

For what concerns sufficiency, assume that A = AM has this prescribed form.
We shall show that WM = W ∗θM for some θM ∈ S ′(R2d). Applying the symplectic
Fourier transform to both sides of the latter relation, this is equivalent to showing
that, for any f, g ∈ S(Rd),

FσWM(f, g) = FσW (f, g) · FσθM = Amb(f, g) · FσθM ,

where Amb(f, g) is defined in (5.2). A straightforward computation (cf. [CT20,
Proposition 3.5] for the details) shows that

FWM(f, g)(u, v) = BAMJ(f, g)(v, u), u, v ∈ Rd,
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5. Matrix-Wigner Distributions and Operators

where

AMJ =

[
−(M + (1/2)I) I
−(M − (1/2)I) I

]
.

Therefore

FσWM(f, g)(u, v) = FWM(f, g)(J(u, v))

= FWM(f, g)(v,−u))

= BAMJ(f, g)(−u, v)

=

∫
Rd
e−2πiv·tf

(
t+

(
M +

1

2
I

)
u

)
g

(
t+

(
M − 1

2
I

)
u

)
dt.

The substitution t+ (M − (1/2)I)u = z − u/2 yields

FσWM(f, g)(u, v) = e2πiv·Mu

∫
Rd
e−2πiv·zf

(
z +

u

2

)
g
(
z − u

2

)
dz

= e2πiv·Mu · Amb(f, g)(u, v),

so that FσθM (u, v) = e2πiv·Mu. Defining χM (u, v) := e2πiv·Mu and using that F2
σ = I,

we finally obtain

θM(u, v) = FσχM(u, v) = Fσ
[
e2πiv·Mu

]
∈ S ′(R2d).

We finally compute the expression of θM in the case where M ∈ GL(d,R). Let
us denote by ΘM the Fourier transform of the Cohen kernel, namely

ΘM(u, v) = FθM(u, v) = χM(−v, u) = e−2πiu·Mv, (u, v) ∈ R2d.

Note that ΘM = TM̃Θ, where we set Θ(u, v) = e2πiu·v and M̃ = (−I) ⊕M . We
deduce from Lemma 5.2.1 that

θM = F−1ΘM = F−1TM̃Θ = |detM |−1TM̃#F−1Θ.

Notice that F−1Θ = IFΘ and from [Fol89, Appendix A, Theorem 2]) we have
FΘ(u, v) = e−2πiu·v, hence θM(x, ξ) = |detM |−1e2πiξ·M−1x as claimed.

It is clear from the previous proof that a Cohen-type matrix A should be defined
by the following conditions on the blocks:

A11 = A21 = I, A12 − A22 = I. (5.9)

The choice A22 = M − (1/2)I with M ∈ Rd×d is thus a suitable parametrization,
but by no means the only possible one - and in fact neither the most natural one.
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5.4. Cohen class members as perturbations of the Wigner transform

The reason underlying our choice is clarified by writing down the explicit formula
for WM , that is

WM(f, g)(x, ξ) =

∫
Rd
e−2πiξ·yf

(
x+

(
M +

1

2
I

)
y

)
g

(
x+

(
M − 1

2
I

)
y

)
dy,

which reveals the similarity with the Wigner distribution. A sort of symmetry with
respect to the Wigner distribution (corresponding to M = 0) immediately stands
out. We interpret these representations as a family of “linear perturbations” of
the Wigner distribution and M as the control parameter, exactly as τ controls
the degree of deviation of τ -Wigner distributions. For this reason, we will refer to
A = AM as the perturbative form of a Cohen-type matrix.

The analogy with the τ -Wigner distributions naturally leads to another repre-
sentation, hence another choice of A22 in (5.9). A closer inspection of the kernel
(1.11) and also of (1.10) reveals that the role of perturbation parameter is not
played by τ , rather by the deviation µ = τ − 1/2. In this analogy one chooses
A21 = T ∈ Rd×d and A22 = −(I − T ) and obtains

WT (f, g)(x, ξ) = BAT (f, g)(x, ξ) =

∫
Rd
e−2πiξ·yf(x+ Ty)g(x− (I − T )y)dy,

which should be compared to (1.10) (see also (5.3)). Occasionally, we refer to AT
as the affine form of the Cohen-type matrix A. It is clear that the two forms of a
Cohen-type matrix are perfectly equivalent, the connection being

M = T − (1/2)I. (5.10)

The notation WM for the perturbative form and WT for the affine form is in fact
ambiguous but we prefer to keep the notation as light as possible; the correct
alternative will be clear from the context.

Therefore, the choice of a form is just a matter of convenience: when studying
the properties of BA as a time-frequency representation, it seems better to explicitly
see the effect of the perturbation M (which could be easily turned off setting M = 0)
and use the perturbative form accordingly. As an example of this, the perturbed
representation of a Gaussian signal is provided below.

Lemma 5.4.2 ([CT20, Lemma 4.1]). Let A = AM ∈ GL(2d,R) be a Cohen-type
matrix and φλ(t) = e−πt

2/λ, λ > 0. Then,

WMφλ(x, ξ) = (2λ)d/2(detS)−1/2e−2πx2/λ

· e8π(M>x·S−1M>x)/λe8πiS−1ξ·M>xe−2πλξ·S−1ξ, (5.11)

where S = I + 4M>M ∈ Rd×d.
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5. Matrix-Wigner Distributions and Operators

5.4.1 Main properties of distributions in the Cohen class

The properties of a time-frequency distribution belonging to the Cohen class are
intimately related to the structure of the Cohen kernel. There is an established
list of correspondences between the kernel and the properties, which can be used
to deduce the following results.

Proposition 5.4.3. Assume that BA belongs to the Cohen class, namely that
BA = WM . For any f, g ∈M1(Rd), the following properties are satisfied:

(i) (Correct marginal densities)∫
Rd
WMf(x, ξ)dξ = |f(x)|2,

∫
Rd
WMf(x, ξ)dx = |f̂(ξ)|2, x, ξ ∈ Rd.

In particular, the energy is preserved:∫∫
R2d

WMf(x, ξ)dxdξ = ‖f‖2
L2 .

(ii) (Moyal’s identity)

〈WMf,WMg〉L2(R2d) = |〈f, g〉|2.

(iii) (Symmetry) For all x, ξ ∈ Rd,

WM(If)(x, ξ) = IWMf(x, ξ) = WMf(−x,−ξ),

WM

(
f
)
(x, ξ) = I2WMf(x, ξ) = WM(x,−ξ).

(iv) (Convolution properties) For all x, ξ ∈ Rd,

WM(f ∗ g)(x, ξ) = WMf ∗1 WMg,

WM(f · g)(x, ξ) = WMf ∗2 WMg.

Here ∗1 (resp. ∗2) denotes the convolution with respect to the first (resp.
second) variable.

(v) (Scaling invariance) Setting Uλf(t) := |λ|d/2f(λt), λ ∈ R \ {0}, t ∈ Rd,

WM(Uλf)(x, ξ) = WMf
(
λx, λ−1ξ

)
.

Proof. The properties above are directly related to conditions satisfied by the
Fourier transform ΘM of the Cohen kernel, cf. for instance [Coh95; Jan84; Jan97]
(for dimension d = 1 - the stated characterization easily extends to dimension
d > 1), that is:
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5.4. Cohen class members as perturbations of the Wigner transform

(i) ΘM(0, ξ) = ΘM(x, 0) = 1 for any x, ξ ∈ Rd (in particular ΘM(0, 0) = 1);

(ii) |ΘM(x, ξ)| = 1 for any x, ξ ∈ Rd;

(iii) ΘM(−x,−ξ) = ΘM(x, ξ) and ΘM(x, ξ) = ΘM(−x, ξ) respectively, for any
x, ξ ∈ Rd;

(iv) ΘM(·, ξ1 + ξ2) = ΘM(·, ξ1)ΘM(·, ξ2) and ΘM(x1 + x2, ·) = ΘM(x1, ·)ΘM(x2, ·)
respectively, for any xi, ξi ∈ Rd, i = 1, 2.

(v) ΘM(λx, λ−1ξ) = ΘM(x, ξ).

The kernel ΘM(x, ξ) = e−2πix·Mξ trivially satisfies conditions (i)-(v) above.

We now give a few hints on several aspects of interests for both theoretical
problems and applications; extensive discussions on these issues may be found in
[Bay10; CT20].

Real-valuedness. An easy computation shows that BAf , f ∈ L2(Rd), is a real-
valued function if and only if A11 = A21 and A12 = −A22, cf. [CT20, Proposition
3.3]. Therefore, the Wigner distribution is the only real-valued member of the
family WM . This is one of the properties which does not survive the perturbation.

More on marginal densities. The marginal densities for a general distribution
BA can be easily computed, see [Bay10, Lemma 1.6.1] for details. For f, g ∈M1(Rd),∫

Rd
BAf(x, ξ)dξ = f(A11x)f(A21x),∫

Rd
BAf(x, ξ)dx = |detA|−1f̂

(
(A#)12ξ

)
f̂(−(A#)22ξ).

The correct marginal densities are thus recovered if and only if A11 = A21 = I
and (A#)12 = −(A#)22 = I. These conditions force both |detA| = 1 and the
block structure of A as that of Cohen’s type. This fact provides an equivalent
characterization of the distributions BA belonging to the Cohen class: these are
exactly those satisfying the correct marginal densities.

Relation between two distributions. Let A1 = AM1 and A2 = AM2 be two
Cohen-type matrices in perturbative form. The two distributions WM1 and WM2

are connected by a Fourier multiplier as follows. For f, g ∈M1(Rd),

FWM2(f, g)(u, v) = e−2πiu·(M2−M1)vFWM1(f, g)(u, v). (5.12)
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5. Matrix-Wigner Distributions and Operators

Furthermore, if M2 −M1 ∈ GL(d,R), we have explicitly

WM2(f, g)(x, ξ) = |det(M2 −M1)|−1e2πiξ·(M2−M1)−1x ∗WM1(f, g)(x, ξ).

The proofs follow at once from Theorem 5.4.1.

Covariance and magic formulae. For any z = (z1, z2), w = (w1, w2) ∈ R2d,
the covariance formula (5.5) now reads

WM(π(z)f, π(w)g)(x, ξ) = e2πi[ 12 (z2+w2)+M(z2−w2)]·(z1−w1)

×MJ(z−w)TTM (z,w)WM(f, g)(x, ξ), (5.13)

where

TM(z, w) =
1

2
(z + w) +

[
−M 0

0 M

]
(z − w).

Alternatively, adopting the affine representation of A (5.10), we introduce

PT =

[
−T 0
0 −(I − T )

]
, I + PT =

[
I − T 0

0 T

]
, (5.14)

and then we can write

TT (z, w) =

[
(I − T )z1 + Tw1

Tz2 + (I − T )w2

]
= (I + PT )z − PTw. (5.15)

For future use, let us also specialize the magic formula (5.6) to representations
in the Cohen class: we have

VWT (φ,ψ)WT (f, g)(z, ζ) = e−2πiz2·ζ2Vφf(z + PTJζ)Vψg(z + (I + PT )Jζ). (5.16)

Support conservation. A desirable property for a time-frequency distribution is
the preservation of the support of the original signal. A scale of precise mathematical
conditions can be introduced in order to capture this heuristic feature. Following
Folland’s classic approach (see [Fol89, p. 59]), we define the support of a signal
f : Rd → C as the smallest closed set outside of which f = 0 a.e., hence we may
assume f = 0 everywhere outside suppf .

Definition 5.4.4. Let Qf : R2d
(x,ξ) → C be the time-frequency distribution associated

to the signal f : Rd
t → C in a suitable function space. Let πx : R2d

(x,ξ) → Rd
x and πξ :

R2d
(x,ξ) → Rd

ξ be the projections onto the first and second factors (R2d
(x,ξ) ' Rd

x × Rd
ξ)

and, for any E ⊂ Rd, let C(E) denote the closed convex hull of E.
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5.4. Cohen class members as perturbations of the Wigner transform

We say that Q satisfies the time strong support property if f(x) = 0 ⇔
Qf(x, ξ) = 0 for all ξ ∈ Rd. Similarly, Q satisfies the frequency strong support
property if f̂(ξ) = 0⇔ Qf(x, ξ) = 0 for all x ∈ Rd.

Moreover, Q satisfies the time (resp. frequency) weak support property if
πx(suppQf) ⊂ C(suppf) (resp. if πξ(suppQf) ⊂ C(suppf̂)).

We say that Q satisfies the strong (resp. weak) support property if both time
and frequency strong (resp. weak) support properties hold.

We characterize the MWDs in the Cohen class satisfying the aforementioned
properties, showing the optimality in this sense of τ -Wigner distributions.

Theorem 5.4.5. The only MWDs in Cohen’s class satisfying the strong correct
support properties are Rihaczek and conjugate-Rihaczek distributions.

Proof. This result can be inferred by directly inspecting the Fourier transform of
Cohen’s kernel. Indeed, by adapting the proof of Janssen (see [Jan97, Sec. 2.6.2]) to
dimension d > 1 one can show that the only members of the Cohen class satisfying
both time and frequency strong support properties are linear combinations of
Rihackez and conjugate-Rihaczek distributions. This is equivalent to the following
condition on the Fourier transform of the kernel ΘM : for any x, ξ ∈ Rd,

ΘM(x, ξ) = C+e
πix·ξ + C−e

−πix·ξ,

for some C+, C− ∈ C. Since ΘM(x, ξ) = e−2πix·Mξ, this can happen only if
M = ±(1/2)I with C+ = 1, 0 and C− = 0, 1 respectively.

Theorem 5.4.6. Let A = AT ∈ GL(2d,R) be a Cohen-type matrix. The only
associated distributions satisfying the weak support property are the τ -Wigner
distributions, namely T = τI for τ ∈ [0, 1].

Proof. Assume x ∈ suppBAf(·, ξ) for a fixed ξ ∈ Rd. The only way for this to
occur is x+ Ty, x− (I − T )y ∈ suppf . In order to have x ∈ C(suppf), we require
that

x = λ(x+ Ty) + µ(x− (I − T )y),

for some λ, µ ≥ 0 such that λ + µ = 1. Rewriting this condition as x = (λ +
µ)x+ (λ+ µ)Ty − µy gives the constraints λ+ µ = 1 and (T − µI) = 0, and the
claim follows. Similar arguments apply to the case of the frequency weak support
property.

Perturbation and interferences. The emergence of unwanted artefacts is a
well-known drawback of any quadratic representation. The signal processing
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5. Matrix-Wigner Distributions and Operators

literature is full of strategies to mitigate these effects (see for instance [Coh95;
HA08]). For what concerns the Cohen class, it is folklore that the severity of
interferences is somewhat related to the decay of the Cohen kernel. In fact, a
precise formulation of this principle is rather elusive and recent contributions
unravelled further non-trivial fine points ([CGDN18, Proposition 4.4 and Theorem
4.6]). We remark that the chirp-like kernel ΘM = FθM does not decay at all, and
thus no smoothing effect should be expected for the perturbed representations.
In order to experience this, we limit ourselves to dimension d = 1 and follow the
geometrical approach employed in [BCO11]. As a toy model we consider signals
consisting of pure frequencies confined in disjoint time intervals. It is well known
that the Wigner transform displays “ghost frequencies” in between any couple of
true frequencies of the signal. A similar phenomenon can be studied also in higher
dimension considering Gaussian signals in the so-called “diamond configuration”,
see again [CGDN18].

We remark that for d = 1 the perturbation matrix M boils down to a scalar
m ∈ R. Let f be a signal with a frequency ω1 appearing in the interval I1 =
[x1, x1 + h1] and ω2 in I2 = [x2, x2 + h2], with h2 ≥ h1 > 0 such that x1 + h1 < x2.
We are then dealing with a τ -Wigner distribution (in perturbative form, namely
m = τ − 1/2), that is

Bmf(x, ω) =

∫
R
e−2πiωyf

(
x+

(
m+

1

2

)
y

)
f

(
x+

(
m− 1

2

)
y

)
dy.

We see that Bmf is supported in the diamond-shaped regions Di, i = 1, ..., 4, (see
Figure 5.1) obtained by intersecting the following straight lines passing through
the endpoints of the time intervals:

x+
(
m± 1

2

)
y = x1

x+
(
m± 1

2

)
y = x1 + h1

x+
(
m± 1

2

)
y = x2

x+
(
m± 1

2

)
y = x2 + h2.

With the notation of the figure, we see that D1 and D3 give account for the
true frequencies of the signal, while D2 and D3 are non-zero interferences. A short
computation shows that the coordinates of the two points V1 and V2 are

V1 =

(
2m+ 1

2
(x2 + h2)− 2m− 1

2
x1, x1 − (x2 + h2)

)
,

V2 =

(
2m+ 1

2
x1 −

2m− 1

2
(x2 + h2), (x2 + h2)− x1

)
,
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5.4. Cohen class members as perturbations of the Wigner transform

Figure 5.1: Support of Bmf with m = 0, I1 = [3, 5], I2 = [9, 13].

hence we see that the only effect of the perturbation parameter m is the horizontal
translation of the diamond’s corners, giving no room for damping. Moreover, as
already seen before and also noticeable from the coordinates of V1 and V2, when
m ∈ R \

[
−1

2
, 1

2

]
, the support of the signal is no longer conserved - neither in weak

sense.

To sum up, the only effect of the perturbation consists of a distortion and
relocation of interferences, but there is no damping. Following the engineering
literature, we suggest that convolution with suitable decaying distributions may
provide some improvement, probably at the price of loosing other nice properties.

5.4.2 Time-frequency analysis of the Cohen kernel

In this section we deepen the study of the Cohen kernel θM . Recall that ΘM (u, v) =
FθM(u, v) = e−2πiu·Mv, (u, v) ∈ R2d. At a first glance we notice that ΘM ∈
C∞b
(
R2d
)

and ΘM ∈ Lploc

(
R2d
)

for any 1 ≤ p ≤ ∞. Hence, we are dealing with
distributions whose Fourier transforms are well-behaved dilated chirps, and intuition
suggests that the kernels themselves should belong to the same family. In the case
where M ∈ GL(d,R) this outcome is clear from Theorem 5.4.1. Moreover, such a
heuristic statement is enforced by the following result, already proved in [CGN18,
Proposition 3.2 and Cor.3.4].

Lemma 5.4.7. The function Θ(x, ξ) = e2πix·ξ belongs to M1,∞(R2d) ∩W 1,∞(R2d).
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5. Matrix-Wigner Distributions and Operators

Proposition 5.4.8. Let A = AM ∈ GL(2d,R) be a Cohen-type matrix with
M ∈ GL(d,R). We have

θM ∈M1,∞(R2d) ∩W 1,∞(R2d).

Proof. Recall that ΘM(u, v) = e−2πiu·Mv = TM̃Θ(u, v), where Θ(u, v) = e2πu·v and
M̃ = (−I) ⊕M . Note that M̃ is invertible since M ∈ GL(d,R) by assumption.
Therefore, according to the dilation properties in [CN08a, Proposition 3.1 and
Cor. 3.2], the results in [CGN18, Proposition 3.2] and Lemma 5.4.7 above, we
have ΘM ∈ M1,∞(R2d) ∩W 1,∞(R2d). Since ΘM = FθM and W 1,∞ = FM1,∞, we
conclude that θM ∈M1,∞(R2d) ∩W 1,∞(R2d).

In the case of τ -Wigner distributions, that is M = (τ − 1/2)I with τ ∈
[0, 1] \ {1/2}, we recover a known result [BDDO10, Proposition 5.6]:

θτ (x, ξ) = 2d|2τ − 1|−de2πi 2
2τ−1

x·ξ.

Notice that one cannot say much without assuming the invertibility of M . We
do not explore this situation, apart from mentioning that for M = 0 most of
these results do not hold: for instance, since θ0 = δ, it is easy to verify that
θ0 ∈M1,∞(R2d) \W 1,∞(R2d), cf. [CGN17b].

To conclude this section we prove that, in according with heuristic expectations,
the time-frequency regularity of a Wigner distribution survives linear perturbations.
Similar results have been proved for the Born-Jordan distribution in [CGN18,
Theorem 4.1] and its n-th order generalization in [CDGN18], although with a
significant difference: no directional smoothing effects occur in our scenario, as
already remarked above.

Theorem 5.4.9. Let A = AM ∈ GL(2d,R) be a matrix of Cohen’s type with
M ∈ GL(d,R) and f ∈ S ′

(
Rd
)

be a signal. Then, for any 1 ≤ p, q ≤ ∞,

Wf ∈Mp,q
(
R2d
)
⇐⇒ WMf ∈Mp,q

(
R2d
)
.

Proof. Assume first Wf ∈ Mp,q
(
R2d
)
, for some 1 ≤ p, q ≤ ∞. Taking the

symplectic Fourier transform, the claim is equivalent to showing that

θM · Amb(f) ∈ W p,q(R2d).

Since Amb(f) ∈ W p,q(R2d) because of the assumption on Wf , the desired result
follows from Proposition 5.4.8 and the boundedness of Fourier multipliers with
symbols in W 1,∞ on Mp,q (cf. [BGOR07, Lemma 8]), or equivalently W 1,∞(R2d) ·
W p,q(R2d) ⊂ W p,q(R2d) [Fei83, Theorem 1].
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5.5. Boundedness results for matrix-Wigner distributions

Conversely, assume WMf ∈ Mp,q
(
R2d
)
, for some 1 ≤ p, q ≤ ∞. Taking the

symplectic Fourier transform yields

θM · Amb(f) = FσWMf ∈ W p,q(R2d).

In view of (5.8) and Proposition 5.4.8 we have θ−1
M ∈ W 1,∞(R2d), therefore

Amb(f) = θ−1
M · FσWMf ∈ W 1,∞(R2d) ·W p,q(R2d) ⊂ W p,q(R2d).

5.5 Boundedness results for matrix-Wigner

distributions

5.5.1 Boundedness on Lebesgue spaces

We characterize the boundedness of a matrix-Wigner distribution BA(f, g) on
Lebesgue spaces using that this is a completely established issue for the STFT, cf.
[BDDO09].

Proposition 5.5.1 ([CT20, Proposition 3.9]). Assume that A ∈ GL(2d,R) is
right-regular. For any 1 ≤ p ≤ ∞ and qge2 such that q′ ≤ p ≤ q, f ∈ Lp(Rd) and
g ∈ Lp′(Rd), we have

(i) BA(f, g) ∈ Lq(R2d), with

‖BA(f, g)‖Lq ≤
‖f‖Lp‖g‖Lp′

|detA|
1
q |detA12|

1
p
− 1
q |detA22|

1
p′−

1
q

. (5.17)

(ii) If 1 < p <∞ then BA(f, g) ∈ C0(R2d). In particular, BA(f, g) ∈ L∞(R2d).

(iii) If 1 ≤ p, q ≤ ∞ such that p < q′ or p > q, the map BA(f, g) : Lp(Rd) ×
Lp
′
(Rd)→ Lq(R2d) is not continuous.

Proof. (i) Set W = (A11 − A12A
−1
22 A21) ⊕ A#

12 and note that W ∈ GL(2d,R),
since

detW = det
(
A11 − A12A

−1
22 A21

)
· 1

detA12

=
detA

detA12 detA22

6= 0.
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5. Matrix-Wigner Distributions and Operators

We use Theorem 5.3.3 and the estimate [BDDO09, Proposition 3.1] for the
Lq-norm of the STFT, that is

‖BA(f, g)‖Lq = |detA12|−1‖TWVg̃f‖Lq
= |detA12|−1|detW |−1/q‖Vg̃f‖Lq
≤ |detA12|−1|detW |−1/q‖f‖Lp‖g̃‖Lp′

= |detA12|−1|detW |−1/q‖f‖Lp

(
|detA12|1/p

′

|detA22|1/p
′ ‖g‖Lp′

)

=
‖f‖Lp‖g‖Lp′

|detW |1/q|detA12|1/p|detA22|1/p
′

≤ ‖f‖Lp‖g‖Lp′

|detA|1/q|detA12|
1
p
− 1
q |detA22|

1
p′−

1
q

.

(ii) Arguing by density, there exist sequences {fn}, {gn} ∈ S
(
Rd
)

such that

fn → f in Lp and gn → g in Lp
′
. Therefore BA(fn, gn) ∈ S

(
R2d
)
⊂ C0

(
R2d
)

and we have

‖BA(fn, gn)− BA(f, g)‖∞ = ‖BA(fn, gn)− BA(fn, g) + BA(fn, g)− BA(f, g)‖∞

≤ ‖BA(f, gn − g)‖∞ + ‖BA(f − fn, g)‖∞

≤ ‖f‖Lp‖gn − g‖Lp
′ + ‖f − fn‖Lp‖g‖Lp′

|detA|
1
q |detA12|

1
p
− 1
q |detA22|

1
p′−

1
q

.

Since the sequence {‖fn‖Lp} is bounded, we conclude

lim
n→∞
‖BA(fn, gn)− BA(f, g)‖∞ = 0.

This implies BA(f, g) ∈ C0

(
R2d
)
, as desired.

(iii) This is a direct application of [BDDO09, Proposition 3.2].

We can specialize the previous result to distributions of Cohen type as follows.

