
09 March 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Partitioning real-time workloads on multi-core virtual machines

Published version:

DOI:10.1016/j.sysarc.2022.102733

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1887409 since 2025-02-13T17:23:27Z

Partitioning Real-Time Workloads on Multi-Core Virtual Machines

Luca Abenia, Alessandro Biondia, Enrico Binib

aScuola Superiore S. Anna, Pisa, Italy
bUniversità di Torino, Torino, Italy

Abstract

Modern real-time virtual machines and containers are starting to make it possible to support the execution of real-time applications
in virtualized environments. Real-time scheduling theory already provides techniques for analyzing the schedulability of real-time
applications executed in virtual machines, but most of the previous work focused on global scheduling while, excluding a few
exceptions, the problem of partitioning real-time workloads on multi-core VMs has not been properly investigated yet. This paper
discusses and presents a set of partitioning algorithms, based on both mathematical optimization and some heuristics, to tackle the
problem of online admission control and partitioning. An experimental evaluation shows that some of the heuristic algorithms can
be effectively used in practical settings, being capable to partition complex task sets in short times and introducing an allocation
overhead near to the optimum one.

Keywords: Real-time; virtual machines; hierarchical scheduling; cloud computing

1. Introduction

The recent improvements in CPU hardware and virtualiza-
tion technology are starting to make virtual environments (such
as the ones provided by cloud, fog, or edge computing) appeal-
ing even for time-critical applications, which were not tradition-
ally considered candidates for execution in such environments.
In particular, both the academic and the industrial communities
are showing an increasing interest in virtualizing applications
characterized by temporal constraints.

While applications with flexible and more relaxed temporal
constraints are already supported in virtualized environments
through appropriate resource provisioning and scaling (for ex-
ample, consider cloud environments [1, 2, 3, 4]), novel appli-
cations with more strict timing requirements still lack adequate
support and determine a series of challenges [5] to be tackled
by research communities. Most of these challenges are intro-
duced by unpredictable network latencies and by the fact that
the physical servers hosting Virtual Machines (VMs) or con-
tainers do not provide temporal isolation or any kind of deter-
ministic performance guarantees. Hence, the hosted virtual en-
vironments turn out to provide unstable processing times that
are highly fluctuating depending on the executed workloads.

The networking issues, when present, can be addressed by
moving the physical nodes that host the VMs closer to the ap-
plication site so that the network connections are under con-
trol. This can be done (for example) by using private cloud in-
frastructures or by recurring to fog/edge architectures [6]. For
instance, the usage of fog computing to respect the temporal

Email addresses: luca.abeni@santannapisa.it (Luca Abeni),
alessandro.biondi@santannapisa.it (Alessandro Biondi),
bini@di.unito.it (Enrico Bini)

constraints of served real-time applications has been recently
investigated [7, 8].

The issues with the predictability of the nodes’ performance,
instead, can be addressed by using appropriate system-level
support (real-time operating systems and real-time hypervisors)
and management software. While modern VMs and hypervi-
sors introduce latencies that are low enough for running real-
time applications [9, 10, 11] and provide appropriate VM sche-
duling algorithms (RTDS [12] and SCHED DEADLINE [13, 14]),
the key issues in properly employing these scheduling algo-
rithms have not been properly addressed yet. Such issues in-
clude the suitable configuration of scheduling parameters and
the partitioning of real-time tasks upon the CPU cores.

Indeed, although some higher-level management stacks have
been updated to support real-time features using either VMs [15]
or containers [16, 17], they are still not providing tools and
mechanisms for designing and configuring the scheduling pa-
rameters. Furthermore, while the design of time-critical VMs
has been addressed in the literature, most of the solutions pro-
posed for multi-core real-time VMs are either not effective in
practice or force to over-allocate resources to VMs (as it will
be shown in Section 4). In other words, the low-level system
support provides adequate scheduling mechanisms, but higher-
level management software does not implement policies for us-
ing them, mainly because such policies still have to be fully
investigated.

1.1. Contributions

This work is a first step in investigating the design and re-
source allocation policies for using the low-level mechanisms
provided by real-time scheduling algorithms already investi-
gated in literature: after comparing the efficiency and effective-
ness of various solutions (based on global and partitioned sche-

Preprint submitted to Elsevier February 13, 2025

duling), this paper proposes and compares some approaches for
partitioning the real-time workloads in multi-core VMs. Some
of the proposed solutions are based on heuristic algorithms that
are shown to be capable of providing comparable performance
to optimal algorithms (based on mathematical optimization) while
being characterized by a much smaller computational cost.

This result opens the way for online admission of real-time
applications in dynamic VMs, such as the ones used in cloud/edge/fog
computing.

The paper is organized as follows: Section 2 describes some
related works; Section 3 provides some definitions and back-
ground information needed to understand the rest of the paper;
Section 4 discusses some possible approaches for scheduling
real-time tasks in a virtualized environment, also showing that
the global scheduling approach performs much worse than the
partitioned scheduling approach; Section 5 describes some al-
gorithms for partitioning real-time tasks among virtual CPU
cores; Section 6 describes the experiments performed to com-
pare the various algorithms, and the obtained results. Finally,
Section 7 states the paper’s conclusions and presents some pos-
sible future work.