Theorem 5.5.2. [CT20, Theorem 4.14] Let A = AT ∈ GL(2d,R) be a right-
regular Cohen-type matrix. For any 1 < p < ∞ and q ≥ 2 such that q′ ≤ p ≤ q,
f ∈ Lp

(
Rd
)

and g ∈ Lp′
(
Rd
)
, the following facts hold.
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5.5. Boundedness results for matrix-Wigner distributions

(i) BA(f, g) ∈ Lq
(
R2d
)
, with

‖WT (f, g)‖Lq ≤
‖f‖Lp‖g‖Lp′

|det(T )|
1
p
− 1
q |det(I − T )|

1
p′−

1
q

.

(ii) WT (f, g) ∈ C0

(
R2d
)
.

5.5.2 Boundedness on modulation and amalgam spaces

We provide here some results on the continuity of the distributions WT on modula-
tion and Wiener amalgam spaces. We would like to point out that results of this
type were already proved for τ -Wigner distributions in [CDT19] and [CNT19b]. In
fact, we prove generalized versions of [CDT19, Lemma 3.1 and Proposition 5.1].

Theorem 5.5.3. Let m ∈ Mv(R2d) and A = AT be a Cohen-type matrix. Set
vJ = TJv.

(i) Let the indices 1 ≤ pi, qi, p, q ≤ ∞, i = 1, 2, satisfy the conditions

pi, qi ≤ q, i = 1, 2, (5.18)

and
1

p1

+
1

p2

≥ 1

p
+

1

q
,

1

q1

+
1

q2

≥ 1

p
+

1

q
. (5.19)

If f ∈ Mp1,q1
m (Rd) and g ∈ Mp1,q2

1/m (Rd) then the T -Wigner distribution

WT (g, f) belongs to Mp,q
1⊗1/vJ

(R2d), with

‖WT (g, f)‖Mp,q
1⊗1/vJ

.T ‖f‖Mp1,q1
m
‖g‖Mp2,q2

1/m
. (5.20)

(ii) Let 1 ≤ p1, p2 ≤ ∞ and assume that AT is right-regular. If f ∈ Mp1,p2
m (Rd)

and g ∈ M
p′1,p

′
2

1/m (Rd) then the T -Wigner distribution WT (g, f) belongs to

W 1,∞
(1/vJ )⊗1(R2d), with

‖WT (g, f)‖W 1,∞
(1/vJ )⊗1

.T α(p1,p2)(T )‖f‖Mp1,p2
m
‖g‖

M
p′1,p
′
2

1/m

,

where we set

α(p1,p2)(T ) := (detT )−(1/p′1+1/p2)(det(I − T ))−(1/p1+1/p′2). (5.21)

(iii) If AT is right-regular, f ∈ M2
m(Rd) and g ∈ M2

1/m(Rd), then WT (g, f) ∈
W 2,2

(1/vJ )⊗1(R2d), with

‖WT (g, f)‖W 2,2
(1/vJ )⊗1

.T ‖f‖M2
m
‖g‖M2

1/m
.
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Proof. We start with the proof of (i) in the case where p ≤ q < ∞. We fix φ ∈
S(Rd)\{0} and compute the STFT of WT (g, f) with respect to the window function
ΦT = WTφ by means of the magic formula (5.16). Therefore, the substitution
η = z + (I + PT )Jζ yields

‖WT (g, f)‖Mp,q
1⊗1/vJ

=

(∫
R2d

(∫
R2d

|Vφg(z + PTJζ)|p|Vφf(z + (I + PT )Jζ)|pdz
) q

p 1

vq(Jζ)
dζ

) 1
q

=

(∫
R2d

(∫
R2d

|Vφg(η − Jζ)|p|Vφ2f(η)|p 1

vp(Jζ)
dη

) q
p

dζ

) 1
q

.

Since m is a v-moderate weight and v is even, there exists C > 0, independent of
T , such that

1

v(Jζ)
≤ C

m(η)

m(η − Jζ)
.

Therefore,

‖WT (g, f)‖Mp,q
1⊗1/vJ

≤ C

(∫
R2d

(∫
R2d

|Vφg(η − Jζ)|p|Vφf(η)|p mp(η)

mp(η − Jζ)
dη

) q
p

dζ

) 1
q

= C

(∫
R2d

(
(|(Vφg)∨|pm−p) ∗ (|Vφf |pmp)(Jζ)

) q
p

dζ

) 1
q

= C‖(|(Vφg)∨|pm−p) ∗ (|Vφ2f |pmp)‖1/p

Lq/p
.

The rest of the proof goes exactly as in [CN18, Theorem 3.1] using the convolution
inequalities in Proposition 2.3.3.

Let us consider the case p = q =∞. A similar computation yields

‖WT (g, f)‖M∞
1⊗1/vJ

.T ‖f‖M∞m ‖g‖M∞1/m ,

and the claim follows by the inclusion properties of modulation spaces.

Finally, assume p > q. Again by the inclusion properties of modulation spaces
we have

‖WT (g, f)‖Mp,q
1⊗1/vJ

≤ ‖WT (g, f)‖Mq,q
1⊗1/vJ

≤ C‖f‖Mp1,q1
m
‖g‖Mp2,q2

1/m
.
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The proof of (ii) goes along the same lines. In particular we have∫
R2d

|VΦWT (g, f)|(z, ζ)
1

v(Jζ)
dζ

=

∫
R2d

|Vφg(z + PTJζ)||Vφf(z + (I + PT )Jζ)| 1

v(Jζ)
dζ

= C−1
T

∫
R2d

|Vφg(z + PT (I + PT )−1η)||Vφf(z + η)| 1

v((I + PT )−1η)
dη,

where we set CT = (detT )(det(I − T )). Since m is a v-moderate weight and v is
even, there exists C > 0, independent of T , such that

1

v((I + PT )−1η)
≤ C

m(z + η)

m(z + PT (I + PT )−1η)
.

Consequently,

‖WT (g, f)‖W 1,∞
(1/vJ )⊗1

≤ CC−1
T sup

z∈R2d

∫
R2d

|Vφg(z + PT (I + PT )−1η)||Vφf(z + η)| m(z + η)

m(z + PT (I + PT )−1η)
dη

≤ CC−1
T ‖Vφfm‖Lp1,p2‖TPT (I+PT )−1Vφgm

−1‖
Lp
′
1,p
′
2

≤ C(detT )−1(det(I − T ))−1

(
det(I − T )

detT

)1/p2−1/p1

‖f‖Mp1,p2
m
‖g‖

M
p′1,p
′
2

1/m

,

and the claim follows.

The proof of (iii) is a slight variation of the previous one.

In the case of polynomial weights we can similarly extend a characterization
for the Wigner distribution proved in [CN18, Theorem 3.1]. Note that this is not a
special case of the previous result, in general.

Theorem 5.5.4 ([CT20, Theorem 4.12].). Let A = AT ∈ GL(2d,R) be a Cohen-
type matrix. Let s ∈ R and 1 ≤ pi, qi, p, q ≤ ∞, i = 1, 2, be such that conditions
(5.18) and (5.19) are satisfied.

(i) If f1 ∈ Mp1,q1
v|s|

(Rd) and f2 ∈ Mp2,q2
vs (Rd), then WT (f1, f2) ∈ Mp,q

0,s (R2d), and

the following estimate holds:

‖WT (f1, f2)‖Mp,q
0,s
.T ‖f1‖Mp1,q1

v|s|
‖f2‖Mp2,q2

vs
.
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(ii) Assume further that both T and I − T are invertible (equivalently: AT is
right-regular, or PT is invertible, cf. (5.14)), and define BT := (I+PT )−1 and
UT := (I + P−1

T )−1. Set vBTs = TBT vs, v
UT
s = TUT vs. If f1 ∈ Mp1,q1

v|s|
(Rd) and

f2 ∈Mp2,q2

v
UT
s

(Rd), then WT (f1, f2) ∈ W p,q

1⊗vBTs
(R2d), and the following estimate

holds:

‖WT (f1, f2)‖W p,q

1⊗v
BT
s

.T (CT )1/q−1/p‖f1‖Mp1,q1
v|s|
‖f2‖Mp2,q2

v
UT
s

,

where CT = |detT ||det(I − T )| > 0.

Proof. Arguing as in the proof of Theorem 5.5.3 we get the estimate

‖WT (f1, f2)‖Mp,q
0,s
�
∥∥|Vgf2|p ∗ |(Vgf1)∗|p

∥∥1/p

L
q/p
vps

.

From now on, the proof proceeds exactly as in [CN18, Theorem 3.1]. Similar
arguments also apply in the case where p =∞ or q =∞.

For what concerns the boundedness on Wiener amalgam spaces, notice first
that if AT is right regular, (I + PT ) and also

(
I + P−1

T

)
are invertible, with

(I + P−1
T )−1 = (I + PT )−1PT = PT (1 + PT )−1.

Arguing as before, one similarly gets

‖WT (f1, f2)‖W p,q

1⊗v
BT
s

�T C1/q−1/p
T ‖|Vgf1|p ∗ |((Vgf2)∗(UT )·))∗|p‖1/p

L
q/p
vps

,

where CT = | detT || det(I−T )|. Again, the proof proceeds hereinafter as in [CN18,
Theorem 3.1].

Remark 5.5.5. 1. We remark that the given estimates are not sharp, since
we employed window functions depending on T in order to perform the
computations and thus the hidden constants in the symbol .T may depend
on T . However, the comments of [CN18, Rem. 3.2] are still valid here. In
particular, the result holds for more general weight functions: for instance,
sub-exponential weights or polynomial weights satisfying formula (4.10) in
[Tof04b] are suitable choices. Notice that the proof of the theorem in fact
reduces to the study of continuity estimates for convolutions on weighted
Lebesgue mixed-norm spaces.

2. The previous results can be easily specialized to τ -Wigner distributions. For
instance, we recover [CNT19b, Lemma 4.2 (ii)] by noticing that (I +PT )−1 =
Bτ and (I + P−1

T )−1 = Uτ for T = τI, where the matrices Bτ and Uτ are
defined in [CNT19b, (5) and (26)].
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We will also need the following boundedness result involving more general
weights; we omit the proof since it is just a slight variation of the previous ones.
The details in the case of τ -Wigner distributions may be found in [CNT19b, Lemma
4.2].

Proposition 5.5.6. Let A = AT ∈ GL(2d,R) be a Cohen-type matrix and m ∈
Mv(R2d).

1. Let 1 ≤ p ≤ ∞ and set v−J = TJ−1. If f1 ∈Mp
v (Rd) and f2 ∈M1

v (Rd) then
WT (f1, f2) ∈M1,p

1⊗v−J (R2d), with

‖WT (f1, f2)‖M1,p
1⊗v−J

.T ‖f1‖Mp
v
‖f2‖M1

v
.

2. Let 1 ≤ pi, qi, p, q ≤ ∞, i = 1, 2, be such that conditions (5.18) and (5.19) are
satisfied. Assume further that AT is right-regular and define BT := (I+PT )−1

and UT := (I + P−1
T )−1, where PT is defined in (5.14). Set mBT = TBTm,

mUT = TUTm. If f1 ∈ Mp1,q1
v (Rd) and f2 ∈ Mp2,q2

mBT
(Rd) then WT (f1, f2) ∈

W p,q

1⊗mUT (R2d), with

‖WT (g, f)‖W p,q

1⊗mUT
.T (CT )1/q−1/p‖f1‖Mp1,q1

v
‖f2‖Mp2,q2

mBT
,

where CT = | detT || det(I − T )| > 0.

5.5.3 Sharp estimates for τ-Wigner distributions

We already pointed out that the results in Theorems 5.5.4 and 5.5.3 are not sharp
with respect to the “parameter” T . In the slightly more manageable case of
τ -Wigner distributions, namely for T = τI with τ ∈ [0, 1], sharp estimates were
obtained in the paper [CDT19].

First, for 1 ≤ p1, p2 ≤ ∞ let us define the function

α(p1,p2)(τ) :=
1

τ
d

(
1
p′1

+ 1
p2

)
(1− τ)

d

(
1
p1

+ 1
p′2

) , τ ∈ (0, 1). (5.22)

Note that the this function just coincides with α(p1,p2)(T ) defined in (5.21) in the
case where T = τI. The function α(p1,p2)(τ) is unbounded on (0, 1) at least on one
endpoint for any choice of p1, p2.

In order for the results of Theorem 5.5.3 to be made sharp, we provide two
preliminary results. Given a moderate weight m on R2d, we say that a measurable
function f on R2d

z × R2d
ζ belongs to the space L∞z (L1

ζ,m)(R4d
z,ζ) if

‖f‖L∞z (L1
ζ,m) = sup

z∈R2d

∫
R2d

|f(z, ζ)|m(ζ)dζ <∞. (5.23)
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The following convolution inequality holds.

Lemma 5.5.7 ([CDT19, Lemma 2.11]). If m ∈ Mv(R2d), f ∈ L1
1⊗v(R4d) and

g ∈ L∞z (L1
ζ,m)(R4d), then f ∗ g ∈ L∞z (L1

ζ,m)(R4d), with

‖f ∗ g‖L∞z (L1
ζ,m) ≤ ‖f‖L1

1⊗v
‖g‖L∞z (L1

ζ,m).

Proof. Using the definition of L∞z (L1
ζ,m)-norm in (5.23),

I := ‖f ∗ g‖L∞z (L1
ζ,m) = sup

z∈R2d

∫
R2d

|f ∗ g|(z, ζ)m(ζ)dζ

= sup
z∈R2d

∫
R2d

∣∣∣∣∫
R4d

f(y, η)g(z − y, ζ − η)dydη

∣∣∣∣m(ζ)dζ

≤ sup
z∈R2d

∫
R2d

∫
R2d

(∫
R2d

|f |(y, η)|g|(z − y, ζ − η)dη

)
m(ζ)dydζ

= sup
z∈R2d

∫
R2d

∫
R2d

(|f |(y, ·) ∗ |g|(z − y, ·))(ζ)m(ζ)dydζ.

By Young’s inequality (2.3),

I = sup
z∈R2d

∫
R2d

‖|f |(y, ·)‖L1
v
‖|g|(z − y, ·)‖L1

m
dy

≤
∫
R2d

‖|f |(y, ·)‖L1
v

sup
z∈Rd
‖|g|(z − y, ·)‖L1

m
dy

= ‖g‖L∞z (L1
ζ,m)‖f‖L1

1⊗v
,

as claimed.

The second result is an estimate for the τ -Wigner distribution with a Gaussian
window, uniform with respect to τ . This is an essential result for the purpose of
obtaining sharp estimates but we just sketch the main steps of the proof, which
ultimately amounts to a lengthy and painful computation.

Lemma 5.5.8 ([CDT19, Lemma 3.2]). Let τ ∈ [0, 1] and consider Φ(x, ξ) =
e−π(x2+ξ2), (x, ξ) ∈ R2d. Set Φτ = Wτ (φ, φ), where φ(t) = e−πt

2
, t ∈ Rd. Let v be

an admissible weight and set vJ = TJv. There exists a constant C > 0 such that

‖Φτ‖M1
1⊗vJ
� ‖VΦΦτ‖L1

1⊗vJ
≤ C, ∀τ ∈ [0, 1].
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5.5. Boundedness results for matrix-Wigner distributions

Sketch of the proof. Recall that a generalized Gaussian function is defined by

φa,b,c(x, ξ) = e−πax
2

e−πbξ
2

e2πicx·ξ, (x, ξ) ∈ R2d,

for arbitrary positive parameters a, b, c > 0. It is proved in [CN18, Proposition 2.2]
that the STFT of such a function with window Φ(x, ξ) = e−π(x2+ξ2) is given by

VΦφa,b,c(z, ζ) = C(a, b, c)

× exp

(
−π [a(b+ 1) + c2]z2

1 + [(a+ 1)b+ c2]z2
2 + (b+ 1)ζ2

1 + (a+ 1)ζ2
2 − 2c(z1 · ζ2 + z2 · ζ1)

(a+ 1)(b+ 1) + c2

)
× exp

(
− 2πi

a+ 1

(
z1 · ζ1 + (cz1 − (a+ 1)ζ2)

cζ1 + (a+ 1)z2

(a+ 1)(b+ 1) + c2

))
,

for any z = (z1, z2), ζ = (ζ1, ζ2) ∈ R2d, with C(a, b, c) = [(a+ 1)(b+ 1) + c2]−d/2. It
is easy to see from (5.11) with M = (τ − 1/2)I and λ = 1 that

Wτφ(x, ξ) = C(τ)e−πa(τ)x2e−πb(τ)ξ2e2πic(τ)x·ξ,

where

a(τ) = b(τ) = C(τ)2/d =
1

2τ 2 − 2τ + 1
, c(τ) =

2τ − 1

2τ 2 − 2τ + 1
.

By combining the previous results we thus have

|VΦΦτ |(z, ζ) =
1

(2τ 2 − 2τ + 5)d/2

× exp

(
−π3(z2

1 + z2
2) + (2τ 2 − 2τ + 2)(ζ2

1 + ζ2
2 ) + (2− 4τ)(z1 · ζ2 + z2 · ζ1)

2τ 2 − 2τ + 5

)
.

We now recall from Proposition 2.2.2 that a submultiplicative weight has at most
exponential growth2, namely v(z) . ea|z| for some a ≥ 0. Note that for τ ∈ [0, 1]
the coefficient in front of the exponential is uniformly bounded, hence

‖VΦΦτ‖L1
1⊗vJ
≤ C

∫
R2d

e
−π 3(z21+z

2
2)

2τ2−2τ+5 I1dz1dz2,

where

I1 :=

∫
R2d

e
−π (2τ2−2τ+2)(ζ21+ζ22)+(2−4τ)(z1·ζ2+z2·ζ1)

2τ2−2τ+5 ea|Jζ|dζ1dζ2.

2In fact, admissible weights used in this dissertation grow at most polynomially, but it is
better to use a rougher exponential estimate for the purposes of the proof.

135



5. Matrix-Wigner Distributions and Operators

The integral I1 can be estimated as follows:

I1 ≤
(∫

Rd
e
−π (2τ2−2τ+2)ζ21+(2−4τ)z2·ζ1

2τ2−2τ+5 ea|ζ1|dζ1

)(∫
Rd
e
−π (2τ2−2τ+2)ζ22+(2−4τ)z1·ζ2

2τ2−2τ+5 ea|ζ2|dζ2

)
.

We compute the integral with respect to the variable ζ1 (the other one is analogous):∫
Rd
e
−π (2τ2−2τ+2)ζ21+(2−4τ)z2·ζ1

2τ2−2τ+5 ea|ζ1|dζ1 = e
π

(1−2τ)2z22
(2τ2−2τ+2)(2τ2−2τ+5) I2,

where we set

I2 =

∫
Rd
e
−π ((2τ2−2τ+2)ζ1+(1−2τ)z2)

2

(2τ2−2τ+5)(2τ2−2τ+2) ea|ζ1|dζ1.

After the substitution (2τ 2 − 2τ + 2)ζ1 + (1− 2τ)z2 = η1 we have

I2 =
1

(2τ 2 − 2τ + 2)d

∫
Rd
e
−π η21

(2τ2−2τ+5)(2τ2−2τ+2) e
a

2τ2−2τ+2
|η1−(1−2τ)z2|dη1

≤ Cd
1e

a|1−2τ |
2τ2−2τ+2

|z2|
∫
Rd
e−πC2η21eaC1|η1|dη1,

where

C1 = max
τ∈[0,1]

1

(2τ 2 − 2τ + 2)
=

2

3
, C2 = min

τ∈[0,1]

1

(2τ 2 − 2τ + 5)(2τ 2 − 2τ + 2)
=

1

10
.

Using lim|η1|→∞ e
−πC1

2
η21eaC2|η1| = 0 we conclude that

I2 ≤ Ce
a|1−2τ |

2τ2−2τ+2
|z2|,

hence

I1 ≤ Ce
π

(1−2τ)2z22
(2τ2−2τ+2)(2τ2−2τ+5)

+
a|1−2τ |

2τ2−2τ+2
|z2|e

π
(1−2τ)2z21

(2τ2−2τ+2)(2τ2−2τ+5)
+

a|1−2τ |
2τ2−2τ+2

|z1|.

Finally,

‖VΦΦτ‖L1
1⊗vJ
≤ C ′

∫
Rd
e
−π

3z21
2τ2−2τ+5 e

π
(1−2τ)2z21

(2τ2−2τ+2)(2τ2−2τ+5)
+

a|1−2τ |
2τ2−2τ+2

|z1|
dz1

×
∫
Rd
e
−π

3z22
2τ2−2τ+5 e

π
(1−2τ)2z22

(2τ2−2τ+2)(2τ2−2τ+5)
+

a|1−2τ |
2τ2−2τ+2

|z2|
dz2.

The latter integrals can be uniformly estimated arguing as before for I2, in particular

‖VΦΦτ‖L1
1⊗vJ
≤ C ′

(∫
Rd
e−πz

2/2+a|z|/2dz

)2

<∞,

where the constant C ′ > 0 does not depend on τ .
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5.5. Boundedness results for matrix-Wigner distributions

We are then ready to prove sharp version of Theorem 5.5.3 for τ -Wigner
distributions.

Theorem 5.5.9 ([CDT19, Proposition 3.1-3.2-5.1]). Under the assumptions of
Proposition 5.5.3 with T = τI, there exist constants C,C ′, C ′′ > 0 independent of
τ such that

‖Wτ (g, f)‖Mp,q
1⊗1/vJ

. C‖f‖Mp1,q1
m
‖g‖Mp2,q2

1/m
, τ ∈ [0, 1].

‖Wτ (g, f)‖W (FL1
1/vJ

,L∞) ≤ C ′α(p1,p2)(τ)‖f‖Mp1,p2
m
‖g‖

M
p′1,p
′
2

1/m

, τ ∈ (0, 1),

‖Wτ (g, f)‖W 2,2
(1/vJ )⊗1

. C ′′‖f‖M2
m
‖g‖M2

1/m
, τ ∈ (0, 1). (5.24)

Proof. Note that the estimate (5.20) in the case where τ = 0 or τ = 1 is already
sharp; for instance, using the magic formula (5.16) in the case T = 0 we have

‖W0(g, f)‖Mp,q
1⊗1/vJ

=

(∫
Rd

(∫
Rd
|Vφg(z1, z2 + ζ1)|p|Vφf(z1 + ζ2, z2)|pdz1dz2

)q/p
1

vq(ζ2,−ζ1)
dζ1dζ2

)1/q

=

(∫
Rd

(∫
Rd
|Vφg(z1 − ζ2, z2 + ζ1)|p|Vφf(z1, z2)|p 1

vp(ζ2,−ζ1)
dz1dz2

)q/p
dζ1dζ2

)1/q

≤ C

(∫
Rd

(∫
Rd
|Vφg(z − Jζ)|p|Vφf(z)|p mp(z)

mp(z − Jζ)
dz

)q/p
dζ

)1/q

= C‖(|(Vφg)∨|pm−p)) ∗ (|Vφf |pmp)‖Lq/p ,

and similarly for τ = 1.

Assume then τ ∈ (0, 1). We use the results of Theorem 5.5.3 with T = τI, the
change-of-window lemma for the STFT in (3.3), Lemma 5.5.8 and Moyal’s formula
(3.6). Therefore, there exists a positive constant C independent of τ such that

‖Wτ (g, f)‖Mp,q
1⊗1/vJ

≤ 1

|〈Φτ ,Φτ 〉|
‖|VΦτWτ (g, f)| ∗ |VΦΦτ |‖Lp,q

1⊗1/vJ

≤ 1

‖φ‖2
L2‖φ‖2

L2

‖Wτ (g, f)‖Mp,q
1⊗1/vJ

‖Φτ‖M1
1⊗vJ

≤ C‖f‖Mp1,q1
m
‖g‖Mp2,q2

1/m
.
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5. Matrix-Wigner Distributions and Operators

In a similar fashion, also by Lemma 5.5.7,

‖VΦWτ (g, f)‖L∞z (L1
ζ,1/vJ

) ≤
1

|〈Φτ ,Φτ 〉|
‖|VΦτWτ (g, f)| ∗ |VΦΦτ |‖L∞z (L1

ζ,1/vJ
)

≤ 1

‖φ‖2
L2‖φ‖2

L2

‖VΦτWτ (g, f)‖L∞z (L1
ζ,1/vJ

)‖VΦΦτ‖L1
1⊗vJ

≤ Cα(p1,p2)(τ)‖f‖Mp1,p2
m
‖g‖

M
p′1,p
′
2

1/m

.

The proof of (5.24) is similar.

5.6 Pseudodifferential operators

In this section we discuss the formalism of pseudodifferential operators that is
associated with every time-frequency representation BA.

Imitating the time-frequency analysis of Weyl operators, we introduce the
following general pseudodifferential calculus.

Theorem 5.6.1 ([Bay10, Proposition 2.2.1]). Let A ∈ GL(2d,R) and σ ∈M∞(R2d
)
.

The mapping opA(σ) = σA defined by duality as〈
σAf, g

〉
= 〈σ,BA(g, f)〉, f, g ∈M1(Rd)

is a well-defined linear continuous map from M1(Rd) to M∞(Rd) (and also from
S(Rd)→ S ′(Rd) if σ ∈ S ′(R2d).

The proof easily follows from the continuity of the distribution BA : M1(Rd)×
M1(Rd)→M1(R2d), from Proposition 5.3.2.

Definition 5.6.2. Let A ∈ GL(2d,R) and σ ∈ M∞(R2d
)
. The mapping defined

in Theorem 5.6.1, namely

σA : M1(Rd) 3 f 7→ σAf ∈M∞(Rd) :
〈
σAf, g

〉
= 〈σ,BA(g, f)〉, ∀g ∈M1(Rd),

is called quantization rule with symbol σ associated with the matrix-Wigner dis-
tribution BA, or pseudodifferential operator with symbol σ associated with the
matrix-Wigner distribution BA.

Sometimes we use the equivalent notation opA(σ) for σA. Moreover, if A = AT
is of Cohen type we write σT in place of σAT with a slight abuse of notation. In
particular, we retrieve τ -pseudodifferential operators opτ (σ) for T = τI, τ ∈ [0, 1];
we use the traditional notation σw for Weyl pseudodifferential operators (τ = 1/2).
Using Feichtinger’s kernel theorem (Theorem 3.2.15), we now provide a number of
equivalent representations for σAf .
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5.6. Pseudodifferential operators

Theorem 5.6.3. Let A ∈ GL(2d,R). Let T : M1(Rd)→M∞(Rd) be a continuous
linear operator and A ∈ GL(2d,R). There exist distributions k, σ, F ∈M∞(R2d

)
such that T admits the following representations:

(i) as an integral operator with kernel k: 〈Tf, g〉 =
〈
k, g ⊗ f

〉
for any f, g ∈

M1(Rd);

(ii) as pseudodifferential operator with symbol σ associated with BA: T = σA;

(iii) as a superposition (in weak sense) of time-frequency shifts (also called spread-
ing representation):

T =

∫∫
R2d

F (x, ξ)TxMξdxdξ.

The relations among k, σ, F and A are the following:

σ = |detA|F2TAk, F = F2TAST k.

Proof. The first representation is exactly the claim of the kernel theorem. Now set
σ = |detA|F2TAk ∈ M∞(R2d

)
: this is a well-defined distribution, since F2 and

TA are isomorphisms on M∞(R2d
)
. In particular, for any f, g ∈M1(Rd) we have

〈Tf, g〉 =
〈
k, g ⊗ f

〉
=
〈
|detA|−1T−1

A F
−1
2 σ, g ⊗ f

〉
=
〈
σ,F2TA

(
g ⊗ f

)〉
= 〈σ,BA(g, f)〉
=
〈
σAf, g

〉
.

This proves that Tf = σAf in M∞(Rd). The relation between the kernel repre-
sentation in item 1 and the spreading representation in item 3 is well-known, e.g.

[Grö01]. It can also be deduced from item 2 from the special matrix AST =

[
0 I
−I I

]
and

〈Tf, g〉 = 〈F, Vfg〉 = 〈F,BAST (g, f)〉, f, g ∈M1(Rd).

Remark 5.6.4. Since k = |detA|−1TA−1F−1
2 σ = |detA|−1TI2A−1F−1

1 σ̂, one can
formally obtain another representation of the third type with a special spreading
function:

σAf(x) =
1

|detA|

∫
R2d

σ̂(ξ,−(A−1)21x− (A−1)22y)e2πiξ·[(A−1)11x+(A−1)22y]f(y)dξdy.
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Notice that the inverse of a Cohen-type matrix A = AT has the form

A−1
T =

[
−(I − T ) T

I −I

]
,

thus the previous formula becomes

σAf(x) =

∫
R2d

σ̂(ξ, u)e−2πi(I−T )u·ξT−uMξf(x)dξdu. (5.25)

This should be compared with [Grö01, (14.14)] for the Weyl quantization and
[CDT19, (20)] for τ -quantization.

We now study the relations among pseudodifferential operators associated with
MWDs and the corresponding symbols.

Proposition 5.6.5. Let A,B ∈ GL(2d,R) and σ, ρ ∈M∞(R2d
)
. Then,

σA = ρB ⇐⇒ σ =
|detA|
|detB|

F2TB−1AF−1
2 ρ

Proof. Assume that T = σA = ρB. According to Theorem 5.6.3, T has a distribu-
tional kernel k such that

σ = |detA|F2TAk, ρ = |detB|F2TBk.

Therefore,

σ = |detA|F2TAk

=
|detA|
|detB|

F2TAT
−1
B F

−1
2 ρ

=
|detA|
|detB|

F2TB−1AF−1
2 ρ.

On the other side, if σ = |detA||detB|−1F2TB−1AF−1
2 ρ, then for any f, g ∈M1(Rd)〈

σAf, g
〉

= 〈σ,F2TA(f ⊗ g)〉
=
〈
|detA||detB|−1F2TAT

−1
B F

−1
2 ρ,F2TA(f ⊗ g)

〉
= 〈ρ,F2TB(f ⊗ g)〉
=
〈
ρBf, g

〉
.
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In the case of Cohen-type matrices we have a more explicit relation that covers
the usual rule for τ -Shubin operators (cf. [Tof04a, Remark 1.5]). The proof is a
straightforward application of (5.12).

Proposition 5.6.6. Let A1 = AT1, A2 = AT2 be Cohen-type invertible matrices,
and σ, ρ ∈M∞(R2d

)
. Then,

σT11 = σT22 ⇐⇒ σ̂2(ξ, η) = e−2πiξ·(T2−T1)ησ̂1(ξ, η).

Moreover, if T2 − T1 ∈ GL(d,R) then

σT11 = σT22 ⇐⇒ σ2(x, ξ) = | det(T2 − T1)|−1e2πiξ·(T2−T1)−1xσ1(x, ξ).

It is also interesting to characterize the matrices yielding self-adjoint operators.

Proposition 5.6.7 ([Bay10, Proposition 2.2.3]). Let A ∈ GL(2d,R) and σ ∈
M∞(R2d

)
. Then (

σA
)∗

= ρB,

where

ρ = σ, B = ĨAI2 =

[
A21 −A22

A11 −A12

]
.

In particular, σA is self-adjoint if and only if σ = σ (real symbol) and B = A,
hence

A21 = A11, A12 = −A22.

Remark 5.6.8. The previous result shows that only matrices of the form

[
P Q
P −Q

]
,

with P,Q ∈ GL(d,R), give rise to pseudodifferential operators which are self-adjoint
for real symbols. This occurs only for Weyl calculus as far as the class of T -operators
is concerned.

5.7 Boundedness results for

matrix-pseudodifferential operators

5.7.1 Boundedness on Lebesgue spaces

The boundedness of a pseudodifferential operator σA associated with BA is inti-
mately related to the boundedness of the distribution BA on Lebesgue spaces, in
view of the duality in the definition of σA and Theorem 5.5.1.
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5. Matrix-Wigner Distributions and Operators

Theorem 5.7.1. Let A ∈ GL(2d,R) be right-regular and σ ∈ Lq
(
R2d
)
. The

quantization mapping

σ ∈ Lq(R2d) 7→ σA ∈ L
(
Lp(Rd)

)
is continuous if and only if q ≤ 2 and q ≤ p ≤ q′, with norm estimate

∥∥σA∥∥
Lp→Lp ≤

‖σ‖Lq
|detA|

1
q′ |detA12|

1
p
− 1
q′ |detA22|

1
p′−

1
q′
.

Proof. Assume f ∈ Lp(Rd) and g ∈ Lp′(Rd), with p 6= 1 nor p 6=∞. Therefore, by
(5.17) (switch q and q′) and Hölder inequality:∣∣〈σAf, g〉∣∣ = |〈σ,BA(g, f)〉|

≤ ‖σ‖Lq‖BA(g, f)‖Lq′

≤ ‖σ‖Lq
|detA|

1
q′ |detA12|

1
p
− 1
q′ |detA22|

1
p′−

1
q′
‖f‖Lp‖g‖Lp′ .

Remark 5.7.2. Note that the closed graph theorem implies the non-continuity of
the quantization map. This means that there exists a symbol σ ∈ Lq for which the
operator σA is not bounded on Lp(R2d), cf. [BDDO09, Proposition 3.4].

One can also study compactness and Schatten class properties for these opera-
tors. We confine ourselves to state a result for symbols in the modulation spaces
M1 and M2.

Theorem 5.7.3 ([BCGT20, Theorem 16] and [Bay10, Theorem 2.2.9]). Let A ∈
GL(2d,R).

(i) If σ ∈M1
(
R2d
)

then the operator σA ∈ L
(
L2(Rd)

)
belongs to the trace class

S1
(
L2(Rd)

)
, with ∥∥σA∥∥

S1 . |detA|1/2‖σ‖M1 .

(ii) If σ ∈ L2
(
R2d
)

then σA ∈ L
(
L2(Rd)

)
is a Hilbert-Schmidt operator in

S2
(
L2(Rd)

)
, with∥∥σA∥∥

S2 . |detA|1/2‖σ‖L2 � |detA|1/2‖σ‖M2 .
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Proof. We give a sketch of the proof of the first item, since the technique used
is of independent interest. Proposition 5.7.1 immediately yields σA ∈ L

(
L2(Rd)

)
,

since M1
(
R2d
)
⊆ L1

(
R2d
)
∩ L2

(
R2d
)
. In line with the paradigm of time-frequency

analysis of operators (cf. [Grö01, Section 14.5] and [Grö96, Theorem 3]), let us
decompose the action of σA into elementary pseudodifferential operators with
time-frequency shifts of a suitable function as symbols. The inversion formula for
the STFT allows to write

σ =

∫
R2d

∫
R2d

VΦσ(z, ζ)MζTzΦdzdζ,

for any window function Φ ∈ M1
(
R2d
)

with ‖Φ‖L2 = 1. Therefore, for any
f, g ∈M1(Rd):

〈σAf, g〉 = 〈σ,BA(g, f)〉

=

∫
R2d

∫
R2d

VΦσ(z, ζ)〈MζTzΦ,BA(g, f)〉dzdζ

=

∫
R2d

∫
R2d

VΦσ(z, ζ)〈(MζTzΦ)Af, g〉dzdζ.

This shows that σA acts (in an operator-valued sense on L2) as a continuous
weighted superposition of elementary operators:

σA =

∫
R2d

∫
R2d

VΦσ(z, ζ)(MζTzΦ)Adzdζ. (5.26)

The action of the building blocks (MζTzΦ)A can be unwrapped by means of the
magic formula (5.3.7) provided one takes Φ = BAϕ for some ϕ ∈ M1(Rd) with

‖ϕ‖L2 = |detA|1/4 (see the orthogonality relations (5.7)):

〈(MζTzΦ)Af, g〉 = 〈MζTzΦ,BA(g, f)〉
= VBAϕBA(g, f)(z, ζ)

= e2πiz2·ζ2Vϕf(b, β)Vϕg(a, α),

where a, α, b, β are continuous functions of z and ζ. In particular, we have

(MζTzΦ)A : L2(Rd)→ L2(Rd) : f 7→ e2πiz2·ζ2〈f,MβTbϕ〉MαTa,

hence (MζTzΦ)A is a rank-one operator with trace class norm given by ‖(MζTzΦ)A‖S1 =

‖ϕ‖2
L2 = |detA|1/2, independent of z, ζ. To conclude, we reconstruct the operator

σA and compute its norm by means of the estimates for the pieces:

‖σA‖S1 ≤
∫
R2d

∫
R2d

|VΦσ(z, ζ)|‖(MζTzΦ)A‖S1dzdζ ≤ CA‖σ‖M1 .
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Remark 5.7.4. The superposition formula (5.26) should be compared with the
inversion formula (4.1), which in this case reads

σAf =

∫
R2d

Vgf(z)σA(π(z)g)dz.

5.7.2 Boundedness on modulation spaces

We now study the boundedness on modulation spaces of pseudodifferential operators
associated with Cohen-type representations.

Theorem 5.7.5 (Symbols in Mp,q). Let A = AT ∈ GL(2d,R) be a Cohen-type
matrix and consider indices 1 ≤ p, p1, p2, q, q1, q2 ≤ ∞, satisfying the following
relations:

p1, p
′
2, q1, q

′
2 ≤ q′,

1

p1

+
1

p′2
≥ 1

p′
+

1

q′
,

1

q1

+
1

q′2
≥ 1

p′
+

1

q′
. (5.27)

1. Let m ∈Mv(R2d) and set vJ = TJv. If σ ∈Mp,q
1⊗vJ (R2d) then the pseudodif-

ferential operator σT is bounded from Mp1,q1
m (Rd) to Mp2,q2

1/m (Rd), with∥∥σT∥∥
M
p1,q1
m →Mp2,q2

1/m

.T ‖σ‖Mp,q
1⊗vJ

.

2. Let s ∈ R. If σ ∈ Mp,q
0,s

(
R2d
)

then the pseudodifferential operator σT is
bounded from Mp1,q1

−s (Rd) to Mp2,q2
−|s| (Rd), with∥∥σT∥∥

M
p1,q1
−s →Mp2,q2

−|s|
.T ‖σ‖Mp,q

0,s
.

Proof. Under the given assumptions on the indices, Theorem 5.5.3 (i) implies that

WT (g, f) ∈ Mp′,q′

1⊗1/vJ
(Rd) for any f ∈ Mp1,q1

m (Rd) and g ∈ Mp′2,q
′
2

1/m (Rd). Therefore,
by the duality of modulation spaces we obtain∣∣〈σTf, g〉∣∣ = |〈σ,WT (g, f)〉|

≤ ‖σ‖Mp,q
1⊗vJ
‖WT (g, f)‖

Mp′,q′
1⊗1/vJ

.A ‖σ‖Mp,q
1⊗vJ
‖f‖Mp1,q1

m
‖g‖

M
p′2,q
′
2

1/m

.

The remaining claim follows by a similar argument using the results in Theorem
5.5.4 (i).

We are also able to consider symbols in Wiener amalgam spaces, as detailed
below.
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Theorem 5.7.6 (Symbols in W p,q). Let A = AT ∈ GL(2d,R) be a right-regular
Cohen-type matrix and m be a v-moderate weight on R2d; set vJ = TJv. Consider
indices 1 ≤ p, q, r1, r2 ≤ ∞, satisfying the following relations:

q ≤ p′, r1, r
′
1, r2, r

′
2 ≤ p. (5.28)

For any σ ∈ W p,q
vJ⊗1(R2d) the pseudodifferential operator σT is bounded on M r1,r2

m (Rd),
with

‖σT‖Mr1,r2
m →Mr1,r2

m
.T CTα(r1,r2)(T )‖σ‖W p,q

vJ⊗1
,

where CT = | detT || det(I − T )| and α(r1,r2)(T ) is defined in (5.21).

Proof. We divide the proof into three parts.

Step 1. Let σ ∈ W∞,1
vJ⊗1(R2d). For any 1 ≤ p1, p2 ≤ ∞, f ∈ Mp1,p2

m (Rd) and

g ∈Mp′1,p
′
2

1/m (Rd), by Theorem 5.5.3 (ii) and duality of amalgam spaces we have∣∣〈σAf, g〉∣∣ = |〈σ,WT (g, f)〉|
≤ ‖σ‖W∞,1vJ⊗1

‖WT (g, f)‖W 1,∞
1/vJ⊗1

.T α(p1,p2)(T )‖σ‖W∞,1vJ⊗1
‖f‖Mp1,p2‖g‖Mp′1,p

′
2
.

Step 2. Let σ ∈ W 2,2
vJ⊗1(R2d). If f, g ∈ M2

m(Rd), by Theorem 5.5.3 (iii) and
duality of amalgam spaces we get have, arguing as before,∥∥σA∥∥

M2
m→M2

m
.T ‖σ‖W 2,2

vJ⊗1
.

Step 3. We proceed now by complex interpolation of the continuous mapping
opT on modulation spaces; in particular, we are dealing with

opT : W∞,1
vJ⊗1(R2d)×Mp1,p2(Rd)→Mp1,p2(Rd),

opT : W 2,2
vJ⊗1 ×M2(Rd)→M2(Rd).

For θ ∈ [0, 1], we have[
W
(
FL∞vJ , L

1
)
,W
(
FL2

vJ
, L2
)]
θ

= W (FLpvJ , L
p′), 2 ≤ p ≤ ∞,[

Mp1,p2
m ,M2,2

m

]
θ

= M r1,r2
m ,

with
1

ri
=

1− θ
pi

+
θ

2
=

1− θ
pi

+
1

p
, i = 1, 2.
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From these estimates we immediately derive the condition r1, r
′
1, r2, r

′
2 ≤ p. The

inclusion relations enjoyed by amalgam spaces allow us to extend the result to
W p,q
vJ⊗1(R2d) for any q ≤ p′. The norm estimate is given by

‖σT‖L(W p,q
vJ⊗1×M

r1,r2
m ,M

r1,r2
m ) ≤ ‖σT‖1−θ

L(W∞,1vJ⊗1×M
p1,p2
m ,M

p1,p2
m )
‖σT‖θL(W 2,2

vJ⊗1×M2
m,M

2
m)

.T (α(p1,p2)(T ))1−θ

�T α(r1,r2)(T )Cθ
T

.T CTα(r1,r2)(T ).

This concludes the proof.

5.7.3 Sharp results for τ-pseudodifferential operators

The sharp results for τ -Wigner distributions obtained in [CDT19] and reported
in Section 5.5.3 have a counterpart for boundedness results of the corresponding
τ -operators. The proof follows the same pattern of those of Theorems 5.7.5 and
5.7.6, using the results of Theorem 5.5.9 instead of Theorem 5.5.3.

We highlight that the norm estimate in (5.29) below is slightly better than the
one originally proved in [CDT19, Theorem 4.3], where we used that CT = Cτ =
(τ(1− τ))d ≤ 1.

Theorem 5.7.7 ([CDT19, Theorem 4.3 and 5.1]). Let m be a v-moderate weight
on R2d and set vJ = TJv.

1. Consider indices 1 ≤ p, p1, p2, q, q1, q2 ≤ ∞, satisfying the conditions (5.27).
For any τ ∈ [0, 1], if σ ∈Mp,q

1⊗vJ (R2d) then the pseudodifferential operator στ

is bounded from Mp1,q1
m (Rd) to Mp2,q2

1/m (Rd) and there exists a constant C > 0
independent of τ such that

‖στ‖Mp1,q1
m →Mp2,q2

1/m
≤ C‖σ‖Mp,q

1⊗vJ
, ∀τ ∈ [0, 1].

2. Consider indices 1 ≤ p, q, r1, r2 ≤ ∞, satisfying the conditions (5.28). For
any τ ∈ (0, 1), if σ ∈ W p,q

vJ⊗1(R2d) then the pseudodifferential operator στ is
bounded on M r1,r2

m (Rd) and there exists a constant C > 0 independent of τ
such that

‖στ‖Mr1,r2
m →Mr1,r2

m
≤ C(τ(1− τ))dα(r1,r2)(τ)‖σ‖W p,q

vJ⊗1
∀τ ∈ (0, 1), (5.29)

where α(r1,r2)(τ) is defined in (5.22).
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We finally consider the endpoints τ = 0 and τ = 1, for which the boundedness
result of Theorem 5.7.7 (ii) does not hold in general. The following counterexample
is inspired by an argument of Boulkhemair [Bou95].

Proposition 5.7.8 ([CDT19, Proposition 4.4]). There exists a symbol σ ∈ W∞,1(R2d)
such that the corresponding Kohn-Nirenberg op0(σ) and anti-Kohn-Nirenberg op1(σ)
operators are not bounded on L2(Rd).

Proof. Consider the symbol

σ(x1, . . . , xd, ξ1, . . . , ξd) = x
−1/2
1 . . . x

−1/2
d 1(0,1](x1) . . . 1(0,1](xd)e

−πξ2 ,

with ξ2 = ξ2
1 + · · · + ξ2

d. An easy computation shows that σ ∈ L1(R2d) =
W (L1, L1)(R2d) ⊂ W∞,1(R2d). We prove that the Kohn-Nirenberg operator op0(a)
is unbounded on L2(Rd), in particular given the Gaussian function f(t) = eπt

2 ∈
L2(Rd) we have that op0(a)f /∈ L2(Rd). Indeed, by a tensor product argument, we
reduce to compute the following one-dimensional integral:∫

R
e2πix·ξx−1/21(0,1](x)e−πξ

2

dξ = (2x)−1/21(0,1](x)e−πx
2/2,

resulting in a function that does not belong to L2(R).

The proof of the unboundedness of the anti-Kohn-Nirenberg operator op1(σ) is
an immediate consequence of the fact that op1(σ)∗ = op0(σ).

5.8 Symbols in Sjöstrand’s classes

We already mentioned in Section 4.2 that an important space of symbols is the
(unweighted) Sjöstrand class. It has been introduced by Sjöstrand [Sjö94] to extend
the well-behaved Hörmander class S0

0,0 = C∞b (R2d) and later recognized to coincide
with the modulation space M∞,1(R2d). Accordingly, it consists of bounded symbols
with low regularity in general, namely temperate distributions σ ∈ S ′(R2d) such
that ∫

R2d

sup
z∈R2d

|〈σ, π(z, ζ)g〉|dζ <∞.

As a rule of thumb, notice that a symbol in M∞,1(R2d) locally (i.e. for fixed
z ∈ R2d) coincides with the Fourier transform of a function in L1. Nevertheless,
symbols in the Sjöstrand class lead to L2-bounded pseudodifferential operators.
Sjöstrand’s results have been put into the context of time-frequency analysis by
Gröchenig in [Grö06c] and were further generalized in [GR08; GS07]. In particular,
weighted Sjöstrand’s classes with weight functions of type 1 ⊗ v, where v is an
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admissible weight on R2d, have been taken into account. The key ingredient
is a characterizing property of Weyl operators with Sjöstrand symbols, namely
approximate diagonalization by Gabor wave packets; this means that the Gabor
matrix of σw defined in (4.2) shows some kind of off-diagonal decay. In more
evocative terms, we could say that Gabor wave packets are almost eigenvectors of
σw. More precisely, the claim is the following.

Theorem 5.8.1. Let v be an admissible weight on R2d and fix an atom g ∈
M1

v (Rd) \ {0} and a lattice Λ ⊂ R2d in a way that G(g,Λ) is a Gabor frame for
L2(Rd). The following properties are equivalent:

1. σ ∈M∞,1
1⊗v◦J−1(R2d).

2. σ ∈ S ′(R2d) and there exists a function H ∈ L1
v(R2d) such that

|〈σwπ(z)g, π(w)g〉| ≤ H(w − z), w, z ∈ R2d.

3. σ ∈ S ′(R2d) and there exists a sequence h ∈ `1
v(Λ) such that

|〈σwπ(µ)g, π(λ)g〉| ≤ h(λ− µ), λ, µ ∈ Λ.

The proof of this result heavily relies on a simple but crucial interplay between
the Gabor matrix of σw and the short-time Fourier transform of σ, which will be
discussed in complete generality below. We mention that in [Grö06c] Gröchenig
established a strong link with matrix algebra, heading towards a more conceptual
discussion of the almost diagonalization property; we give some hints on this
connection below. The proofs of Sjöstrand’s results provided by Gröchenig are to
certain extent more natural, in view of this fresh new formulation, Furthermore,
they extend the previous ones since weighted spaces are considered. We summarize
the main outcomes in the following claim.

Theorem 5.8.2 ([Grö06c]). Let m ∈Mv(R2d) and set v−J = TJ−1v.

1. (Boundedness) If σ ∈M∞,1
1⊗v−J then σw is bounded on Mp,q

m for any 1 ≤ p, q ≤
∞.

2. (Algebra property) M∞,1
1⊗v is a Banach ∗-algebra with respect to the Weyl

product # and the involution σ 7→ σ.

3. (Wiener property) If (and only if) v is an admissible weight then opw(M∞,1
1⊗v )

is inverse-closed in L(L2(Rd)): if σ ∈M∞,1
1⊗v (R2d) and σw is invertible on L2

then there exists ρ ∈M∞,1
1⊗v (R2d) such that (σw)−1 = ρw.
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4. (Spectral invariance on modulation spaces) Let v be an admissible weight.
If σ ∈M∞,1

1⊗v (R2d) and σw is invertible on L2(Rd) then σw is simultaneously
invertible on every modulation space Mp,q

m (Rd), for any 1 ≤ p, q ≤ ∞.

In this section we extend Theorem 5.8.2 to general T -pseudodifferential op-
erators, in the spirit of the paper [CNT19b] where τ -operators were considered.
Moreover, we explore the consequences of the approximate diagonalization in terms
of boundedness results for the corresponding operators.

Let us first provide some general conditions on the matrices for which the
associated pseudodifferential operators with symbols in M∞,1(R2d) are bounded
on modulation spaces.

Theorem 5.8.3 ([BCGT20, Theorem 20]). Let σ ∈M∞,1(R2d) and assume A ∈
GL(2d,R) is a left-regular matrix. The pseudodifferential operator σA is bounded
on all modulation spaces Mp,q(Rd), 1 ≤ p, q ≤ ∞, with

∥∥σA∥∥
Mp,q→Mp,q .A

1

|detA11|1/p
′|detA21|1/p

· 1

|det(A12)#|1/q′|det(A22)#|1/q
‖σ‖M∞,1 .

(5.30)

Proof. Let f, g ∈M1(Rd) and Φ ∈M1
(
R2d
)
\{0}. Then,

∣∣〈σAf, g〉∣∣ = |〈σ,BA(g, f)〉|
= |〈VΦσ, VΦBA(g, f)〉|
≤ ‖VΦσ‖L∞,1‖VΦBA(g, f)‖L1,∞ ,

where in the last line we used Hölder inequality for mixed-norm Lebesgue spaces.
Let us choose for instance ΦA = BAφ for a fixed non-zero φ ∈ M1(Rd). We fix
ζ ∈ R2d and introduce the affine transformations

Pζ(z1, z2) = P1z + P2ζ =

[
A11 0

0 (A12)#

][
z1

z2

]
+

[
0 −A12

(A11)# 0

][
ζ1

ζ2

]
,

Qζ(z1, z2) = Q1z +Q2ζ =

[
A21 0

0 −(A22)#

][
z1

z2

]
+

[
0 −A22

−(A21)# 0

][
ζ1

ζ2

]
,

in according with the magic formula (5.6), and using again Hölder’s inequality we
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get

‖VΦABA(g, f)‖L1,∞ = sup
(ζ1,ζ2)∈R2d

∫
R2d

|Vφg(Pζ(z1, z2))||Vφf(Qζ(z1, z2))|dz1dz2

≤ sup
(ζ1,ζ2)∈R2d

‖(Vφf) ◦Qζ‖Lp,qz ‖(Vφg) ◦ Pζ‖Lp′,q′z

=
‖Vφf‖Lp,q

| detA21|1/p| det(A22)#|1/q
‖Vφg‖Lp′,q′

| detA11|1/p′ | det(A12)#|1/q′

≤ C
‖f‖Mp,q

| detA21|1/p| det(A22)#|1/q
‖g‖Mp′,q′

| detA11|1/p′| det(A12)#|1/q′
,

where the constant C does not depend on f , g or A. On the other hand,

‖VΦAσ‖L∞,1 .A ‖σ‖M∞,1 . (5.31)

We conclude by duality and get the claimed result.

Remark 5.8.4. This result broadly generalizes [Grö01, Theorem 14.5.2] and
confirms that the Sjöstrand class is a well-suited symbol class leading to bounded
operators on modulation spaces. It is worthwhile to stress that the left-regularity
assumption for A covers any Cohen-type matrix A = AT .

Unfortunately, it is not easy to sharpen the estimate (5.30) neither in the
case of Cohen-type matrices, the main obstruction being the estimate in (5.31).
Nevertheless, a sharp result can be proved for τ -operators as detailed below.

Corollary 5.8.5. Let σ ∈ M∞,1(R2d) and τ ∈ [0, 1]. The pseudodifferential
operator στ is bounded on all modulation spaces Mp,q(Rd), 1 ≤ p, q ≤ ∞. In
particular, there exists C > 0 such that

‖στ‖Mp,q→Mp,q ≤ C‖σ‖M∞,1 , ∀τ ∈ [0, 1].

Proof. Let φ(t) = e−πt
2

be the Gaussian function on Rd and set Φτ = Wτφ. From
the proof of the previous result we have, for any f, g ∈M1(Rd),

|〈στf, g〉| ≤ ‖VΦτσ‖L∞,1‖VΦτWτ (g, f)‖L1,∞

≤ C ′‖VΦτσ‖L∞,1‖f‖Mp,q‖g‖Mp′,q′ ,

for some universal constant C ′ > 0. Consider now Φ(z) = e−πz
2
, z ∈ R2d; the

change-of-window formula (3.3) and Young’s inequality for mixed-norm spaces in
Proposition 2.3.3 yield

‖VΦτσ‖L∞,1 ≤ ‖|VΦσ| ∗ |VΦΦτ |∨‖L∞,1
≤ ‖VΦσ‖L∞,1‖VΦΦτ‖L1

≤ C ′′‖σ‖M∞,1 ,
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where the universal constant C ′′ > 0 in the last step comes from Lemma 5.5.8 with
v = 1. The claim follows with C = C ′C ′′.

We now prove a similar boundedness result on Wiener amalgam spaces for
T -operators with Sjöstrand symbol. We need first to derive a result similar to the
symplectic covariance property satisfied by the Weyl quantization - cf. [CNT19b,
Lemma 5.1] for the τ -Wigner case. This identity will provide a natural way to
transfer boundedness results from modulation to amalgam spaces.

Lemma 5.8.6. For any symbol σ ∈ M∞(R2d
)

and any Cohen-type matrix A =
AT ∈ GL(2d,R):

FσTF−1 = (σ ◦ J−1)I−T

Proof. We sketch a formal argument in the spirit of [Grö01, Lemma 14.3.2]. Recall
the spreading representation of σT from (5.25):

σTf(x) =

∫
R2d

σ̂(ξ, u)e−2πi(I−T )u·ξT−uMξf(x)dudξ.

Since FT−uMξF−1 = e2πiu·ξTξMu, we get

FσTF−1 =

∫
R2d

σ̂(ξ, u)e−πi(2T−I)u·ξTξMududξ = (σ ◦ J−1)I−T .

Remark 5.8.7. We stress that a comprehensive account of the symplectic covari-
ance for perturbed representations is out of the scope of this dissertation, since
it would require to investigate how the metaplectic group should be modified in
order to accommodate the perturbations. As an example of the non-triviality of this
issue, we highlight the contribution of de Gosson [Gos16, Chapter 13] in the case
of τ -operators.

Theorem 5.8.8. For any Cohen-type matrix A = AT ∈ GL(2d,R) and any symbol
σ ∈M∞,1(R2d

)
, the operator σT is bounded on W p,q(Rd), with

‖σT‖W p,q→W p,q .T ‖σ‖M∞,1 .

Proof. The proof follows the pattern of [CNT19b, Theorem 5.6]. Set σJ = σ ◦ J
and consider the following commutative diagram:

Mp,q(Rd)
(σJ )I−T //Mp,q(Rd)

F

��
W p,q(Rd) σT //

F−1

OO

W p,q(Rd)
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From the identity VG(σJ)(z, ζ) = VG◦J−1σ(Jz, Jζ), where G ∈ S(R2d) is an ar-
bitrary non-zero window (cf. Lemma 5.9.6 below), it follows easily that σ ∈
M∞,1(R2d

)
implies σJ ∈M∞,1(R2d

)
; see [CNT19b, Lemma 5.2] for details in the

weighted case. The operator opI−T (σJ) is bounded on Mp,q(Rd) as a consequence
of Theorem 5.8.3 and the claim follows at once thanks to the previous lemma.

Remark 5.8.9. Note that the result can be made sharp in the case of τ -operators
in view of Corollary 5.8.5; in particular, there exists C > 0 such that

‖στ‖W p,q→W p,q ≤ C‖σ‖M∞,1 , ∀τ ∈ [0, 1].

This improves the estimate originally proved in [CNT19b, Theorem 5.6] in the
unweighted case.

5.8.1 Almost diagonalization of T -operators

We already mentioned that the backbone of Theorem 5.8.2 is the interplay between
the entries of the Gabor matrix of σw and the short-time Fourier transform of the
symbol σ. Theorem 5.8.1 can be extended without difficulty to τ -pseudodifferential
operators, see [CNT19b, Theorem 4.1]. We now indicate a further generalization
to operators associated with Cohen-type matrices.

Lemma 5.8.10. Let A = AT ∈ GL(2d,R) be a Cohen-type matrix. Fix a non-zero
window φ ∈M1(Rd) and set ΦT = WTφ. For any σ ∈M∞(R2d

)
,

|〈σTπ(z)φ, π(w)φ〉| = |VΦTσ(TT (w, z), J(w − z))| = |VΦTσ(x(z, w), y(z, w))|,

for any z, w ∈ R2d, where TT is defined in (5.15) and

x(z, w) = TT (w, z) = (I + PT )w − PT z, y(z, w) = J(w − z).

Moreover,
|VΦTσ(x, y)| = |〈σTπ(z(x, y))φ, π(w(x, y))φ〉|,

for any x, y ∈ R2d, where

z(x, y) = x+ (I + PT )Jy, w(x, y) = x+ PTJy.

Proof. Using the covariance formula (5.13) we have

|〈σTπ(z)φ, π(w)φ〉| = |〈σ,WT (π(w)φ, π(z)φ)〉|
= |〈σ,MJ(w−z)TTT (w,z)WTφ〉|
= |VΦTσ(TT (w, z), J(w − z))|.

Now, setting x = TT (w, z) and y = J(w − z) we immediately get Eq. (5.8.10).
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Theorem 5.8.11. Let v be an admissible weight on R2d and set v−J = TJ−1.
Let g ∈ M1

v (Rd) be a non-zero window function and assume that Λ ⊂ R2d is a
lattice such that G(g,Λ) is a Gabor frame for L2(Rd). For any Cohen-type matrix
A = AT ∈ GL(2d,R), the following properties are equivalent:

(i) σ ∈M∞,1
1⊗v−J (R2d).

(ii) σ ∈M∞(R2d) and there exists a function H = HT ∈ L1
v(Rd) such that

|〈σTπ(z)φ, π(w)φ〉| ≤ HT (w − z), w, z ∈ R2d.

(iii) σ ∈M∞(R2d
)

and there exists a sequence h = hT ∈ `1
v(Λ) such that

|〈σTπ(µ)φ, π(λ)φ〉| ≤ hT (λ− µ), λ, µ ∈ R2d.

Proof. The proof faithfully mirrors the one provided for Weyl operators in [Grö06c,
Theorem 3.2]. We detail here only the case (i)⇒ (ii), the discrete case for hT is
similar. For g ∈M1

v (Rd) the T -Wigner distribution ΦT = WTg is in M1
1⊗v−J (R2d)

by Proposition 5.5.6. This implies that the short-time Fourier transform VΦTσ is
well-defined for σ ∈M∞,1

1⊗v−J

(
R2d
)

(cf. [Grö01, Theorem 11.3.7]). The main insight

here is that the controlling function HT ∈ L1
v(Rd) can be provided by the so-called

grand symbol associated with σ, which is defined by QT (y) := supx∈R2d |VΦTσ(x, y)|.
By definition of M∞,1

1⊗v−J

(
R2d
)
, we have QT ∈ L1

v(R2d), so that Lemma 5.8.10 implies∣∣〈σAπ(z)φ, π(w)φ
〉∣∣ = |VΦTσ(TT (z, w), J(w − z))|
≤ sup

u∈R2d

|VΦTσ(u, J(w − z))|

= QT (J(w − z)).

Setting HT := QT ◦ J yields the claim.

We note that the same claim holds in the standard framework (S,S ′) instead
of (M1,M∞), and similarly all the related results.

The previous characterization is quite strong; we have indeed the following
result, which says that T -operators with symbols in Sjöstrand classes are all and
only the operators which satisfy such almost-diagonalization estimates of this type.

Corollary 5.8.12. Under the assumptions of Theorem 5.8.11, fix T ∈ Rd×d and
assume that the operator P : M1(Rd)→M∞(Rd) is continuous and satisfies any
of the following conditions:

1. |〈Pπ(z)g, π(w)g〉| ≤ H(w − z) for any z, w ∈ R2d and some H ∈ L1
v(Rd);
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2. |〈Pπ(µ)g, π(λ)g〉| ≤ h(λ− µ) for any λ, µ ∈ Λ and some h ∈ `1
v(Zd).

Therefore, there exists σ ∈M∞,1
1⊗v−J (R2d) such that P = σT .

Proof. From Theorem 5.6.3 we have that P = σT for some symbol σ ∈M∞(Rd).
The claim then follows from Theorem 5.8.11.

We conclude by highlighting that the properties established in Theorem 5.8.2
extend from Weyl operators to any T -quantization. There are essentially two
reasons behind this fact; first, Theorem 5.8.11 can be recast as follows: σ ∈
M∞,1

1⊗v◦J−1 if and only if the discrete Gabor matrix of σT belongs to the class Cv(Λ)
of matrices A = (aλ,µ)λ,µ∈Λ such that there exists a sequence h ∈ `1

v which almost
diagonalizes its entries, i.e.

‖aλ,µ‖ ≤ h(λ− µ), λ, µ ∈ Λ.

It is easy to see that Cv(Λ) is indeed a Banach *-algebra under convolution with the
norm ‖A‖Cv = inf{‖h‖`1v : |aλ,µ| ≤ h(λ− µ), ∀λ, µ ∈ Λ}, and this insight suggests
to considers other matrix algebras and investigates the relation between symbols
and the membership of their Gabor matrices in a matrix algebra (cf. for instance
[GR08]). The proof of Theorem 5.8.2 in [Grö06c] crucially relies on the properties
of Cv(Λ), which is thus identified with the Sjöstrand class.

Moreover, the extension to other quantizations is not surprising, since the
operator involved in the change of quantization in Proposition 5.6.6 is a convolution
with a chirp-like function (provided that T2 − T1 is invertible) and all modulation
spaces Mp,q, 1 ≤ p, q ≤ ∞ are invariant under the action of such an operator, cf.
[Tof04a, Proposition 1.2(5)] and [Tof04a, Remark 1.5] in the case of τ -quantizations.

We conclude this section by mentioning that the results in [Grö06c] also extend
to pseudodifferential operators defined on locally compact Abelian (LCA) groups

with symbols in M∞,1(G×Ĝ); the time-frequency analysis approach to this problem
shows then its full power, since the original methods of [Sjö94] do not apply here.

5.9 Symbols in Fourier-Sjöstrand classes

Let us further discuss the main trick of the proof of Theorem 5.8.11. The choice of
the grand symbol QT (y) = supx∈R2d |VΦTσ(x, y)| as controlling function is natural
in view of the weighted M∞,1-norm; moreover, according to Lemma 5.8.10, the
effect of the perturbation matrix T is confined to the window function ΦT and to the
time variable of the short-time Fourier transform of the symbol. A natural question
is then the following: what happens if we try to control the time dependence of

154



5.9. Symbols in Fourier-Sjöstrand classes

VΦτσ? Following the pattern of [CNT19b, Theorem 4.3], this remark is the starting
point of a parallel characterization for symbols belonging to the Wiener amalgam
space W∞,1(R2d) = FM∞,1(R2d), which will be referred to as the Fourier-Sjöstrand
class. The almost diagonalization of the (continuous) Gabor matrix does not
survive the perturbation, but the new result can be interpreted as a measure of
the concentration of the time-frequency representation of σT along the graph of
the map UT .

Theorem 5.9.1. Let A = AT be a right-regular Cohen-type matrix and define
BT := (I + PT )−1 and UT := (I + P−1

T )−1. Let v be an admissible weight on R2d

and set vBT = TBT v, vUT = TUT v. Let φ ∈ S(Rd) be a non-zero window function.
The following properties are equivalent:

(i) σ ∈ W∞,1
1⊗vBT

.

(ii) σ ∈ S ′(R2d) and there exists a function H = HT ∈ L1
v(Rd) such that∣∣〈σTπ(z)φ, π(w)φ

〉∣∣ ≤ HT (w − UT z), ∀w, z ∈ R2d, (5.32)

where

UT = (I + P−1
T )−1 = −

[
(I − T )−1T 0

0 T−1(I − T )

]
.

Proof. The proof is a straightforward extension of the one provided for τ -operators
in [CNT19b, Theorem 4.3]. Again, we detail here only the case (i) ⇒ (ii) for
the purpose of tracking the origin of UT ; the proof of (ii) ⇒ (i) is an easy
consequence of Lemma 5.8.10. If φ ∈ S(Rd) ⊂ M1

v (Rd) ∩M1
vUT

(Rd), φ 6= 0, then

ΦT = WTφ ∈ W 1,1
1⊗vBT

(R2d) by Proposition 5.5.6. For σ ∈ W∞,1
1⊗vBT

(R2d) we have

that VΦTσ is well defined (cf. Proposition (3.2.10)) and

QT (x) = sup
y∈R2d

|VΦTσ(x, y)| ∈ L1
vBT

(R2d).

From Lemma 5.8.10 we infer

|〈σTπ(z)φ, π(w)φ〉| = |VΦTσ(Tt(w, z), J(w − z))|
≤ sup

y∈R2d

|VΦTσ(TT (w, z), y)|

= QT (TT (w, z)).

Recall that if AT is right-regular, then I + PT is invertible (and the converse holds
too, cf. (5.14)). Recalling the definition of TT in (5.15) and setting BT = (I+PT )−1

yield
BT (TT (w, z)) = w − (I + PT )−1PT z = w − UT z,
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and thus QT (TT (w, z)) = QT (B−1
T (w − UT z)). The conclusion follows after setting

HT = QT ◦ B−1
T .

Example 5.9.2. Consider σ = δ ∈ W∞,1(R2d). In this case, using formula (5.13),

|〈δTπ(z)φ, π(w)φ〉| = |〈δ,WT (π(w)φ, π(z)φ)〉|
= |〈δ,MJ(w−z)TTT (w,z)WTφ〉|
= |TTT (w,z)WTφ(0)|
= |WTφ(−TT (w, z))

= |WTφ(−B−1
T (w − UT z))|.

Choosing Hτ (z) = |WTφ(−B−1
T (z))| we obtain (5.32), which reduces to an equality

in this case.

We remark that in this framework the discrete characterization of Theorem
5.8.11 is lost. The main obstruction is the following: for a given lattice Λ, the
inclusion UTΛ ⊆ Λ holds if and only if UT = U1/2I = −I, the (minus) identity
matrix. In particular, B1/2 = 2I and Theorem 5.9.1 can be improved as follows.

Corollary 5.9.3. Let v be an admissible weight function on R2d and set v2 = T2Iv.
Consider φ ∈ S(Rd)\{0} such that G(φ,Λ) is a Gabor frame for L2(Rd). For Weyl
operators, the following properties are equivalent:

1. σ ∈ W∞,1
1⊗v2(R

2d).

2. σ ∈ S ′(R2d) and there exists a function H ∈ L1
v(R2d) such that

|〈σwπ(z)φ, π(w)φ〉| ≤ H(w + z) ∀w, z ∈ R2d,

3. σ ∈ S ′(R2d) and there exists a sequence h ∈ `1
v(Λ) such that

|〈σwπ(µ)φ, π(λ)φ〉| ≤ h(λ+ µ) ∀λ, µ ∈ Λ.

The statement and the proof of Theorem 5.9.1 require the right-regularity of
AT in order to work. In the degenerate case where AT is not right-regular, namely
if T or I − T is not invertible, one can similarly prove a weaker version of that
result.

Theorem 5.9.4. Let A = AT be a Cohen-type matrix and v be an admissible
weight on R2d. Fix a non-zero window φ ∈ S(Rd). The following properties are
equivalent:
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1. σ ∈ W∞,1
1⊗v (R2d).

2. σ ∈ S(R2d) and there exists a function HT ∈ L1
v(R2d) such that

|〈σTπ(z)φ, π(w)φ〉| ≤ HT (TT (w, z)), ∀w, z ∈ R2d,

where TT is defined in (5.15).

5.9.1 Boundedness results and other consequences

The almost-diagonalization estimate for the Gabor matrix of a T -operator with
symbol in a Fourier-Sjöstrand class can be used to derive boundedness results and
algebraic properties in the spirit of Theorem 5.8.2.

Theorem 5.9.5. Let m ∈ Mv(R2d). Let A = AT be a right-regular Cohen-type
matrix and consider a symbol σ ∈ W∞,1

1⊗vBT
(R2d), where BT = (I + PT )−1 and

PT defined in (5.14). The operator σT is bounded from Mp,q
m (Rd) to Mp,q

m◦UT (Rd),
1 ≤ p, q ≤ ∞.

Proof. The proof uses the techniques developed in [CGNR14, Theorem 3.3]. We
fix g(t) = e−πt

2
and note that g ∈M1

v (Rd) for every admissible weight v; moreover
we have ‖g‖L2 = 1, so that the inversion formula (3.2) reads V ∗g Vg = Id. Writing
T as

T = V ∗g VgTV
∗
g Vg,

note that VgTV
∗
g is an integral operator with kernel given by the Gabor matrix of

T :
KT (w, z) = 〈Tπ(z)g, π(w)g〉, w, z ∈ R2d .

Recall that Vg is bounded from Mp
m(Rd) to Lpm(R2d) and V ∗g is bounded from

Lpm(R2d) to Mp
m(Rd). Therefore, if VgTV

∗
g is bounded from Lpm(R2d) to LpmUT

(R2d),

then T is bounded from Mp
m(Rd) to Mp

mUT
(Rd). Observe that

UTBI−T = −BT

so that v ◦ UT ◦ BI−T = v ◦ BT , and also note that U−1
I−T = UT . An application of

Theorem 5.9.1 with I − T in place of T and with the admissible weight v ◦ UT in
place of v yields, for F ∈ Lpm(R2d),

|VgTV ∗g F (w)| =
∣∣∣ ∫

R2d

KT (w, z)F (z) dz
∣∣∣ ≤ ∫

R2d

|F (z)|HI−T (w − UI−T z)dz

=

∫
R2d

|F (z)|(HI−T ◦ UI−T )(UTw − z)dz

= F ∗ (HI−T ◦ UI−T )(UTw).
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Moreover we have HI−T ∈ L1
vUT

(R2d) and hence HI−T ◦ UI−TL1
v(R2d). Young’s

inequality then gives F ∗ (HI−T ◦ UI−T ) ∈ Lpm(R2d) ∗ L1
v(R2d) ⊂ Lpm(R2d). This

shows that VgTV
∗
g F ∈ L

p
m◦UT (R2d), as desired.

We now use the partial symplectic covariance of T -calculus to derive bounded-
ness results on amalgam spaces. The following lemma is needed, the proof being a
straightforward computation.

Lemma 5.9.6. For any non-zero window G ∈ S(R2d) and σ ∈ S ′(R2d),

VG(σ ◦ J)(z, ζ) = (VG◦J−1σ)(Jz, Jζ).

Therefore, for any 1 ≤ p, q ≤ ∞, admissible weights u, v on R2d and right-regular
Cohen-type matrices A = AT :

1. σJ = σ ◦ J ∈Mp,q
(u◦J−1)⊗(v◦J−1)(R

2d) if and only if σ ∈Mp,q
u⊗v(R2d). In particu-

lar,
σ ∈M∞,1

1⊗v (R2d)⇔ σJ ∈M∞,1
1⊗(v◦J−1)(R

2d).

2. σ ∈ W p,q
(u◦J−1)⊗(v◦J−1)(R

2d) if and only if σJ ∈ W p,q
u⊗v(R2d). In particular,

σ ∈ W∞,1
1⊗(v◦BT ◦J−1)(R

2d)⇔ σJ ∈ W∞,1
1⊗(v◦BT )(R

2d).

Theorem 5.9.7. Let A = AT be a right-regular Cohen-type matrix and m =
m1 ⊗m2 ∈ Mv(R2d). If σ ∈ W∞,1

1⊗(v◦BT ◦J−1)(R
2d) then the operator σT is bounded

from W p,q
m1⊗m2

(Rd) to W p,q

(m1◦U1
T )⊗(m2◦U2

T )
(Rd), 1 ≤ p, q ≤ ∞, where we set

U1
T = −(I − T )−1T, U2

T = −T−1(I − T ).

Proof. Consider the following commutative diagram:

Mp,q
m (Rd)

(σJ )I−T //Mp,q
m◦UT (Rd)

F

��
W p,q
m1⊗m2

(Rd) σT //

F−1

OO

W p,q

(m1◦U1
T )⊗(m2◦U2

T )
(Rd)

Indeed, since σ ∈ W∞,1
1⊗(v◦BT ◦J−1)(R

2d) we have σJ ∈ W∞,1
1⊗(v◦BT )(R

2d) by Lemma

5.9.6. The operator (σJ)I−T is bounded by Theorem 5.9.5 with T ′ = 1 − T and
the thesis follows at once thanks to the Lemma 5.8.6.

Remark 5.9.8. Note that the same strategy, in particular Lemma 5.9.6, can be
used to prove a weighted version of Theorem 5.8.8 above, cf. [CNT19b, Theorem
5.6] for the case of τ -operators.

158



5.9. Symbols in Fourier-Sjöstrand classes

The cases τ = 0 and τ = 1. Theorem 5.9.4 can be used to obtain some
boundedness results for τ -pseudodifferential operators with τ = 0 or τ = 1, having
symbols in Wiener amalgam spaces.

Proposition 5.9.9. Assume σ ∈ W∞,1(Rd). Then the Kohn-Nirenberg operator
op0(σ) is bounded on M1,∞(Rd).

Proof. Consider H0(T0(w, z)) with H0 ∈ L1(R2d) as in Theorem 5.9.4. The integral
operator TH0 with kernel H0(T0(w, z)) = H0(w1, z2) can be written as

TH0F (w) =

∫
R2d

H0 ◦ T0(w, z)F (z)dz =

∫
Rd

∫
Rd
H(w1, z2)F (z1, z2)dz1dz2.

It is immediate to notice that TH0 : L1,∞(R2d)→ L1,∞(R2d) is a bounded operator.
Then, for a fixed non-zero window g ∈ S(Rd), we have that

T = V ∗g TH0Vg : M1,∞(Rd)→M1,∞(Rd)

is a bounded operator. The claim then follows.

Proposition 5.9.10. Assume σ ∈ W∞,1(Rd). Then the operator op1(σ) is bounded
on W1,∞(Rd).

Proof. Again, we apply Theorem 5.9.4 and consider H1(T1(w, z)) with H1 ∈
L1(R2d). The integral operator TH with kernel H1(T1(w, z)) = H1(z1, w2) can be
written as

TH1F (w) =

∫
R2d

H1 ◦ T1(w, z)F (z)dz =

∫
Rd

∫
Rd
H1(z1, w2)F (z1, z2)dz1dz2.

It is immediate to notice that TH1 : L∞z1 (L1
z2

)(R2d)→ L∞w1
(L1

w2
)(R2d) is a bounded

operator. Then, for a fixed non-zero window g ∈ S
(
Rd
)
, we have that

T = V ∗g TH1Vg : W (FL1, L∞)(Rd)→ W (FL1, L∞)(Rd)

is a bounded operator. This concludes the proof.

Algebra properties. The boundedness and algebraic properties of T -operators
with symbols in W∞,1 proved in [CNT19b] rely on the characterization as general-
ized metaplectic operators according to [CGNR14, Def. 1.1]. In order to benefit
from this framework, it is necessary for UT to be a symplectic matrix, the latter
condition being realized if and only if T is a symmetric matrix (cf. [Gos11, (2.4)
and (2.5)] and notice that T−1(I − T ) = (I − T )T−1).
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Therefore, we focus on τ -operators for the sake of concreteness. Note that
vs ◦ Bτ �τ vs; if the symbol σ is in W∞,1

0,s (R2d) then Theorem 5.9.1 says that (5.32)
holds for a suitable function Hτ ∈ L1

vs , so that the τ -operator στ is a generalized
metaplectic operator in the class FIO(Uτ , vs), cf. Section 4.3.5. Moreover, the
assumptions of Theorem 4.3.10 are satisfied and we can represent στ as a type-I
Fourier integral operator with phase Φ(x, ξ) = −(1− τ)τ−1x · ξ as follows:

στf(x) =

∫
Rd
e−2πi 1−τ

τ
ξ·xρ(x, ξ)f̂(ξ) dξ,

for a suitable symbol ρ ∈M∞,1
0,s (R2d). Incidentally, by [CGNR14, Theorem 1.2] we

have the following boundedness result.

Corollary 5.9.11. If σ ∈ W∞,1
0,s (R2d), s ≥ 0, then the operator στ is bounded on

every modulation space Mp
vs(R

d), for 1 ≤ p ≤ ∞ and τ ∈ (0, 1).

The connection with the theory of generalized metaplectic operators established
above allows us to investigate other properties of τ -operators. First of all, notice
that for any τ1, τ2 ∈ (0, 1),

Uτ1Uτ2 =

[
τ1τ2

(1−τ1)(1−τ2)
Id 0d

0d
(1−τ1)(1−τ2)

τ1τ2
Id

]
.

In particular, UτU1−τ = U1−τUτ = I2d. Therefore, composition properties of
operators in the class FIO(A, vs) (see [CGNR14, Theorems 3.4] and Theorem
5.8.1) yield the following result.

Theorem 5.9.12 (Algebra property). For any a, b ∈ W∞,1
0,s (R2d) and τ ∈ (0, 1),

there exists a symbol c ∈M∞,1
0,s such that

opτ (a)op1−τ (b) = opw(c).

Remark 5.9.13. On the other hand, for any choice of τ1, τ2 ∈ (0, 1), there is
no τ ∈ (0, 1) such that Uτ1Uτ2 = Uτ . This immediately implies that there is no
τ -quantization rule such that composition of τ -operators with symbols in W∞,1

0,s has

symbol in the same class. In a similar fashion, given a ∈ W∞,1
0,s (R2d), b ∈M∞,1

0,s (R2d)
and τ, τ0 ∈ (0, 1), we have

opτ0(b)opτ (a) = opτ (c1), opτ (a)opτ0(b) = opτ (c2),

for some c1, c2 ∈ W∞,1
0,s (R2d). This means that, for fixed quantization rules τ, τ0,

the amalgam space W∞,1
0,s (R2d) is a bimodule over the algebra M∞,1

0,s (R2d) under the
laws

M∞,1
0,s (R2d)×W∞,1

0,s (R2d)→ W∞,1
0,s (R2d) : (b, a) 7→ c1,
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W∞,1
0,s (R2d)×M∞,1

0,s (R2d)→ W∞,1
0,s (R2d) : (a, b) 7→ c2,

with c1 and c2 as before.

In conclusion, we provide a result whose proof easily follows by [CGNR14,
Theorem 3.7] after noticing that U−1

τ = U1−τ for any τ ∈ (0, 1).

Theorem 5.9.14 (Wiener property). For any τ ∈ (0, 1) and a ∈ W∞,1
0,s (R2d) such

that opτ (a) is invertible on L2(Rd), we have

opτ (a)−1 = op1−τ (b)

for some b ∈ W∞,1
0,s (R2d).
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Chapter 6

Dispersion, Spreading and
Sparsity of Gabor Wave Packets
for Metaplectic and Schrödinger
Operators

6.1 Preliminary results

A key technical tool for the main results stated in Section 1.3 is the following set
of estimates.

Lemma 6.1.1. Let s > 1, a, b, σ ≥ 1 and v ∈ R. Then∫
R
(a+ |σ−1u+ v|)−s(b+ |u|)−sdu .s (a+ |v|)−sb−s+1 + a−s+1(b+ |v|)−s+1, (6.1)

∫
R
(a+ |u− v|)−s(b+ σ−1|u|)−sdu .s (a+ σ−1|v|)−s+1b−s+1 + a−s+1(b+ σ−1|v|)−s.

(6.2)

Proof. We prove (6.1) under the assumption |v| ≥ 1, otherwise the estimate is
trivial since

∫
R(b+ |u|)−sdu . b−s+1. If |σ−1u+v| ≥ |v|/2 then (a+ |σ−1u+v|)−s .

(a+ |v|)−s, hence∫
R
(a+ |σ−1u+ v|)−s(b+ |u|)−sdu . (a+ |v|)−sb−s+1.
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If |σ−1u+ v| ≤ |v|/2 then |u| ≥ σ|v|/2, hence∫
R
(a+ |σ−1u+ v|)−s(b+ |u|)−sdu . a−s+1σ(b+ σ|v|)−s

≤ a−s+1(b+ |v|)−s+1.

The proof of (6.2) in the non-trivial case σ−1|v| ≥ 1 follows by similar arguments,
by considering separately the cases |u− v| ≥ |v|/2 and |u− v| < |v|/2.

Remark 6.1.2. For s > d and v ∈ Rd, the convolution inequality (6.2) with σ = 1
and a = b can be improved in Rd as follows:∫

Rd
(a+ |u− v|)−s(a+ |u|)−sdu .s a−s+d(a+ |v|)−s.

Notice that for a = 1 we have v−s ∗ v−s . v−s, cf. [Grö01, Lemma 11.1.1(c)].

Lemma 6.1.3. Let σ1, . . . , σd ≥ 1 and define the matrices

Σ = diag(σ1, . . . , σd), D′ = Σ−1 ⊕ I, D′′ = I ⊕ Σ−1.

For any s > 2d∫
R2d

(1 + |v −D′′u|)−s(1 + |D′u|)−sdu .s (1 + |D′v|)−s+2d, v ∈ R2d.

Proof. The integral under our attention is

∫
R2d

(
1 +

d∑
j=1

|vj − uj|+
2d∑

j=d+1

|vj − σ−1
j−duj|

)−s(
1 +

d∑
j=1

|σ−1
j uj|+

2d∑
j=d+1

|uj|

)−s
du.

We look at the latter as an iterated integral and we repeatedly apply Lemma 6.1.1;
precisely we estimate each of the integrals with respect to u1, . . . , ud as in (6.2)
and the each one with respect to ud+1, . . . , u2d as in (6.1). Careful inspection of
the involved quantities reveals that the result after 2d steps is dominated by a sum
of products of the form A−s+2dB−s+2d with A,B ≥ 1 such that

A+B = 2 +
d∑
j=1

σ−1
j |vj|+

2d∑
j=d+1

|vj| > 1 + |D′v|.

The claim follows after noticing that A−s+2dB−s+2d ≤ (A + B)−s+2d since s >
2d.
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6.2 Proof of the main results

We start this section with the proof of Theorem 1.3.1, namely a pointwise inequality
for the Gabor matrix with Gabor atoms in the Schwartz class.

Proof of Theorem 1.3.1. We use the Moyal formula (3.6), the covariance property
of Wigner distribution (3.5) and the symplectic covariance of the Weyl calculus
(4.9). Hence

|〈µ(S)π(z)g, π(w)γ〉|2 =

∫
R2d

W (µ(S)π(z)g)(u)W (π(w)γ)(u)du

=

∫
R2d

W (π(z)g)(S−1u)Wγ(u− w)du

=

∫
R2d

Wg(S−1u− z)Wγ(u− w)du

=

∫
R2d

Wg(S−1u+ S−1w − z)Wγ(u)du.

Direct application of Proposition 3.1.3 (ii) yields, for any s ≥ 0,

|〈µ(S)π(z)g, π(w)γ〉|2 .
∫
R2d

v−s(S
−1u+ S−1w − z)v−s(u)du.

Recall that S = U>DV , hence S−1 = V >D−1U and therefore

|〈µ(S)π(z)g, π(w)γ〉|2 .
∫
R2d

v−s(D
−1u+ V (S−1w − z))v−s(u)du.

Set v := V (S−1w − z). The change of variable u = D′′u′ leads to

|〈µ(S)π(z)g, π(w)γ〉|2 . (det Σ)−1

∫
R2d

(1 + |D′u+ v|)−s(1 + |D′′u|)−sdu.

We fix s > 2d and apply Lemma 6.1.3 with D′ and D′′ interchanged. The claim
then follows after setting N = (s− 2d)/2, since s > 2d is arbitrarily chosen and
D′′v = D′U(w − Sz).

We now prove Theorem 1.3.2, where Gabor atoms in suitable modulation spaces
are considered.

Proof of Theorem 1.3.2. Fix φ, ψ ∈ S(Rd) \ {0} with ‖φ‖L2 = ‖ψ‖L2 = 1; the
reconstruction formula (3.2) applied to g ∈ Mp(Rd), γ ∈ M q(Rd) (resp. g, γ ∈
M∞

vs (Rd)) yields

g =

∫
R2d

F (u)π(u)φdu, F = Vφg ∈ Lp(R2d) (resp. F = Vφg ∈ L∞vs(R
2d))
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γ =

∫
R2d

G(v)π(v)ψdv, G = Vψγ ∈ Lq(R2d) (resp. G = Vψγ ∈ L∞vs(R
2d)).

Then we have

|〈µ(S)π(z)g, π(w)γ〉| ≤
∫
R4d

|F (u)||G(v)||〈µ(S)π(z + u)φ, π(w + v)ψ〉|dudv

=

∫
R4d

|F (u− z)||G(v − w)||〈µ(S)π(u)φ, π(v)ψ〉|dudv.

Direct application of Theorem 1.3.1 with N > max{2d, s} (the reason of this choice
will be clear in a moment) yields

|〈µ(S)π(z)g, π(w)γ〉| .N (det Σ)−1/2

∫
R4d

|F (u−z)||G(v−w)|v−N(D′Uv−D′′V u)dudv.

Set F̃ = F ◦ (D′′V )−1 and G̃ = G ◦ (D′U)−1. Then

|〈µ(S)π(z)g, π(w)γ〉| .N (det Σ)3/2

∫
R4d

|F̃ (u−D′′V z)||G̃(v −D′Uw)|v−N(v − u)dudv

= (det Σ)3/2

∫
R4d

|F̃ (u)||G̃(v +D′′V z −D′Uw)|v−N(v − u)dudv

= (det Σ)3/2(|F̃ | ∗ v−N ∗ |G̃|∨)(D′Uw −D′′V z)
= H(D′U(w − Sz)),

where we defined

H(u) = (det Σ)3/2(v−N ∗ |F̃ | ∗ |G̃|∨)(u), u ∈ R2d.

For g ∈ Mp(Rd) and γ ∈ M q(Rd) we apply Young’s inequality to prove that
H ∈ Lr(R2d) for 1/p+ 1/q = 1 + 1/r, cf. (4.7). In particular, since N > 2d,

‖H‖Lr ≤ (det Σ)3/2‖v−N‖L1‖|F̃ | ∗ |G̃|∨‖Lr
. (det Σ)3/2−1/p−1/q‖F‖Lp‖G‖Lq
. (det Σ)1/2−1/r‖g‖Mp‖γ‖Mq .

For g, γ ∈M∞
vs (Rd), s > 2d, we note that

|F̃ (u)| ≤ ‖g‖M∞vs (Rd)(1 + |(D′′)−1u|)−s, |G̃(u)| ≤ ‖γ‖M∞vs (Rd)(1 + |(D′)−1u|)−s.
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Therefore, since N > s and again by Young’s inequality,

‖H‖L∞vs−2d
≤ (det Σ)3/2‖v−N‖L1

vs−2d
‖|F̃ | ∗ |G̃|∨‖L∞vs−2d

. (det Σ)3/2‖g‖M∞vs (Rd)‖γ‖M∞vs (Rd)

∥∥v−s((D′)−1·) ∗ v−s((D′′)−1·)
∥∥
L∞vs−2d

. (det Σ)−1/2‖g‖M∞vs (Rd)‖γ‖M∞vs (Rd),

where in the last step we used Lemma 6.1.3 with the substitutions u 7→ (D′)−1(D′′)−1u
and v 7→ (D′)−1v.

Remark 6.2.1. Notice that after setting H̃ = H ◦D′U the estimate (1.25) reads

|〈µ(S)π(z)g, π(w)γ〉| ≤ H̃(w − Sz),

while (1.26) becomes

‖H̃‖Lr . (det Σ)1/2‖g‖Mp‖γ‖Mq .

It is then clear that there is a trade-off between the phase-space concentration of
µ(S) along the graph of S and the spreading of wave packets.

We conclude with a result in the same spirit for generalized metaplectic opera-
tors.

Proof of Theorem 1.3.3. We assume ‖g‖L2 = ‖γ‖L2 = 1 without loss of generality.
Denoting by Kµ(S)(w, z) = 〈µ(S)π(z)g, π(w)γ〉 the Gabor matrix of µ(S) and
similarly for Kaw(w, z) = 〈awπ(z)γ, π(w)γ〉, in view of (4.2), by Theorems 4.2.6
and 4.3.10 we have

|〈Aπ(z)g, π(w)γ〉| = |〈awµ(S)π(z)g, π(w)γ〉|

≤
∫
R2d

|Kaw(w, u)||Kµ(S)(u, z)|du

=

∫
R2d

|〈awπ(u)γ, π(w)γ〉||〈µ(S)π(z)g, π(u)γ〉|du

≤
∫
R2d

Ha(w − u)HS(D′Uu−D′′V z)du,

where HS is the controlling function in Theorem 1.3.2 (i) and Ha is the one
appearing in Theorem 4.2.6 with g = γ; in particular ‖Ha‖L1 � ‖a‖M∞,1 . The
substitution y = D′U(w − u) yields

|〈Aπ(z)g, π(w)γ〉| ≤ (det Σ)
[
(Ha ◦ (D′U)−1) ∗HS

]
(D′U(w − Sz)).
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The claim follows by Young inequality and Theorem 1.3.2 (i) after setting
H = (det Σ)(Ha ◦ (D′U)−1) ∗HS:

‖H‖Lr ≤ (det Σ)
∥∥Ha ◦ (D′U)−1

∥∥
L1‖HS‖Lr

= ‖Ha‖L1‖HS‖Lr
. (det Σ)1/2−1/r‖a‖M∞,1‖g‖Mp‖γ‖Mq .

We conclude with the proof of Theorem 1.3.4, where we study how the modula-
tion space regularity on a cone in the phase space behaves under the action of a
metaplectic operator.

Proof of Theorem 1.3.4. Fix g, γ ∈ S(Rd) \ {0} with ‖g‖L2 = ‖γ‖L2 = 1, and Γ
and Γ′ as in the statement. From (4.2) with A = µ(S) and Theorem 1.3.1, for any
N > 0 we have

|Vγ(µ(S)f)(w)| ≤
∫
R2d

|Kµ(S)(w, z)||Vgf(z)|dz

.N (det Σ)−1/2

∫
R2d

v−N(D′U(w − Sz))|Vgf(z)|dz

.N (det Σ)−1/2

∫
R2d

H(w − Sz)|Vgf(z)|dz,

where we set H = v−N ◦D′U . After naming G = H ◦ S = v−N ◦D′′V we apply
Hölder’s inequality and get

I := ‖µ(S)f‖M1
(γ)

(S(Γ′))

=

∫
S(Γ′)

|Vγ(µ(S)f)(w)|dw

=

∫
Γ′
|Vγ(µ(S)f)(Sw)|dw

. (det Σ)−1/2

∫
Γ′

∫
R2d

G(w − z)|Vgf(z)|dzdw.

We then have I . I1 + I2, where

I1 := (det Σ)−1/2

∫
Γ′

∫
Γ

G(w − z)|Vgf(z)|dzdw,

I2 := (det Σ)−1/2

∫
Γ′

∫
Γc
G(w − z)|Vgf(z)|dzdw.
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Young’s inequality yields

I1 ≤ ‖G‖L1‖Vgf · 1Γ‖L1 . (det Σ)1/2‖f‖M1
(g)

(Γ).

After setting F (z) = |Vgf(z)|v−r(z), the remaining integral is

I2 = (det Σ)−1/2

∫
Γ′

∫
Γc
G(w − z)vr(z)F (z)dz.

The key point is now that

1 + |w − z| � max{1 + |w|, 1 + |z|}, w ∈ Γ′, z ∈ Γc,

hence

I2 . (det Σ)−1/2

∫
Γ′

∫
Γc
G(w − z)vr(w − z)F (z)dz

≤ (det Σ)−1/2‖(G · vr) ∗ F‖L1

. (det Σ)−1/2‖G · vr‖L1‖f‖M1
v−r
.

Therefore, the remaining integral to estimate is

‖G · vr‖L1 =

∫
R2d

(1 + |D′′z|)−N(1 + |z|)rdz.

Recall that D′′ = I ⊕ Σ−1, cf. (1.23), and consider the elementary estimates

v−N(D′′z) ≤ v−N/2d(z1) · · · v−N/2d(zd)v−N/2d(σ−1
1 zd+1) · · · v−N/2d(σ−1

d z2d),

vr(z) ≤ vr(z1) · · · vr(z2d).

As a result, the integral is dominated by AdB1 · · ·Bd, where

A :=

∫
R
(1 + |x|)−N/2d+rdx,

Bj :=

∫
R
(1 + σ−1

j |x|)−N/2d(1 + |x|)rdx, j = 1, . . . , d.

If N is large enough then A <∞ and Bj . σ1+r
j , therefore

I2 . (det Σ)1/2+r‖f‖M1
v−r
,

and the claim follows.
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Remark 6.2.2. 1. Condition (1.27) can be generalized to introduce the notion
of Mp-regularity, 1 ≤ p ≤ ∞, on the cone Γ with respect to g ∈ S(Rd) \ {0}.
The latter is satisfied for f ∈ S ′(Rd) if

‖f‖Mp
(g)

(Γ) := ‖Vgf · 1Γ‖Lp <∞. (6.3)

Weighted versions of such conditions can be defined similarly. The proof of
Theorem 1.3.4 can be easily modified in order to prove the estimate

‖µ(S)f‖Mp
(γ)

(S(Γ′)) . (det Σ)1/2
(
‖f‖Mp

(g)
(Γ) + (det Σ)r‖f‖Mp

v−r

)
, (6.4)

which however is not sharp unless p = 1 or p = ∞. We postpone further
investigations on the issue.

2. The notion of Mp-regularity does not depend on the window g used to compute
Vgf in (6.3) provided that a slightly smaller cone is allowed when changing
window. This is indeed a consequence of (6.4) in the case where S = I. The
properties of Mp

(g)(Γ) as a function space will be object of future studies.

Corollary 6.2.3. Consider 1 ≤ p ≤ ∞. There exists C > 0 such that, for any
f ∈Mp(Rd), S ∈ Sp(d,R),

‖µ(S)f‖Mp ≤ C(det Σ)|1/2−1/p|‖f‖Mp .

Proof. By choosing Γ = Γ′ = R2d \ {0} and r = 0 in Theorem 1.3.4 we see that the
desired estimate holds for p = 1. Since µ(S) is unitary on L2(Rd), the operator
µ(S−1), and therefore µ(S), satisfies the same estimate for p =∞. Interpolating
with the trivial L2-estimate, we obtain the desired result, cf. Proposition 3.2.3.

6.3 Applications to the free particle propagator

Let us consider the free particle propagator U(t) = ei(t/2π)∆ and the corresponding
classical flow (4.8); a straightforward computation shows that the largest d singular
values of St coincide:

σj = σ(t) = (1 + 2t2 + 2(t2 + t4)1/2)1/2 =
√

1 + t2 + |t|, j = 1, . . . , d.

Note in particular that σ(t) is comparable to 1 + |t|, t ∈ R. An example of Euler
decomposition (Ut, Vt,Σt) of St for t ≥ 0 is given by

Ut = (1 + σ(t)2)−1/2

[
σ(t)I I
−I σ(t)I

]
, Vt = (1 + σ(t)2)−1/2

[
I σ(t)I

−σ(t)I I

]
.
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Theorem 1.3.1 thus yields∣∣〈ei(t/2π)∆π(z)g, π(w)γ〉
∣∣ ≤ C(1 + |t|)−d/2(1 + |D′tUt(w − Stz)|)−N , z, w ∈ R2d.

The spreading phenomenon manifests itself as a dilation by

D′tUt = (1 + σ(t)2)−1/2

[
I σ(t)−1I
−I σ(t)I

]
.

We attempt to shed some light on the apparently unintelligible structure of such
matrix by means of a toy example in dimension d = 1. Let z = 0 for simplicity
and assume that the atom g is concentrated on the box Q = {(x, ξ) ∈ R2 : |x| <
1, |ξ| < 1} in the time-frequency plane. In view of (1.24) we are lead to consider

(D′tUt)
−1(Q) = {(x, ξ) : |x+ σ−1(t)ξ| <

√
1 + σ(t)2, |x− σ(t)ξ| <

√
1 + σ(t)2}.

Therefore, the effect of D′tUt on Q ultimately amounts to a horizontal stretch by
a factor of approximately σ(t). This is consistent with the expected phase-space
evolution of a wave packet, as shown in (1.19); see also [CNR09, Figures 1-8]
for illuminating graphic representations. We stress that the estimate (1.18) is
completely blind to such spreading effect.
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Chapter 7

Time-Frequency Analysis of the
Dirac Equation

7.1 Proof of the main results

7.1.1 The free case

Consider the Cauchy problem for the free Dirac equation, namely (1.28) with
V = 0: {

i∂tψ(t, x) = Dmψ(t, x),

ψ(0, x) = ψ0(x),
(t, x) ∈ R× Rd. (7.1)

The solution can be recast in terms of the free Dirac propagator:

ψ(t, x) = U0(t)ψ0(x), U0(t) = e−itDm .

We can take advantage from vector-valued setting of Gabor analysis by noticing
that U0(t) is an operator-valued Fourier multiplier on the Hilbert space H = Cn,
L(Cn) ' Cn×n, with symbol

µt(ξ) = exp

[
−2πit

(
mα0 +

d∑
j=1

ξjαj

)]
.

An explicit expression for this matrix can be derived. After setting Cj = −2πtξj,

j = 1, . . . , d, and C0 = −2πtm we have µt(ξ) =
∑

n≥0
in

n!
(
∑d

j=0 Cjαj)
n. The

identities (1.30) satisfied by the Dirac matrices imply that{
(
∑d

j=0Cjαj)
n = (−1)k(

∑d
j=0C

2
j )kIn (n = 2k),

(
∑d

j=0Cjαj)
n = i(−1)k(

∑d
j=0 C

2
j )k(

∑d
j=0 Cjαj) (n = 2k + 1).

173



7. Gabor Analysis of the Dirac Equation

A straightforward computation finally yields

µt(ξ) = cos(2πt〈ξ〉m)In − 2πi
sin(2πt〈ξ〉m)

2π〈ξ〉m

(
mα0 +

d∑
j=1

ξjαj

)
,

from which it is clear that µt ∈ C∞b (Rd,Cn×n) for any fixed t ∈ R.

Proof of Theorem 1.4.1. The proof is a direct application of Proposition 4.1.1
(X = Mp,q

r,s (Cn)) and Proposition 4.1.2 (X = W p,q
r,s (Cn)), after noticing that

µt ∈ C∞b (Cn×n) ↪→M∞,1
0,|r| (C

n×n) ↪→ W 1,∞
|r|,0 (Cn×n), ∀r ∈ R,

the latter embedding being given by the Hausdorff-Young inequality (3.15).

Proof of estimate (1.32). In order to determine the time dependence of the constant
CX(t), X = Mp,q

0,s (Cn), we provide a different proof by making use of the discrete
norm (3.14) for modulation spaces. Consider the BUPU in the proof of Theorem

3.2.11. In view of (3.14) we need to provide an estimate for
∥∥∥‖�kU(t)f‖Lp(Cn)

∥∥∥
`qs

.

We have

‖�kU(t)f‖Lp(Cn) =
∑
|`|∞≤1

∥∥∥σk+`µtσkf̂
∥∥∥
FLp(Cn)

≤
∑
|`|∞≤1

‖σk+`µt‖FL1(Cn×n)‖�kf‖Lp(Cn),

where we used the approximate orthogonality of the frequency-uniform decomposi-
tion operators:

�k =
∑
|`|∞≤1

�k�k+`, k ∈ Zd.

The multiplier estimate (2.2) implies

‖σk+`µt‖FL1(Cn×n) =
∥∥σ0T−(k+`)µt

∥∥
FL1(Cn×n)

. (1 + |t|)d/2,

and complex interpolation with the conservation law ‖�kU(t)f‖L2(Cn) = ‖�kf‖L2(Cn)

yields
‖�kU(t)f‖Lp(Cn) . (1 + |t|)d|1/2−1/p|‖�kf‖Lp(Cn).

This behaviour is not surprising, given that any component of a solution of
the free Dirac equation is also a solution of the free Klein-Gordon equation, for
which similar estimates hold [WHHG11, Proposition 6.8]. This connection can be
exploited in many ways, as already mentioned in the Introduction; as an example
one can easily prove a smoothing estimate for the free Dirac propagator.
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Theorem 7.1.1. Let ψ(t, x) be the solution of (7.1). For any t > 1, 1 ≤ p, q ≤ ∞
and s ∈ R,

‖ψ(t, ·)‖Mp,q
0,s (Cn) . ‖ψ0‖Mp,q

0,s (Cn) + |t|γ‖ψ0‖Mp,q
0,s−γ(Cn), γ = d|1/2− 1/p|.

Proof. Following the same strategy of [KN19, Theorem 1.1], namely projection
onto the so-called positive and negative energy subspaces of the Dirac operator (cf.
[Tha92]), it turns out that the free Dirac equation (7.1) is unitarily equivalent to a
pair of (n/2)-dimensional square-root Klein-Gordon equations, namely{

i∂tψ±(t, x) = ±〈D〉mψ±(t, x),

ψ±(0, x) = (ψ0)±(x),
(t, x) ∈ R× Rd.

It is then enough to replace the estimate (3.2) in that paper for the Klein-Gordon
semigroup eit〈D〉m with the smoothing one proved in [DDS13, Theorem 1.4]. The
proof then proceeds in the same way.

7.1.2 The case where V is a rough bounded potential

For any 1 ≤ p, q ≤ ∞, γ ≥ 0 and r, s ∈ R such that |r| + |s| ≤ γ, let X denote
either Mp,q

r,s(Cn) or Wp,q
r,s (Cn). Let T > 0 be fixed and consider now the Cauchy

problem for the Dirac equation with potential{
i∂tψ(t, x) = (Dm + V (t))ψ(t, x)

ψ(0, x) = ψ0(x)
(t, x) ∈ R× Rd, (7.2)

where V (t) = σ(t, ·)w, t ∈ [0, T ], and the map t 7→ σ(t, ·) is continuous in
M∞,1

0,γ (R2d,Cn×n) for the narrow convergence. Standard arguments from the theory
of operators semigroups (cf. [EN06, Corollary 1.5]) and Theorem 4.2.7 imply that
for any fixed t ∈ R the propagator U(t) is bounded on X.

Proof of Theorem 1.4.2. The argument is standard, we sketch the strategy for the
sake of clarity. Set ΞT = C([0, T ];Ls(X)); the assumptions on σ and Theorem 4.2.8
imply that V ∈ ΞT . A straightforward computation shows that the propagator
U(t) corresponding to (7.2) satisfies the following Volterra integral equation:

U(t)ψ0 = U0(t)ψ0 − i
∫ t

0

U0(t− s)V (s)U(s)ψ0ds. (7.3)

A solution is given by an iterative scheme: let {Un}n∈N the sequence of operators

U0(t) = e−itDm , Un(t)ψ0 :=

∫ t

0

U0(t− s)V (s)Un−1(s)ψ0 ds.
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We have that {Un} ⊂ ΞT , since Un = U0 ∗ V Un−1 and both convolution and
composition are bounded operators on ΞT ; cf. [EN06, Exercise 1.17.1 and Lemma
B.15]. Furthermore, the following estimates hold:

‖Un(t)‖L(X) ≤ K(t)(n+1) t
n

n!
, K(t) = sup

s∈[0,t]

‖U0(s)‖‖V (s)‖.

It then follows that the Dyson-Phillips series
∑

n Un(t) converges with respect to the
operator norm on L(X) and also uniformly on [0, T ]. Therefore U(t) =

∑
n Un(t) ∈

ΞT and U(t) is a propagator for (7.2). Uniqueness follows by Gronwall’s lemma
after noticing that a different solution P (t) of (7.3) would satisfy

‖(U(t)− P (t))ψ0‖X ≤ K(t)

∫ t

0

‖(U(τ)− P (τ))ψ0‖Xdτ.

7.1.3 The case where V is a rough quadratic potential

Theorem 1.4.3 involves a rough potential V with at most quadratic growth as in
(1.33). A key ingredient for the proof of Theorem 1.4.3 is Proposition 3.2.20.

Proof of Theorem 1.4.3. We apply Proposition 3.2.20 twice and get

– L = L1 + L2, where L1 ∈ C∞≥1(Cn×n) and L2 ∈M∞,1(Cn×n), and

– Q = Q1 +Q2, where Q1 ∈ C∞≥2 and Q2 ∈M∞,1.

The RHS of (1.28) then becomes

H = (Dm + L1 +Q1) + (L2 +Q2 + σw) =: H0 + V ′.

We see that e−itH0 is a semigroup of bounded operators on Mp(Rd,Cn) as a
consequence of [KN19, Theorem 1.2]. It is understood that we identify the
multiplication by a function f ∈M∞,1 on Mp,q(Cn) with the operator fIn ∈ Cn×n,
hence by Remark 3.2.12 we have

‖fu‖Mp,q(Cn) ≤ ‖fIn‖M∞,1(Cn×n)‖u‖Mp,q(Cn) � ‖f‖M∞,1‖u‖Mp,q(Cn).

The boundedness of e−itH on Mp(Cn) then follows from the fact that V ′ is
a bounded perturbation of H0 [EN06, Corollary 1.5] by Proposition 4.1.1 and
Theorem 4.2.7. The case where Q = 0 follows by the same arguments.
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7.2. The nonlinear equation

7.2 The nonlinear equation

A standard tool in the study of local well-posedness is the following abstract result.

Theorem 7.2.1 ([Tao06, Proposition 1.38]). Let X and Y be two Banach spaces
and D : X → Y be a bounded linear operator such that

‖Du‖Y ≤ C0‖u‖X , (7.4)

for all u ∈ X and some C0 > 0. Consider then a nonlinear operator F : Y → X,
F (0) = 0, such that

‖F (u)− F (v)‖X ≤
1

2C0

‖u− v‖Y , (7.5)

for all u, v in the ball Bε(0) = {u ∈ Y : ‖u‖Y ≤ ε} for some ε > 0. Then for any
u0 ∈ Bε/2 there exists a unique solution u ∈ Bε to the equation

u = u0 +DF (u),

and the map u0 7→ u is Lipschitz with constant at most 2, that is ‖u‖Y ≤ 2‖u0‖Y .

Lemma 7.2.2. Let r, s ≥ 0, 1 ≤ p ≤ ∞ and ε > 0, and consider a nonlinear
function F as in (1.35). Denote by X any of the spaces Mp,1

0,s (Cn) or W 1,p
r,s (Cn).

If ψ0 ∈ X then F (ψ) ∈ X and, for any ψ, φ ∈ Bε(0) ⊂ X there exists a constant
Cε > 0 such that

‖F (ψ)− F (φ)‖X ≤ Cε‖ψ − φ‖X .

Proof. In view of Proposition 3.2.7 (vi) and its counterpart for amalgam spaces
the first claim is an easy consequence of the algebra property of X under pointwise
multiplication [CN09, Lemmas 2.1-2.2] and the series expansion of each component.
The estimate in the second part follows from a straightforward computation (cf.
the proof of [CN09, Theorem 4.1]), that is

Fj(ψ)− Fj(φ) =

∫ 1

0

d

dt
Fj(tψ + (1− t)φ)dt

=
n∑
k=1

[
(ψk − φk)

∑
α,β,γ,δ∈Nn

cj,kα,β,γ,δψ
αψ̄βφδφ̄γ

+(ψ̄k − φ̄k)
∑

α,β,γ,δ∈Nn
c̃j,kα,β,γ,δψ

αψ̄βφδφ̄γ

]
,
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7. Gabor Analysis of the Dirac Equation

for suitable coefficients cj,kα,β,γ,δ, c̃
j,k
α,β,γ,δ ∈ C. Again by Proposition 3.2.7 (iv) we

have

‖F (ψ)− F (φ)‖X . ‖ψ − φ‖X
n∑

j,k=1

∑
α,β,γ,δ∈Nn

Cj,k
α,β,γ,δ‖ψ‖

|α+β|
X ‖φ‖|γ+δ|

X ,

with Cj,k
α,β,γ,δ = |cj,kα,β,γ,δ| + |c̃

j,k
α,β,γ,δ|, and the latter expression is ≤ Cε‖ψ − φ‖X

whenever ψ, φ ∈ Bε(0).

Proof of Theorem 1.4.4. The proof is an application of the iteration scheme given
in Theorem 7.2.1. In particular we choose either X = Mp,1

0,s (Cn) or X = W 1,p
r,s (Cn),

then Y = C0([0, T ], X), and convert (1.34) in integral form:

ψ(t) = U0(t)ψ0 − i
∫ t

0

U0(t− s)F (ψ(s))ds,

where U0 = e−itDm is the free propagator. It is then enough to prove (7.4) and
(7.5) in this setting, where D is the Duhamel operator D =

∫ t
0
U0(t− s) · ds. First,

notice that from Theorem 1.4.1 we have that

‖U0(t)ψ0‖X ≤ CT‖ψ0‖X , ∀t ∈ [0, T ].

Therefore,∥∥∥∥∫ t

0

U0(t− s)u(s)ds

∥∥∥∥
X

≤
∫ t

0

‖U0(t− s)u(s)‖Xds ≤ TCT sup
t∈[0,T ]

‖u(t)‖X .

Lemma 7.2.2 then provides (7.4) with a constant C0 = O(T ) and also (7.5). The
claim follows after choosing T = T (‖ψ0‖X) sufficiently small.

Remark 7.2.3. A more general version of Theorem 1.4.4, namely a nonlinear
variant of Theorem 1.4.2, can be stated. For any 1 ≤ p ≤ ∞ and γ ≥ 0 let X denote
eitherMp,1

0,s(Cn) with 0 ≤ s ≤ γ or W1,p
r,s (Cn) with r, s ≥ 0 such that r+s ≤ γ. The

differential operator L = i∂t −Dm in (1.34), namely Lψ = F (ψ), is now extended
to L = i∂t −Dm − σw

t , where the symbol map [0, T ] 3 t 7→ σ(t, ·) ∈M∞,1
0,γ (Cn×n) is

continuous for the narrow convergence and the nonlinear term is (1.35). We recast
the problem in integral form as

ψ(t) = U(t, 0)ψ0 − i
∫ t

0

U(t, τ)F (ψ(τ))dτ,

where U(t, τ), 0 ≤ τ ≤ t ≤ T is the linear propagator constructed in the proof of
Theorem 1.4.2 corresponding to initial data at time τ . In order for the iteration
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7.2. The nonlinear equation

scheme in Theorem 7.2.1 to work it is enough to prove that U(t, τ) is strongly
continuous on X jointly in (t, τ), 0 ≤ τ ≤ t ≤ T ; the latter condition would imply
a uniform bound for the operator norm with respect to t, τ as a consequence of the
uniform boundedness principle. Theorem 1.4.2 yields strong continuity of U(t, τ) in
t for fixed τ . The time-reversibility enjoyed by the equation implies that the same
holds after switching τ and t. Furthermore, for τ ′ ≤ τ ≤ t we have

‖U(t, τ)ψ0 − U(t, τ ′)ψ0‖X ≤C‖ψ0 − U(τ, τ ′)ψ0‖X ,

hence the map τ 7→ U(t, τ)ψ0 is continuous in X, uniformly with respect to t and
this gives the desired result.
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Chapter 8

Pointwise Convergence of Integral
Kernels in the Feynman-Trotter
formula

8.1 Preliminary results

The celebrated Schwartz kernel theorem is usually invoked for proving that any
reasonably well-behaved operator is indeed an integral transform (in the distribu-
tional sense). In the following we will need this identification but at the topological
level [Gas60; Tre67], that is, a linear map A : S(Rd)→ S ′(Rd) is continuous if and
only if it is generated by a (unique) temperate distribution K ∈ S ′(R2d), namely:

〈Af, g〉 = 〈K, g ⊗ f〉, ∀f, g ∈ S(Rd),

and the correspondence K 7→ A above is a topological isomorphism between
S ′(R2d) and the space Lb

(
S(Rd),S ′(Rd)

)
. Recall from Section 2.1.1 that S ′(Rd)

and S ′(R2d) are endowed with the strong topology by default.

The previous identification provides the following convergence result at the
level of integral kernels.

Proposition 8.1.1. Let An → A in Ls

(
S(Rd),S ′(Rd)

)
. Then we have convergence

in S ′(R2d) of the corresponding distribution kernels.

Proof. Since S(Rd) is a Fréchet space and An, being a sequence, defines a filter
with countable basis on Ls(S(Rd),S ′(Rd)), from [Tre67, Corollary at pag. 348]
we have that An → A also in Lc(S(Rd),S ′(Rd)), which is in turn equivalent
to convergence in Lb(S(Rd),S ′(Rd)) since S(Rd) is a Montel space - cf. [Tre67,
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8. Pointwise convergence of integral kernels

Propositions 34.4 and 34.5]. The desired conclusion then follows from the Schwartz
kernel theorem.

The following lemma extends [CGNR14, Lemma 2.2 and Proposition 5.2].

Lemma 8.1.2. Let X denote either M∞
0,s(R2d), s ≥ 0, or M∞,1(R2d).

(i) Let σ ∈ X and t 7→ St ∈ Sp(d,R) be a continuous mapping defined on
the compact interval [−T, T ] ⊂ R, T > 0. For any t ∈ [−T, T ], we have
σ ◦ St ∈ X, with

‖σ ◦ St‖X ≤ C(T )‖σ‖X .

(ii) Let σ ∈ X and A,B,C be real d× d matrices with B invertible, and set

Φ(x, y) =
1

2
Ax · x+Bx · y +

1

2
Cy · y.

There exists a unique symbol σ̃ ∈ X such that, for any f ∈ S(Rd):

σw

∫
Rd
e2πiΦ(x,y)f(y)dy =

∫
Rd
e2πiΦ(x,y)σ̃(x, y)f(y)dy. (8.1)

Furthermore, the map σ 7→ σ̃ is bounded on X.

Proof. The case X = M∞,1(R2d) is covered by [CGNR14, Lemma 2.2]. We prove
here the claim for X = M∞

0,s(R2d).

(i) For any non-zero window function Φ ∈ S
(
R2d
)

and S ∈ Sp(d,R) we have

‖σ ◦ S‖M∞0,s = sup
z,ζ∈R2d

|〈σ ◦ S,MζTzΦ〉|vs(ζ)

= sup
z,ζ∈R2d

∣∣∣〈σ,M(S−1)>ζTSz
(
Φ ◦ S−1

)〉∣∣∣vs(ζ)

= sup
z,ζ∈R2d

∣∣〈σ,MζTz
(
Φ ◦ S−1

)〉∣∣vs(S>ζ)

≤
∥∥S>∥∥s‖VΦ◦S−1σ‖M∞0,s

. ‖S‖s‖VΦ◦S−1Φ‖L1
s
‖σ‖M∞0,s ,

where we used the estimate vs(S
>ζ) ≤ ‖S>‖svs(ζ) (here ‖B‖ denotes the operator

norm of the matrix B) and the change-of-window formula (3.3).

We now prove the uniformity with respect to the parameter t, when S = St.
The subset {St : t ∈ [−T, T ]} ⊂ Sp(d,R) is bounded and thus ‖St‖ ≤ C1(T ).
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8.1. Preliminary results

Furthermore,
{
VΦ◦S−1

t
Φ : t ∈ [−T, T ]

}
is a bounded subset of S(R2d) (this follows

at once by inspecting the Schwartz seminorms of Φ ◦ S−1
t ), hence ‖VΦ◦S−1Φ‖L1

s
≤

C2(T ).

(ii) The proof is similar to that of the case X = M∞,1(R2d) in [CGNR14,
Proposition 5.2]. In particular, σ̃ is explicitly derived from σ as follows: σ̃ =
U2UU1σ, where U ,U1,U2 are the mappings

U1σ(x, y) = σ(x, y + Ax), U2σ(x, y) = σ(x,B>y), Ûσ(ξ, η) = eπiξ·ησ̂(ξ, η).

U1 and U2 are isomorphisms of M∞
0,s(R2d), as a consequence of the previous item. For

what concerns U , an inspection of the proof of [Grö01, Corollary 14.5.5] shows that
any modulation space Mp,q

0,s (R2d) is invariant under the action of U ; alternatively,
the boundedness of the Fourier multiplier U can be inferred from Proposition 4.1.1
since µ(x, ξ) = e−πix·ξ belongs to W 1,∞(R2d) - cf. Lemma 5.4.7.

We prove now an easy result on exponentials in Banach algebras. Recall the
notation introduced in Remark 2.1.1.

Lemma 8.1.3. Let (A, ?) be a complex Banach algebra with unit 1 and consider
a ∈ A. For any real t and integer n ≥ 1 we have

e−i
t
n
a :=

∞∑
k=0

(
−i t
n

)k
ak

k!
= 1 + i

t

n
a0,

where a0 ∈ A and the following estimate holds:

‖a0‖ ≤ ‖a‖e|t|‖a‖.

Proof. It is enough to set

a0 := −
∞∑
k=0

(
−i t
n

)k
ak+1

(k + 1)!
.

The desired identity is clearly satisfied and we can estimate the norm of a0 as
follows:

‖a0‖ ≤ ‖a‖

(
∞∑
k=0

|t|k‖a‖k

(k + 1)!

)
=

1

|t|
(
e|t|‖a‖ − 1

)
≤ ‖a‖e|t|‖a‖.
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8. Pointwise convergence of integral kernels

We will repeatedly make use the following result; the proof is an easy conse-
quence of the previous lemma.

Corollary 8.1.4. Let X ⊂ S ′(R2d) be a space of symbols such that (X,#) is a
Banach algebra under the Weyl product and opw(X) be a subalgebra of L(L2(Rd))
under composition. The Weyl quantization opw : X → L(L2(Rd)) is a homomor-
phism of Banach algebras. In particular, for any σ ∈ X, t ∈ R and n ∈ N we
have

e−i
t
n
σw

= (e−i
t
n
σ)w = I + i

t

n
σw

0 ,

where σ0 ∈ X satisfies

‖σ0‖X ≤ ‖σ‖Xe|t|‖σ‖X .

8.2 Proof of the main results

Recall that we are dealing with the perturbed problem (1.52), namely{
i∂tψ(t, x) = (H0 + V )ψ(t, x)

ψ(0, x) = f(x)
, (t, x) ∈ R× R2d,

where H0 = Qw is the Weyl quantization of a real quadratic form on R2d and
V = σw is a Weyl operator with symbol in a suitable class. The Trotter formula in
Theorem 1.5.1 holds: if U(t) = e−it(H0+V ) denotes the evolution operator associated
with (1.52), then

U(t)ψ = lim
n→∞

En(t)ψ ∀ψ ∈ L2(Rd),

where Feynman-Trotter propagators En(t) are defined by

En(t) :=
(
e−i

t
n
H0e−i

t
n
V
)n
, n ∈ N.

Finally, recall that en,t(x, y) is the distribution kernel of En(t), whereas ut(x, y) is
that of U(t) = e−it(H0+V ).

8.2.1 Proof of Theorem 1.6.1

We are assuming V = σw with σ ∈ M∞
0,s(R2d), with s > 2d. The proof will be

carried on for t > 0, since the case t < 0 is similar. Actually, the upper-right block
of the matrix S−t = S−1

t is −B>t (cf. Proposition 4.3.1), hence detBt 6= 0 if and
only if detB−t 6= 0.
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8.2. Proof of the main results

We start from the Trotter formula (1.41). In view of Theorem 4.2.5 and
Corollary 8.1.4 we have

En(t) =
(
e−i

t
n
H0e−i

t
n
V
)n

=

(
e−i

t
n
H0

(
I + i

t

n
σw

0

))n
for a suitable σ0 = (σ0)n,t ∈M∞

0,s(R2d) satisfying

‖σ0‖M∞0,s ≤ C(t) (8.2)

for some constant C(t) > 0 independent of n.

We use the symplectic covariance of Weyl calculus, that is we apply (4.9)
repeatedly, and the fact that eisH0e−isH0 = I for any s ∈ R so that the ordered
product of operators in En(t) can be expanded as

En(t) =

[
n∏
k=1

(
I + i

t

n

(
σ0 ◦ S−k t

n

)w
)]

e−itH0

= aw
n,t µ(St),

where, for any t and n ≥ 1,

‖an,t‖M∞0,s =

∥∥∥∥ n∏
k=1

(
1 + i

t

n

(
σ0 ◦ S−k t

n

))∥∥∥∥
M∞0,s

≤
n∏
k=1

(
1 +

t

n

∥∥σ0 ◦ S−k t
n

∥∥
M∞0,s

)
,

where, for any t and n ≥ 1,

‖an,t‖M∞0,s =

∥∥∥∥ n∏
k=1

(
1 + i

t

n

(
σ0 ◦ S−k t

n

))∥∥∥∥
M∞0,s

≤
n∏
k=1

(
1 +

t

n

∥∥σ0 ◦ S−k t
n

∥∥
M∞0,s

)
,

where in the first product symbol we mean the Weyl product # of symbols - cf.
Section 4.2 and Remark 2.1.1. By Lemma 8.1.2 applied with T = t and (8.2), we
then have

‖an,t‖M∞0,s ≤
(

1 +
t

n
C(t)

)n
≤ eC(t)t, (8.3)

for some new locally bounded constant C(t) > 0 independent of n.
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8. Pointwise convergence of integral kernels

Since St is a free symplectic matrix precisely for t ∈ R \ E, by (4.5) and (8.1)
we explicitly have

En(t)ψ(x) = aw
n,t µ(St)ψ(x)

= c(t)|detBt|−1/2

∫
Rd
e2πiΦt(x,y)ãn,t(x, y)ψ(y)dy,

where Φt is given in (1.51) and c(t) ∈ C is such that |c(t)| = 1.

Therefore, we managed to write En(t) as an integral operator (defined up to a sign)
with kernel

en,t(x, y) = c(t)|detBt|−1/2e2πiΦt(x,y)ãn,t(x, y),

Now, consider the integral kernel ut of the propagator U(t) = e−it(H0+V ) and define
for consistency ãt ∈ S ′(R2d) in such a way that

ut(x, y) = c(t)|detBt|−1/2e2πiΦt(x,y)ãt(x, y).

Since we know by the usual Trotter formula (1.41) that for any fixed t

‖En(t)ψ − U(t)ψ‖L2 → 0, ∀ψ ∈ L2(Rd),

we have En(t)→ U(t) in Ls(S(Rd),S ′(Rd)), because S(Rd) ↪→ L2(Rd) ↪→ S ′(Rd).
As a consequence of Proposition 8.1.1, we get en,t → ut in S ′(Rd). This is equivalent
to

ãn,t → ãt in S ′(R2d).

Therefore, for any non-zero Ψ ∈ S(R2d) we have pointwise convergence of the
corresponding short-time Fourier transforms: for any fixed (z, ζ) ∈ R4d,

VΨãn,t(z, ζ) = 〈ãn,t,MζTzΨ〉 → 〈ãt,MζTzΨ〉 = VΨãt(z, ζ). (8.4)

By (8.3) and Lemma 8.1.2 we see that the sequence ãn,t, for any fixed t, is bounded
in M∞

0,s(R2d). Hence, there exists a constant C = C(t) independent of n such that

|VΨãn,t(z, ζ)| ≤ C〈ζ〉−s, ∀z, ζ ∈ R2d. (8.5)

Combining this estimate with (8.4) immediately yields ãt ∈ M∞
0,s(R2d) as well,

hence the first claim of Theorem 1.6.1.

For the remaining part, we argue as follows: choose a non-zero window Ψ ∈
C∞c (R2d) and set Θ ∈ C∞c (R2d) with Θ = 1 on suppΨ; for any fixed z ∈ R2d and
0 < r < s− 2d, we have∥∥F[(en,t − ut)TzΨ]∥∥L1

r
= |detBt|−1/2

∥∥F[e2πiΦt(ãn,t − ãt)TzΨ
]∥∥

L1
r

= |detBt|−1/2
∥∥F[(TzΘe2πiΦt

)
(ãn,t − ãt)TzΨ

]∥∥
L1
r

= |detBt|−1/2
∥∥F[TzΘe2πiΦt

]
∗ F
[
(ãn,t − ãt)TzΨ

]∥∥
L1
r

. |detBt|−1/2
∥∥F[TzΘe2πiΦt

]∥∥
L1
r

∥∥F[(ãn,t − ãt)TzΨ]∥∥L1
r
,
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where the convolution inequality in the last step is an easy consequence of Peetre’s
inequality (2.1).

Clearly, TzΘe
2πiΨt ∈ C∞c (R2d), while∥∥F[(ãn,t − ãt)TzΨ]∥∥L1

r
→ 0

by dominated convergence, using (8.4) and

|F
[
(ãn,t − ãt)TzΨ

]
|〈ζ〉r = |VΨ(ãn,t − ãt)(z, ζ)|〈ζ〉r

≤ C〈ζ〉r−s ∈ L1(R2d),

because s− r > 2d, where in the last inequality we used (8.5) and the fact that
ãt ∈M∞

0,s(R2d). This gives the claimed convergence in (FL1
r)loc(R2d).

To conclude, we have that∥∥(en,t − ut)TzΨ
∥∥
L∞
≤ ‖VΨ(en,t − ut)(z, ·)‖L1 → 0,

and in particular this yields uniform convergence on compact subsets: for any
compact K ⊂ R2d, choose Ψ ∈ S(R2d), Ψ = 1 on K.

8.2.2 Proof of Corollary 1.6.2

The proof of Corollary 1.6.2 is then immediate, since C∞b (R2d) =
⋂
s≥0M

∞
0,s(R2d)

and
C∞(R2d) =

⋂
r>0

(
FL1

r

)
loc

(R2d). (8.6)

The latter characterization is folklore, being a refinement of the standard decay-
smoothness trade-off for the Fourier transform; we provide a sketch of the proof
for the sake of completeness.

Proof of (8.6). The inclusion C∞ ⊂
⋂
r>0(FL1

r)loc is straightforward. Indeed, let
f ∈ C∞ and consider arbitrary r > 0 and φ ∈ C∞c ; then fφ ∈ C∞c and

‖fφ‖FL1
r

=

∫
R2d

|F(fφ)(ζ)|vr(ζ)dζ .N

∫
R2d

(1 + |ζ|)−N+rdζ,

and the latter quantity is finite for N ∈ N large enough.

Conversely, assume f ∈ (FL1
r)loc for any r > 0 and let φ ∈ C∞c . For any α ∈ N,

the distribution derivative ∂α(fφ) is the (inverse) Fourier transform of a function
in FL1; indeed,∣∣∣∣∫

R2d

e2πiz·ζ(2πiζ)αF(fφ)(ζ)dζ

∣∣∣∣ . ∫
R2d

|F(fφ)(ζ)|(1 + |ζ|)|α|dζ,

and the latter quantity is finite by the assumption with r = |α|.
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8. Pointwise convergence of integral kernels

8.2.3 Proof of Theorem 1.6.3

We now assume V = σw with σ ∈ M∞,1(R2d). Therefore for an arbitrary ε > 0,
Proposition 3.2.19 allows us to write σ = σ1 + σ2, with σ1 ∈ C∞b (R2d) and
σ2 ∈M∞,1(R2d) with ‖σ2‖M∞,1 ≤ ε and clearly

‖σ1‖M∞,1 ≤ ‖σ‖M∞,1 + ‖σ2‖M∞,1 ≤ ‖σ‖M∞,1 + ε ≤ 1 + ‖σ‖M∞,1 ,

assuming, from now on, ε ≤ 1. Notice that

e−i
t
n(σw

1 +σw
2 ) = I +

∞∑
k=1

1

k!

(
−i t
n

)k
(σw

1 + σw
2 )k

= I + i
t

n
(σ′1)w + i

t

n
(σ′2)w,

where we set

(σ′1)w = −
∞∑
k=1

1

k!

(
−i t
n

)k−1

(σw
1 )k,

(σ′2)w = −
∞∑
k=1

1

k!

(
−i t
n

)k−1

((σw
1 + σw

2 )k − (σw
1 )k).

Now, fix once for all s > 2d. The norms of the symbols σ′1 = σ′1,n,t and σ′2 = σ′2,n,t
can be estimated as follows for any t > 0 (cf. the proof of Lemma 8.1.3). We have

‖σ′1‖M∞,1 ≤ ‖σ1‖M∞,1e
t‖σ1‖M∞,1 ≤ (1 + ‖σ‖M∞,1)e

t(1+‖σ‖M∞,1) =: C1(t), (8.7)

‖σ′1‖M∞0,s ≤ ‖σ1‖M∞0,se
t‖σ1‖M∞0,s =: C2(t, ε). (8.8)

Similarly, using the elementary inequality

(a+ b)k − ak ≤ kb(a+ b)k−1, a, b ≥ 0, k ≥ 1,

we obtain

‖σ′2‖M∞,1 ≤ ‖σ2‖M∞,1e
t(‖σ1‖M∞,1+‖σ2‖M∞,1) ≤ εet(2+‖V ‖M∞,1) =: ε C3(t). (8.9)

Here C1(t) and C3(t) are independent of n and ε and C2(t, ε) is independent of n.
The approximate propagator En(t) thus becomes

En(t) =
(
e−i

t
n
H0e−i

t
n(σw

1 +σw
2 )
)n

=

(
e−i

t
n
H0

(
1 + i

t

n
(σ′1)w + i

t

n
(σ′2)w

))n
,

190



8.2. Proof of the main results

and similar arguments to those of the previous section yield

En(t) =

[
n∏
k=1

(
I + i

t

n

(
σ′1 ◦ S−k tn

)w

+ i
t

n

(
σ′2 ◦ S−k tn

)w
)]

e−itH0

=
[
aw
n,t + bw

n,t

]
µ(St),

where we set

an,t =
n∏
k=1

(
1 + i

t

n

(
σ′1 ◦ S−k tn

))
,

and in the latter product we mean the Weyl product # of symbols.

The term aw
n,t can be estimated as in the proof of Theorem 1.6.1; in particular,

using (8.8), we get (cf. (8.3))

‖an,t‖M∞0,s ≤ C(t, ε). (8.10)

In order to estimate the M∞,1 norm of the remainder bn,t, it is useful the following
result, which can be easily proved by induction on n.

Lemma 8.2.1. Let A be a Banach algebra. For any u1, . . . , un, v1, . . . , vn ∈ A,
with ‖ui‖ ≤ R and ‖vi‖ ≤ S for any i = 1, . . . , n and some R, S > 0, and setting
wk = uk + vk, we have

n∏
k=1

(uk + vk) = u1u2 . . . un + zn,

where

zn = v1w2 . . . wn + u1v2w3 . . . wn + . . .+ u1u2 . . . un−2vn−1wn + u1u2 . . . un−1vn,

and therefore
‖zn‖ ≤ nS(R + S)n−1.

Setting

uk = 1 + i
t

n

(
σ′1 ◦ S−k tn

)
, vk = i

t

n

(
σ′2 ◦ S−k tn

)
, k = 1, . . . , n,

and applying Lemma 8.1.2 with T = t, and (8.7) and (8.9), we get

‖uk‖M∞,1 =

∥∥∥∥1 + i
t

n

(
σ′1 ◦ S−k tn

)∥∥∥∥
M∞,1

≤ 1 +
t

n

∥∥σ′1 ◦ S−k tn∥∥M∞,1 ≤ 1 +
t

n
C(t),
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8. Pointwise convergence of integral kernels

‖vk‖M∞,1 =
t

n

∥∥σ′2 ◦ S−k tn∥∥M∞,1 ≤ t

n
C(t)ε,

for some locally bounded constant C(t) > 0 independent of n and ε. Therefore, by
Lemma 8.2.1,

‖bn,t‖M∞,1 ≤ n
t

n
C(t)ε

(
1 + 2

t

n
C(t)

)n−1

≤ εtC(t)e2tC(t). (8.11)

Following the pathway of the proof of Theorem 1.6.1, we write En(t) as an integral
operator with kernel

en,t(x, y) = c(t)|detBt|−1/2e2πiΦt(x,y)
(
ãn,t + b̃n,t

)
(x, y)

= c(t)|detBt|−1/2e2πiΦt(x,y)kn,t(x, y),

that is kn,t = ãn,t + b̃n,t, and the Trotter formula (1.41) combined with Proposition
8.1.1 imply that kn,t → kt in S ′(R2d), where the distribution kt is conveniently
introduced to rephrase the integral kernel ut of the propagator U(t) = e−it(H0+V )

as
ut(x, y) = c(t)|detBt|−1/2e2πiΦt(x,y)kt(x, y).

By repeating this argument with σ2 = 0 (hence b̃n,t = 0 and kn,t = ãn,t) we see

that ãn,t converges in S ′(R2d) as well, hence b̃n,t converges in S ′(R2d) by difference.

Therefore, for any non-zero Ψ ∈ S(R2d) the functions σΨãn,t and σΨb̃n,t converge
pointwise in R4d.

We need a technical lemma at this point.

Lemma 8.2.2. Let Fn and Gn be two sequences of complex-valued functions on
R2d such that Fn → F , Gn → G pointwise, and assume |Fn| ≤ H ∈ L1(R2d) and
‖Gn‖L1 ≤ ε for any n ∈ N. Then,

lim sup
n→∞

‖Fn +Gn − (F +G)‖L1 ≤ 2ε.

Proof. First, notice that ‖G‖L1 ≤ ε by Fatou’s lemma. Now,

‖Fn +Gn − (F +G)‖L1 ≤ ‖Fn − F‖L1 + ‖Gn −G‖L1 ,

where the first term on the right-hand side goes to zero by dominated convergence,
while for the other one we have ‖Gn −G‖L1 ≤ 2ε. The desired conclusion is then
immediate.

For any fixed z ∈ R2d, set Fn(ζ) = σΨãn,t(z, ζ) and Gn(ζ) = σΨb̃n,t(z, ζ). By
Lemma 8.1.2 and (8.10) we have

sup
ζ∈R2d

〈ζ〉s|Fn(ζ)| . ‖ãn,t‖M∞0,s . ‖an,t‖M∞0,s ≤ C(t, ε).
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8.3. Convergence at exceptional times

Similarly, by Lemma 8.1.2 and (8.11),

‖Gn‖L1 . ‖b̃n,t‖M∞,1 . ‖bn,t‖M∞,1 ≤ ε C(t).

These estimates yield two results: on the one hand, the first claim of Theorem
1.6.3 is proved. On the other hand, the assumptions of Lemma 8.2.2 are satisfied:
we have (Fn +Gn)(ζ) = σΨkn,t(z, ζ) and (F +G)(ζ) = σΨkt(z, ζ), and therefore
we obtain

lim sup
n→∞

∥∥F[(kn,t − kt)TzΨ]∥∥L1 ≤ 2ε C(t).

Since ε can be made arbitrarily small and the left-hand side is independent of ε,
we conclude that

lim
n→∞

∥∥F[(kn,t − kt)TzΨ]∥∥L1 = 0,

in particular kn,t → kt in (FL1)loc(R2d).

Finally, with the help of a suitable bump function Θ as in the preceding section,
for any fixed z ∈ R2d we infer∥∥F[(en,t − ut)TzΨ]∥∥L1 ≤ |detBt|−1/2

∥∥F[(TzΘe2πiΦt
)]∥∥

L1

∥∥F[(kn,t − kt)TzΨ]∥∥L1 ,

and thus ∥∥F[(en,t − ut)TzΨ]∥∥L1 → 0.

This gives en,t → ut in (FL1)loc(R2d) and therefore uniformly on compact subsets
of R2d.

8.3 Convergence at exceptional times

Let us commence this section on convergence results for integral kernels at excep-
tional times with a general result for the kernels of strongly convergent sequences
of operators in L2.

Theorem 8.3.1. Let {An} ⊂ L(L2(Rd)), n ∈ N, be a sequence of bounded linear
operators on L2(Rd) with associated distribution kernels {an} ⊂ S ′(R2d), and
A ∈ L(L2(Rd)) with distribution kernel a ∈ S ′(R2d). Assume that An → A in the
strong operator topology. Then:

1. an, n ∈ N, and a belong to a bounded subset of M∞(R2d);

2. an → a in the weak-* topology on M∞(R2d).

In particular we have an → a in (FL∞)loc(R2d), the latter space endowed with the
topology σ((FL∞)loc(R2d), (FL1)comp(R2d)).
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8. Pointwise convergence of integral kernels

Proof. We have that {An} is a bounded sequence in L(L2(Rd)) as a consequence
of the uniform boundedness principle, hence also in L(M1(Rd),M∞(Rd)). The
Feichtinger kernel theorem (Theorem 3.2.15) yields that the kernels an belong to a
bounded subset of M∞(R2d). Similarly, A ∈ L(L2(Rd))⇒ a ∈M∞(R2d). For the
second part of the claim we remark that An → A in the strong operator topology
implies that an → a in S ′(R2d). Therefore, for any fixed non-zero g ∈ S(Rd) we have
Vgan → Vga pointwise in R2d. Moreover, we have the estimate |Vgan(x, ξ)| ≤ C,
for some constant C > 0 independent of n by the first part of the claim. Hence,
for any ϕ ∈M1(R2d) we have

〈an, ϕ〉 =

∫
R2d

Vgan(x, ξ)Vgϕ(x, ξ)dxdξ

→
∫
R2d

Vga(x, ξ)Vgϕ(x, ξ)dxdξ = 〈a, ϕ〉,

by the dominated convergence theorem.

It would be interesting to prove the boundedness of an in M∞(R2d) in Theorem
8.3.1 without using the uniform boundedness principle, although it could be not
immediate.

A straightforward application of this result allows us to prove global-in-time
convergence of integral kernels, although in a weaker sense than before.

Corollary 8.3.2. Assume V ∈ L∞(Rd) or V = σw with σ ∈ M∞,1(R2d). Let
en,t ∈ S ′(R2d) be the distribution kernel of the Feynman-Trotter parametrix En(t)
in (1.53) and ut ∈ S ′(R2d) be the kernel of the Schrödinger evolution operator U(t)
associated with the Cauchy problem (1.37). For any n ∈ N and t ∈ R we have
en,t, u ∈ M∞(R2d). Moreover, en,t → ut in the weak-* topology on M∞(R2d) for
any fixed t ∈ R.

For more regular potentials we expect that the conclusion of Corollary 8.3.2
can be improved. We are ready to provide a version of the Trotter formula for
potentials in M∞,1(Rd), with strong convergence on M1(Rd).

Proof of Theorem 1.6.5. We prove that En(t)→ U(t) strongly in L(M1(Rd)); the
claim concerning adjoint operators follows by similar arguments since U(t)∗ = U(−t)
and En(t)∗ =

(
ei

t
n
V ei

t
n
H0

)n
.

As already observed, we know that the operator H0 with domain D(H0) =
{f ∈ L2(Rd) : H0f ∈ L2(Rd)} is self-adjoint [Hör95]. Let U0(t) = e−itH0 be the
corresponding strongly continuous unitary group on L2(Rd). The well-posedness of
the Schrödinger equation i∂tψ = H0ψ in M1(Rd) (see e.g. [CNR15b]) implies that
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8.4. Physics at exceptional times

the restriction of U0(t) to M1(Rd) defines a strongly continuous group on M1(Rd),
its generator being the restriction of H0 to the subspace {f ∈ M1(Rd) : H0f ∈
M1(Rd)}, as a consequence of known results on subspace semigroups, cf. [EN06,
Chapter 2, Section 2.3]. Since a Weyl operator with symbol in the Sjöstrand class
is a bounded operator on M1(Rd) by Theorem 4.2.2, the desired result follows from
the classical Trotter theorem on Banach spaces [EN06, Corollary 2.7 and Exercise
2.9]. The second part of the claim is just an equivalent formulation of the previous
results for the corresponding integral kernels, whereas the last conclusion follows
from the continuous embedding M1(Rd) ↪→ Lp(Rd), for every 1 ≤ p ≤ ∞.

Remark 8.3.3. We expect other improvements of Theorem 8.3.1 to hold in the case
where An = En(t), A = U(t). In particular, convergence result for the corresponding
integral kernels could be investigated in the context of mixed modulation spaces and
generalized kernel theorems in the spirit of [CN19].

8.4 Physics at exceptional times

In spite of the attempts to shed light on the nature of exceptional times and the
partial results in the previous section, a physical interpretation of exceptional times
is still not clear at the moment. This non-trivial question also appears in the form
of an enigmatic exercise in the textbook [FH10, Problem 3-1] by Feynman and
Hibbs. While dimensional analysis and heuristic arguments may provide some
hints, a precise answer still seems to be missing.

We give our contribution to this discussion with a short argument which
elucidates the nature of exceptional times in terms of measurable quantities. Recall
that B(u, r) denotes the ball with center u ∈ Rd and radius r > 0 in Rd. Following
the custom in physics we adopt below the bra-ket notation, and we identify states
with their wave functions in the position representation.

Fix x0, y0 ∈ Rd and a, b > 0, and consider the normalised wave-packets

|A〉 =
1√

|B(y0, a)|
1B(y0,a), |B〉 =

1√
|B(x0, b)|

1B(x0,b).

The corresponding transition amplitude from the state |A〉 to |B〉 under the
Hamiltonian H = H0 + V as in Theorem 1.6.3, namely

I = I(t, x0, y0, a, b) = 〈B|U(t)|A〉, t ∈ R,

trivially satisfies the estimate

|I(t, x0, y0, a, b)| ≤ 1, ∀t ∈ R, x0, y0 ∈ Rd, a, b > 0.
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8. Pointwise convergence of integral kernels

This bound cannot be improved at exceptional times: consider for instance the
case where t = 0, x0 = y0 and a = b, which yields I = 1. Nevertheless, we have the
following result.

Proposition 8.4.1. Under the same assumptions of Theorem 1.6.3, for all t ∈ R\E
and x0, y0 ∈ Rd we have

lim
a,b→0

I(t, x0, y0, a, b)

(ab)d/2
= Cut(x0, y0),

where C = C(d) = |B(0, 1)|.

Proof. An explicit computation yields

I(t, x0, y0, a, b)

C(ab)d/2
=

1

C2(ab)d

∫
B(x0,b)

∫
B(y0,a)

ut(x, y)dydx,

and the conclusion follows by the continuity of ut(x, y) in R2d, because ut ∈(
FL1

)
loc

(R2d) for t ∈ R \ E by Theorem 1.6.3.

This result shows that while |I| ≤ 1 in general, for a non-exceptional time
t ∈ R \ E we have that |I| ∼ (ab)d/2 as a, b→ 0. In particular |I| → 0 as a, b→ 0
except (possibly) for exceptional times.

196



Chapter 9

Approximation of Feynman Path
Integrals with non-smooth
Potentials

9.1 Short-time action and related estimates

We begin with a brief motivational discussion devoted to explain the structure
of formula (1.55) for the approximate action S(N)(t, s, x, y). We refer to [Gos17,
Section 4.5] for more details.

It is well known (see [FH10, Section 2.1] and also [FM13; LL76]) that for a
classical Hamiltonian

H(x, ξ, t) =
1

2
ξ2 + V (t, x),

the action S(t, s, x, y) satisfies the Hamilton-Jacobi equation

∂S

∂t
+

1

2
|∇xS|2 + V (t, x) = 0.

In order for Ẽ(N) to be a parametrix in a sense to be specified (cf. (9.7) and (9.8)
below), we consider the slightly modified equation

∂S

∂t
+

1

2
|∇xS|2 + V (t, x) +

i~d
2(t− s)

− i~
2

∆xS = 0,

and look for a solution S in the form S(t, s, x, y) = |x−y|2
2(t−s) +R(t, s, x, y), s < t. This

yields an equivalent equation for R, namely

∂R

∂t
+

1

2
|∇xR|2 + V (t, x) +

1

t− s
(x− y) · ∇xR−

i~
2

∆xR = 0.
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9. Path integrals with rough potentials

Assume that

R(t, s, x, y) = W0 +W1(s, x, y)(t− s) +W2(s, x, y)(t− s)2 + . . . ,

where the functions Wk(s, x, y) will be briefly denoted by Wk(x, y) from now on.
We immediately find W0 = 0 and, for k ≥ 1, by equating to 0 the coefficient of the
term (t− s)k−1, we obtain the equations

kWk(x, y) + (x− y) · ∇xWk(x, y) = Fk(s, x, y), (9.1)

where we set

Fk(s, x, y) = −1

2

∑
j+`=k−1
j≥1,`≥1

∇xWj · ∇xW` −
1

(k − 1)!
∂k−1
t V (s, x) +

i~
2

∆xWk−1. (9.2)

For brevity we also write Fk(x, y) in place of Fk(s, x, y).

Lemma 9.1.1. Suppose Fk in (9.1) is continuous as a function of (x, y) ∈ R2d.
Then there exists a unique continuous solution of (9.1), namely

Wk(x, y) =

∫ 1

0

τ k−1Fk(τx+ (1− τ)y, y)dτ. (9.3)

Proof. According to the methods of characteristics, along the curves of type
xu(λ) = y + ueλ, where λ ∈ R and u ∈ Rd has unitary norm, the original PDE
(9.1) becomes a linear ODE with respect to the variable λ:

d

dλ
Wk(xu(λ), y) + kWk(xu(λ), y) = Fk(xu(λ), y),

whose solutions are given by

Wk(xu(λ), y) = e−kλ
(∫ λ

−∞
ekσFk(xu(σ), y)dσ + C

)
,

where C ∈ R is an arbitrary constant. Notice that λ = log |x− y| and the change
of variable σ = log (|x− y|τ) thus gives

Wk(x, y) =

∫ 1

0

τ k−1Fk(τx+ (1− τ)y, y)dτ +
C

|x− y|k
.

It is therefore clear that the unique continuous solution corresponds to C = 0.

We now assume that V satisfies Assumption (Ã) and we prove that we can
then solve the equation (9.1) for k = 1, . . . , N by applying repeatedly Lemma 9.1.1
above.
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9.1. Short-time action and related estimates

Proposition 9.1.2. Let V satisfy Assumption (Ã). Then the equation (9.1) has,
for any 1 ≤ k ≤ N , a unique solution Wk(s, x, y) satisfying

‖∂αxWk‖M∞,1(R2d) ≤ C, for |α| ≤ 2(N − k + 1), s ∈ R,

for some constant C > 0.

Proof. First of all we recall that any function in M∞,1 is continuous. Let us first
prove the claim for k = 1. We have F1(s, x, y) = −V (s, x). Using Lemma 9.1.1
with k = 1, the STFT of ∂αxW1(s, ·, ·), |α| ≤ 2N , can be written as

|Vg∂αxW1(z, ζ)| =
∣∣∣∣∫ 1

0

τ |α|Vg[∂
α
xV (s, τx+ (1− τ)y)](z, ζ)dτ

∣∣∣∣, z, ζ ∈ R2d.

We now think of V as a function on R2d. More precisely, define

V ′(s, x, y) = V (s, x), s ∈ R, x, y ∈ Rd,

and notice that V ′ still satisfies Assumption (Ã) with M∞,1(Rd) replaced by
M∞,1(R2d).

Let us introduce the parametrized matrices Mτ =

[
τI (1− τ)I
0 I

]
∈ GL(2d,R),

with τ ∈ (0, 1]. We can thus write V (s, τx+ (1− τ)y) = V ′(s,Mτ (x, y)), and by
the behaviour of modulation spaces under dilations (cf. Proposition 3.2.4) we have
∂αxV

′(s,Mτ (x, y)) ∈M∞,1(R2d). Therefore,

‖∂αxW1‖M∞,1 .
∫ 1

0

τ |α|‖∂αxV ′(s,Mτ ·)‖M∞,1dτ

.

(∫ 1

0

τ |α|C∞,1(Mτ )dτ

)
‖∂αxV ′‖M∞,1 ≤ C,

where
C∞,1(Mτ ) =

(
det(I +M>

τ Mτ )
)1/2

is a continuous (hence bounded) function of the parameter τ ∈ [0, 1].

Assume now that the claim holds for any Wj up to a certain k ≤ N − 1 and
consider

|Vg∂αxWk+1(z, ζ)| =
∣∣∣∣∫ 1

0

τ k+|α|Vg[∂
α
xFk+1(τx+ (1− τ)y, y)](z, ζ)dτ

∣∣∣∣.
It is easy to deduce from (9.2) and the hypothesis on W1, . . . ,Wk that

∂αxFk+1(x, y) ∈ M∞,1(R2d) whenever |α| ≤ 2(N − k). Again by Proposition
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9. Path integrals with rough potentials

3.2.4 we have ∂αxFk+1(Mτ (x, y)) ∈M∞,1(R2d), and arguing as before we have

‖∂αxWk+1‖M∞,1 .
∫ 1

0

τ k+|α|‖∂αxFk+1(Mτ ·)‖M∞,1dτ

.

(∫ 1

0

τ k+|α|C∞,1(Mτ )dτ

)
‖∂αxWk+1‖M∞,1

≤ C.

The claim is then proved by induction.

We now define the approximate generating functions as in (1.55), namely

S(N)(t, s, x, y) =
|x− y|2

2(t− s)
+R(N)(t, s, x, y),

where

R(N)(t, s, x, y) :=
N∑
k=1

Wk(x, y)(t− s)k (9.4)

and Wk(x, y) is defined in (9.3). In particular, the first-order approximation of the
action (N = 1) is

S(1)(t, s, x, y) =
|x− y|2

2(t− s)
− (t− s)

∫ 1

0

V (s, τx+ (1− τ)y)dτ .

We conclude this section with a uniform estimate for e
i
~R

(N)
in M∞,1 that will

be used below.

Proposition 9.1.3. If the potential function V satisfies Assumption (A), then

e
i
~R

(N) ∈M∞,1(R2d
)
, with R(N) as in (9.4). More precisely,

‖e
i
~R

(N)‖M∞,1 ≤ C(T ),

for 0 ≤ t− s ≤ T~, 0 < ~ ≤ 1.

Proof. If V satisfies Assumption (Ã), Proposition 9.1.2 holds and ∂αWk(x, y) ∈
M∞,1(R2d

)
for any |α| ≤ 2(N − k + 1). In particular, Wk ∈ M∞,1(R2d) for all

k = 1, . . . , N and thus R(N) ∈M∞,1(R2d).

Recall from Section 3.2.4 that M∞,1(R2d) is a Banach algebra for pointwise
multiplication (the normalization is such that the unit element has unit norm),
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9.2. Short-time approximate propagator

hence it is enough to show the desired estimate for e
i
~ (t−s)kWk , for any 1 ≤ k ≤ N .

We obtain ∥∥∥e i~ (t−s)kWk

∥∥∥
M∞,1

=

∥∥∥∥∥
∞∑
n=0

in(t− s)kn(Wk)
n

~nn!

∥∥∥∥∥
M∞,1

≤
∞∑
n=0

(t− s)kn‖Wk‖nM∞,1
~nn!

= e~
−1(t−s)k‖Wk‖M∞,1

= eT
k‖Wk‖M∞,1 =: C(T )

where we used 0 ≤ t− s ≤ T~, 0 < ~ ≤ 1.

9.2 Short-time approximate propagator

Let us first recall that the Cauchy problem for the Schrödinger equation with
bounded potentials is globally well-posed in L2(Rd). This is an easy and classic
result that can be stated as follows.

Proposition 9.2.1. Assume that V is a real-valued function on R×Rd satisfying
V ∈ C∞(R, L∞(Rd)) and let s ∈ R. Then, the Cauchy problem{

i~∂tψ(t, x) = −1
2
~2∆ψ(t, x) + V (t, x)ψ(t, x)

ψ(s, x) = f(x)

is (backward and) forward globally well-posed in L2(Rd) and the corresponding
propagator U(t, s) is a unitary operator on L2(Rd).

We also recall from [Bou97, Theorem 2.1] a boundedness result for oscillatory
integral operators in terms of the M∞,1 norm of the amplitude.

Lemma 9.2.2. Consider the oscillatory integral operator

Af(x) =

∫
Rd
ei
|x−y|2

2 a(x, y)f(y) dy, f ∈ S(Rd),

with a ∈M∞,1(R2d). Then A extends to a bounded operator in L2(Rd) and there
exists a constant C > 0, depending only on d, such that

‖A‖L2→L2 ≤ C‖a‖M∞,1 .
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9. Path integrals with rough potentials

Note that by expanding the phase |x − y|2/2 one could also deduce this result
from known boundedness results for Kohn-Nirenberg pseudodifferential operators
[Grö01, Corollary 14.5.5] and the Parseval formula for the Fourier transform.

Consider now the parametrix Ẽ(N)(t, s) in (1.54). We have the following result.

Proposition 9.2.3. For every T > 0 there exists C = C(T ) > 0 such that, for
0 < t− s ≤ T~, 0 < ~ ≤ 1, we have

‖Ẽ(N)(t, s)‖L2→L2 ≤ C. (9.5)

Moreover, for any f ∈ L2(Rd) we have

lim
t↘s

Ẽ(N)(t, s)f = f. (9.6)

Proof. First, notice that

Ẽ(N)(t, s)f(x) =
1

(2πi(t− s)~)d/2

∫
Rd
e
i
~
|x−y|2
2(t−s) e

i
~R

(N)(t,s,x,y)f(y)dy

is an OIO with the free-particle-action as phase function and amplitude

a(N)(t, s, x, y) := e
i
~R

(N)(t,s,x,y) ∈M∞,1(R2d)

by Proposition 9.1.3. We would like to apply Lemma 9.2.2. To this end, we need
some preparation. First, using suitable unitary dilation operators (cf. Section 2.2.4

for notation) we rephrase Ẽ(N)(t, s) as follows:

Ẽ(N)(t, s) = U 1√
~(t−s)

B(N)(t, s)U√~(t−s),

where

B(N)(t, s)f(x) =
1

(2πi)d/2

∫
Rd
e
i
2
|x−y|2b(N)(t, s, x, y)f(y)dy

is an OIO whose phase function is free from time and ~ dependence and the
amplitude is

b(N)(t, s, x, y) = e
i
~
∑N
k=1Wk(

√
~(t−s)x,

√
~(t−s)y)(t−s)k

= D√~(t−s)a
(N)(x, y).

In particular, by Proposition 3.2.4 we infer b(N) ∈M∞,1(R2d) and

‖b(N)‖M∞,1 ≤ C(T )‖a(N)‖M∞,1
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9.2. Short-time approximate propagator

for 0 < ~(t− s) ≤ T (in particular for 0 < t− s ≤ ~T , since 0 < ~ ≤ 1).

Formula (9.5) then will follow from Lemma 9.2.2 and Proposition 9.1.3:

‖Ẽ(N)(t, s)‖L2→L2 = ‖B(N)(t, s)‖L2→L2

≤ C‖b(N)‖M∞,1
≤ C(T )‖a(N)‖M∞,1 ≤ C ′(T ),

for 0 < t− s ≤ T~.

For what concerns strong convergence to the identity as t ↘ s, consider the
operator

H(N)(t, s)f(x) =
1

(2πi(t− s)~)d/2

∫
Rd
e
i
~
|x−y|2
2(t−s)

(
e
i
~R

(N)(t,s,x,y) − 1
)
f(y)dy

and employ again the dilations in order to write

H(N)(t, s) = U 1√
~(t−s)

Q(N)(t, s)U√~(t−s),

where

Q(N)(t, s)f(x) =
1

(2πi)d/2

∫
Rd
e
i
2
|x−y|2q(N)(t, s, x, y)f(y)dy

is an OIO with amplitude

q(N)(t, s, x, y) := b(N)(t, s, x, y)− 1 ∈M∞,1(R2d).

The latter can be expanded as follows:

q(N)(t, s, x, y) = e
i
~R

(N)
(
t,s,
√

~(t−s)x,
√

~(t−s)y
)
− 1

=
i

~
(t− s)R(N)

(
t, s,

√
~(t− s)x,

√
~(t− s)y

)
,

where

R(N)(t, s, x, y) =
∞∑
n=1

in−1

n!

(t− s
~

)n−1

×

(
N∑
k=1

Wk

(√
~(t− s)x,

√
~(t− s) y

)
(t− s)k−1

)n

.

The Banach algebra property of the Sjöstrand class (cf. Proposition 3.2.17) and the
properties of modulation spaces under dilation (cf. Proposition 3.2.4) imply that
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9. Path integrals with rough potentials

R(N) belongs to a bounded subset of M∞,1(R2d) for 0 < t− s ≤ T~, 0 < ~ ≤ 1. It
is then clear that q(N) → 0 in M∞,1(R2d

)
for t↘ s. Therefore, the OIO Q(N) with

amplitude q(N) has operator norm converging to 0 as t↘ s by Lemma 9.2.2. The
same holds for the unitarily equivalent operator H(N).

On the other hand, by the very definition of H(N) we have

H(N)(t, s) = Ẽ(N)(t, s)− U0(t, s),

where U0(t, s) is the free propagator, with strong convergence to the identity
operator as t↘ s. Hence (9.6) follows.

A direct check shows that Ẽ(N)(t, s) is a parametrix. Precisely we have(
i~∂t +

1

2
~2∆− V (t, x)

)
Ẽ(N)(t, s) = G(N)(t, s), (9.7)

where

G(N)(t, s)f =
1

(2πi(t− s)~)d/2

∫
Rd
e
i
~S

(N)(t,s,x,y)gN(t, s, x, y)f(y) dy. (9.8)

From the construction of S(N) (see in particular eqs. (1.55), (9.1) and (9.2)) we
see that the amplitude gN is given by

gN(t, s, x, y) = −∂S
(N)

∂t
− 1

2

∣∣∇xS
(N)
∣∣2 − V (t, x)− i~d

2(t− s)
+
i~
2

∆xS
(N)

= −1

2

2N∑
k=N

∑
j+`=k
j,`≥1

∇xWj · ∇xW`(t− s)k

+
i~
2

∆xWN(x, y)(t− s)N

− (t− s)N

(N − 1)!

∫ 1

0

(1− τ)N−1(∂Nt V )((1− τ)s+ τt, x)dτ.

Hence, by Assumption (Ã) and Proposition 9.1.2 we have

‖gN(t, s, ·, ·)‖M∞,1(R2d) ≤ C(t− s)N , (9.9)

for 0 < t− s ≤ T , with a constant C = C(T ) > 0 independent of ~ ∈ (0, 1].

The preceding discussion is the bedrock of the following result.
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9.2. Short-time approximate propagator

Theorem 9.2.4. For every T > 0, there exists a constant C = C(T ) > 0 such
that

‖Ẽ(N)(t, s)− U(t, s)‖L2→L2 ≤ C~−1(t− s)N+1, (9.10)

whenever 0 < t− s ≤ T~.

Proof. We can write the operator G(N)(t, s) in (9.8) as

G(N)(t, s)f =
1

(2πi(t− s)~)d/2

∫
Rd
e
i
~
|x−y|2
2(t−s) e

i
~R

(N)(t,s,x,y)gN(t, s, x, y)f(y) dy.

Following the steps of the proof of Proposition 9.2.3, by means of suitable dilations
we can see that G(N)(t, s) is unitarily equivalent to an OIO with phase |x− y|2/2
and amplitude

g̃(N)(t, s, x, y) = D√~(t−s)

[
e
i
~R

(N)(t,s,x,y)g(N)(t, s, x, y)
]
.

Using Proposition 9.1.3, formula (9.9) and the Banach algebra property of M∞,1

we have ∥∥∥e i~R(N)(t,s,·,·)gN(t, s, ·, ·)
∥∥∥
M∞,1

≤ C(T )(t− s)N

for 0 < t− s ≤ T~. Again by the dilation properties in Proposition 3.2.4 we obtain∥∥g̃(N)(t, s, ·, ·)
∥∥
M∞,1

≤ C(T )(t− s)N

for 0 < t− s ≤ T~ and for a new constant C(T ) > 0. Therefore, by Lemma 9.2.2,
G(N)(t, s) extends to a bounded operator on L2(Rd) with∥∥G(N)f

∥∥
L2 ≤ C

∥∥g̃(N)
∥∥
M∞,1
‖f‖L2 ≤ C(T )(t− s)N‖f‖L2 , (9.11)

always for 0 < t− s ≤ T~.

Now, the propagator U(t, s) clearly satisfies the equation

(i~∂t −H)U(t, s)f = 0

for all f ∈ L2(Rd), where H = −(~2/2)∆ + V is the Hamiltonian operator, with V
as in Assumption (Ã). On the other hand

(i~∂t −H)Ẽ(N)(t, s)f = G(N)(t, s)f,

which can be rephrased in integral form by means of Duhamel’s principle as

Ẽ(N)(t, s)f = U(t, s)f − i~−1

∫ t

s

U(t, τ)G(N)(τ, s)fdτ.

205



9. Path integrals with rough potentials

Therefore, given f ∈ L2
(
Rd
)
, by (9.11) we have∥∥∥U(t, s)f − Ẽ(N)(t, s)f

∥∥∥
L2

=

∥∥∥∥~−1

∫ t

s

U(t, τ)G(N)(τ, s)fdτ

∥∥∥∥
L2

≤~−1

∫ t

s

‖U(t, τ)‖L2→L2

∥∥G(N)(τ, s)f
∥∥
L2dτ

≤C(T )~−1

∫ t

s

‖f‖L2(t− s)Ndτ

≤C ′(T )~−1(t− s)N+1‖f‖L2 ,

for 0 < t− s ≤ T~.

9.3 An abstract result and proof of the main

result

We begin by presenting a convergence result for the approximate propagators in
its full generality. In fact, it can be regarded as a generalization of [Fuj80, Lemma
3.2] and in the proof we use some ingenious tricks from that paper.

Theorem 9.3.1. Assume that for some δ > 0 we have a family of operators
Ẽ(N)(t, s) for 0 < t − s ≤ δ, and U(t, s), s, t ∈ R, bounded in L2(Rd), satisfying
the following conditions:

1. U enjoys the evolution property U(t, τ)U(τ, s) = U(t, s) for every s < τ < t
and for every T > 0 there exists a constant C0 ≥ 1 such that

‖U(t, s)‖L2→L2 ≤ C0 for 0 < t− s ≤ T. (9.12)

2. There exists C1 > 0 such that

‖Ẽ(N)(t, s)− U(t, s)‖L2→L2 ≤ C1(t− s)N+1 for t− s ≤ δ. (9.13)

For any subdivision Ω : s = t0 < t1 < . . . < tL = t of the interval [s, t], with
ω(Ω) = sup{tj − tj−1 : j = 1, . . . , L} < δ, consider therefore the composition

Ẽ(N)(Ω, t, s) in (1.56).

Then, for every T > 0 there exists a constant C = C(T ) > 0 such that

‖Ẽ(N)(Ω, t, s)− U(t, s)‖L2→L2 ≤ Cω(Ω)N(t− s) (9.14)
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9.3. An abstract result and proof of the main result

for 0 < t− s ≤ T . More precisely,

C = C(T ) = C2
0C1 exp

(
C0C1ω(Ω)NT

)
.

Proof. Set

R(N)(t, s) := Ẽ(N)(t, s)− U(t, s)

so that by (9.13) we have

‖R(N)(t, s)‖ ≤ C1(t− s)N+1 for 0 < t− s ≤ δ. (9.15)

Hence we can write

Ẽ(N)(Ω, t, s)− U(t, s)

=
(
U(t, tL−1) +R(N)(t, tL−1)

)
. . .
(
U(t1, s) +R(N)(t1, s)

)
− U(t, s).

One expands the product above and obtains a sum of ordered products of operators,
where each product has the following structure: from right to left we have, say, q1

factors of type U , p1 factors of type R(N), q2 factors of type U , p2 factors of type
R(N), etc., up to qk factors of type U , pk factors of type R(N), to finish with qk+1

factors of type U . We can schematically write such a product as

U . . . U︸ ︷︷ ︸
qk+1

R(N) . . . R(N)︸ ︷︷ ︸
pk

U . . . U︸ ︷︷ ︸
qk

. . . . . . R(N) . . . R(N)︸ ︷︷ ︸
p1

U . . . U︸ ︷︷ ︸
q1

.

Here p1, . . . , pk, q1, . . . qk, qk+1 are non negative integers whose sum is L, with pj > 0
and we can of course group together the consecutive factors of type U , using the
evolution property assumed for U . Now, for 0 < t−s ≤ T we estimate the L2 → L2

norm of the above ordered product using the known estimates for each factor,
namely (9.12) and (9.15). In particular, by using the assumption C0 ≥ 1, we get

≤ Ck+1
0

k∏
j=1

pj∏
i=1

C1(tJj+i − tJj+i−1)N+1

≤ C0

k∏
j=1

pj∏
i=1

C0C1(tJj+i − tJj+i−1)N+1
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9. Path integrals with rough potentials

where Jj = p1 + . . . + pj−1 + q1 + . . . + qj for j ≥ 2 and J1 = q1. The sum over
p1, . . . , pk, q1, . . . , qk+1 of these terms is in turn

≤ C0

{
L∏
j=1

(1 + C0C1(tj − tj−1)N+1)− 1

}

≤ C0

{
exp

(
L∑
j=1

C0C1(tj − tj−1)N+1

)
− 1

}
≤ C0

{
exp
(
C0C1ω(Ω)N(t− s)

)
− 1
}

≤ C2
0C1ω(Ω)N(t− s) exp

(
C0C1ω(Ω)N(t− s)

)
where in the last inequality we used eτ − 1 ≤ τeτ , for τ ≥ 0.

This gives (9.14) with C = C(T ) as in the statement and concludes the
proof.

Proof of Theorem 1.7.1. The claim follows at once from Theorem 9.2.4 and The-
orem 9.3.1 applied with T replaced by T~, C0 = 1, C1 = C~−1, where C is the
constant appearing in (9.10), and using t− s ≤ T~.
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[BGOR07] Árpád Bényi, Karlheinz Gröchenig, Kasso A. Okoudjou, and Luke G.
Rogers. Unimodular Fourier multipliers for modulation spaces. J.
Funct. Anal. 246 (2) (2007), 366–384 (cit. on pp. 22, 92, 126).

[BH16] Ioan Bejenaru and Sebastian Herr. The cubic Dirac equation: small

initial data in H
1
2 (R2). Comm. Math. Phys. 343 (2) (2016), 515–562

(cit. on p. 27).

[Bir33] George D. Birkhoff. Quantum mechanics and asymptotic series. Bull.
Amer. Math. Soc. 39 (10) (1933), 681–700 (cit. on p. 35).

[BJ25] Max Born and Pascual Jordan. Zur Quantenmechanik. Zeits. Physik
34 (1925), 858–888 (cit. on p. 13).
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[Grö07] Karlheinz Gröchenig. Weight functions in time-frequency analysis.
In: Pseudo-differential operators: partial differential equations and
time-frequency analysis. 52. Amer. Math. Soc., Providence, RI, 2007,
343–366 (cit. on p. 56).

[Grö10] Karlheinz Gröchenig. Wiener’s lemma: theme and variations. An
introduction to spectral invariance and its applications. In: Four
short courses on harmonic analysis. Birkhäuser, Basel, 2010 (cit. on
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J. Reine Angew. Math. 613 (2007), 121–146 (cit. on p. 147).

[GS98] Christian Grosche and Frank Steiner. Handbook of Feynman path
integrals. Vol. 145. Springer-Verlag, Berlin, 1998 (cit. on p. 32).

[GW03] Maria Girardi and Lutz Weis. Vector-valued extentions of some clas-
sical theorems in harmonic analysis. In: Analysis and applications—
ISAAC 2001 (Berlin). 10. Kluwer Acad. Publ., Dordrecht, 2003,
171–185 (cit. on p. 55).

[HA08] Franz Hlawatsch and François Auger, eds. Time-frequency analysis:
concepts and methods. ISTE, London and John Wiley & Sons, 2008
(cit. on pp. 5, 12, 13, 124).

[HB92] Franz Hlawatsch and G. Faye Boudreaux-Bartels. Linear and quadratic
time-frequency signal representations. IEEE Signal Processing Mag-
azine 9 (2) (1992), 21–67 (cit. on p. 13).

[Hei03] Christopher Heil. An introducation to weighted Wiener amalgams. In:
Wavelets and their applications. Ed. by S. Thangavelu M. Krishna
R. Radha. Allied Publishers, New Dehli, 2003, 183–216 (cit. on
pp. 78, 81).

[Hei11] Christopher Heil. A basis theory primer. Birkhäuser/Springer, New
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Câbles et Transmissions 2A (1948), 61–74 (cit. on pp. 6, 9).

[Wah07] Patrik Wahlberg. Vector-valued modulation spaces and localization
operators with operator-valued symbols. Integral Equations Operator
Theory 59 (1) (2007), 99–128 (cit. on pp. 24, 59, 61, 67, 73, 78, 96,
97).

[Wah18] Patrik Wahlberg. Propagation of polynomial phase space singularities
for Schrödinger equations with quadratic Hamiltonians. Math. Scand.
122 (1) (2018), 107–140 (cit. on p. 21).

[Wey] Hermann Weyl. The theory of groups and quantum mechanics. Dover
Publications, Inc., New York (cit. on p. 10).

[WH07] Baoxiang Wang and Henryk Hudzik. The global Cauchy problem for
the NLS and NLKG with small rough data. J. Differential Equations
232 (1) (2007), 36–73 (cit. on p. 22).

[WHHG11] Baoxiang Wang, Zhaohui Huo, Chengchun Hao, and Zihua Guo. Har-
monic analysis method for nonlinear evolution equations. I. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011 (cit. on
pp. 7, 15, 22, 63, 174).

[Wie26] Norbert Wiener. On the representation of functions by trigonomet-
rical integrals. Math. Z. 24 (1) (1926), 575–616 (cit. on p. 78).

[Wie32] Norbert Wiener. Tauberian theorems. Ann. of Math. (2) 33 (1)
(1932), 1–100 (cit. on p. 78).

[Wie88] Norbert Wiener. The Fourier integral and certain of its applications.
Cambridge University Press, Cambridge, 1988 (cit. on p. 78).

[Wig32] Eugene Wigner. On the quantum correction for thermodynamic
equilibrium. Phys. Rev. 40 (5 1932), 749–759 (cit. on p. 9).

[Won98] Man Wah Wong. Weyl transforms. Springer-Verlag, New York, 1998
(cit. on pp. 11, 94, 104).

227



[WZG06] Baoxiang Wang, Lifeng Zhao, and Boling Guo. Isometric decompo-
sition operators, function spaces Eλ

p,q and applications to nonlinear
evolution equations. J. Funct. Anal. 233 (1) (2006), 1–39 (cit. on
p. 80).

[ZCG14] Guoping Zhao, Jiecheng Chen, and Weichao Guo. Klein-Gordon
equations on modulation spaces. Abstr. Appl. Anal. (2014), Art. ID
947642, 15 (cit. on p. 22).

228


	Sommario (Italian)
	Abstract
	Acknowledgements
	Table of Contents
	Outline
	Introduction and Discussion of the Results
	The elements of Gabor analysis
	The Gabor analysis of functions and distributions
	The analysis of operators via Gabor wave packets

	The problem of quantization
	Linear perturbations of the Wigner transform and the Weyl quantization

	Wave packet analysis of metaplectic operators and applications
	Time-frequency analysis of the Dirac equation
	Gabor analysis meets Feynman path integrals
	The sequential approach
	The time-slicing approximation

	Pointwise convergence of integral kernels in the Feynman-Trotter formula
	Approximation of Feynman path integrals with non-smooth potentials

	Background Material
	Basic Facts of Real, Functional and Fourier Analysis
	General notation
	Function spaces

	Function spaces
	Weight functions
	Lebesgue spaces
	Differentiable functions and distributions
	Basic operations on functions and distributions

	The Fourier transform
	Convolution and Fourier multipliers


	Preliminaries of Time-Frequency Analysis
	Time-frequency representations
	The short-time Fourier transform
	Quadratic representations

	Modulation spaces
	Vector-valued modulation spaces
	Modulation spaces as Wiener amalgams on the Fourier side
	A Banach-Gelfand triple of modulation spaces
	The Sjöstrand class and related spaces

	Gabor frames

	The Gabor Analysis of Operators
	Fourier multipliers
	The Weyl quantization
	Vector-valued Weyl transform

	Metaplectic operators
	Notable facts on symplectic matrices
	Metaplectic operators: definitions and basic properties
	Important examples of metaplectic operators
	Symplectic covariance of the Weyl calculus
	Generalized metaplectic operators



	Time-Frequency Analysis of Operators and  Applications
	Linear Perturbations of the Wigner Transform and the Weyl Quantization
	Outline
	Preliminary results
	Bilinear coordinate transformations
	Partial Fourier transforms

	Matrix-Wigner distributions
	Cohen class members as perturbations of the Wigner transform
	Main properties of distributions in the Cohen class
	Time-frequency analysis of the Cohen kernel

	Boundedness results for matrix-Wigner distributions
	Boundedness on Lebesgue spaces
	Boundedness on modulation and amalgam spaces
	Sharp estimates for -Wigner distributions

	Pseudodifferential operators
	Boundedness results for matrix-pseudodifferential operators
	Boundedness on Lebesgue spaces
	Boundedness on modulation spaces
	Sharp results for -pseudodifferential operators

	Symbols in Sjöstrand's classes
	Almost diagonalization of T-operators

	Symbols in Fourier-Sjöstrand classes
	Boundedness results and other consequences


	Dispersion, Spreading and Sparsity of Gabor Wave Packets for Metaplectic and Schrödinger Operators
	Preliminary results
	Proof of the main results
	Applications to the free particle propagator

	Time-Frequency Analysis of the Dirac Equation
	Proof of the main results
	The free case
	The case where V is a rough bounded potential
	The case where V is a rough quadratic potential

	The nonlinear equation


	Time-Frequency Analysis of Feynman Path  Integrals
	Pointwise Convergence of Integral Kernels in the Feynman-Trotter formula
	Preliminary results
	Proof of the main results
	Proof of Theorem 1.6.1
	Proof of Corollary 1.6.2
	Proof of Theorem 1.6.3

	Convergence at exceptional times
	Physics at exceptional times

	Approximation of Feynman Path Integrals with non-smooth Potentials
	Short-time action and related estimates
	Short-time approximate propagator
	An abstract result and proof of the main result

	Bibliography