2. Related Work

Multi-processor/multi-core scheduling and hierarchical sche-
duling have been investigated in a vast portion of past real-time
research. Multi-processor scheduling algorithms typically use
a partitioned or a global scheduling approach:

• A global scheduler is free to migrate tasks among cores.
Conceptually, the scheduler uses one single global ready
queue containing all the tasks ready for execution.

• A partitioned scheduler, instead, does not migrate tasks
among cores. Tasks are statically assigned to cores, and
the scheduler is not allowed to change these assignments.
In this way, the problem of scheduling tasks on multiple
cores is reduced to multiple instances of a single-CPU
scheduling problem (and single-processor real-time sche-
duling algorithms can be used). Here, the main challenge
is how to partition the tasks among the available cores.

In theory, the absence of the tasks-to-cores mapping should
favour global scheduling. In practice, however, the high com-
plexity of exact schedulability tests for global scheduling [18,
19, 20, 21], together with the well-known pessimism of suffi-
cient tests for both global EDF [22, 23] and global FP [24, 25],
has kept the comparison between global and partitioned sche-
duling an open problem.

The global scheduling approach allows for developing op-
timal scheduling algorithms [26, 27, 28, 29, 30, 31]. However,
they are more complex and introduce a high overhead due to the
necessity to preempt jobs more frequently. In practice, to the
best of our knowledge, none of the optimal algorithms above is
implemented outside of the research context.

On the other hand, partitioned scheduling algorithms are
simpler and introduce less overhead, but their efficiency de-
pends on the partitioning step, which can be performed by solv-
ing a bin-packing problem that can be formulated as a Mixed

Integer Linear Programming (MILP) problem. Instead of us-
ing a generic MILP solver, some well-known heuristics such as
First Fit (FF) Worst Fit (WF), Best Fit (BF) and similar can be
used [32].

In 1998, Oh and Baker [33] established lower and upper
bounds to the utilization when allocating tasks over a multi-core
until the Liu and Layland bound [34] on each core is reached.
It has then been proved that if the taskset’s utilization is smaller
or equal than (M + 1)/2 (where M is the number of cores),
then the taskset can be partitioned by using the FF heuristic and
EDF [35].

Other MILP formulations have been used in literature to
partition real-time tasks on multiple CPU cores [36, 37], but
these previous works did not consider VMs or vCPUs sched-
uled with CPU reservations and did not address the problem of
dimensioning the reservations when partitioning the taskset.

Hierarchical scheduling systems such as the one considered
in this paper have been analyzed by first considering single-
processor systems [38, 39, 40, 41, 42] and modelling the sche-
duling hierarchy through the time demanded by the taskset and
the time provided by the root scheduler. This is the basis of the
so-called Compositional Scheduling Framework (CSF) analy-
sis.

Some previous works analyzed hierarchical scheduling sys-
tems when global algorithms are used for the guest scheduler.
For example, the scheduling parameters for the various vCPUs
can be designed by leveraging the Multiprocessor Periodic Re-
source model (MPR) [43, 44]. Lipari and Bini then showed
that MPR analysis is based on some assumptions that are not
always respected [45], and proposed the Bounded-Delay Multi-
partition (BDM) model to address this issue, at the price of
some additional pessimism in the analysis. Other works ex-
tended the analysis of global guest schedulers by considering a
more generic CPU allocation model [46] or considering more
advanced scheduling algorithms [47, 48].

Partitioned scheduling in the guest has been investigated us-
ing a standard BF heuristic to assign tasks to vCPUs [12]. How-
ever, the work in [12] did not consider the scheduling hierarchy
when partitioning the task set. A more advanced partitioning
algorithm, taking into account virtual machine scheduling, has
been then proposed [49]. Moreover, it has been noticed [14]
that the schedulability analysis for global guest scheduling al-
gorithms developed in previous works implicitly assumed some
form of interaction between the guest scheduler and the host
scheduler, which cannot be easily implemented in hypervisor-
based VMs without using para-virtualized scheduling. The par-
titioned scheduling approach that has been proposed to address
this issue will be referred to as the “α − 0 model” in the rest
of the paper. Even if OS-level virtualization (often known as
container-based virtualization) allows using global guest sche-
duling without incurring the mentioned issue [50], global guest
schedulers almost always result in a waste of computational re-
sources (forcing to over-provision the VMs), as it will be shown
in Section 4.

2

3. Definitions and Background

This work considers a physical computing node hosting a
set of real-time Virtual Machines (real-time VMs) {Π1, . . . ,Πℓ}
that run concurrently. These real-time VMs are commonly used
in cloud/edge/fog systems, as well as in embedded systems.
The physical node is a multi-core machine, also referred to as
host, that comprises M identical physical cores1. This paper
considers only identical multi-core systems [51], in which all
the CPU cores have the same Instruction Set Architecture (ISA)
and the same maximum speed. Extensions considering multiple
cores with different speeds will be considered as future work
(and we believe that the partitioned scheduling approach pre-
sented in this paper can make it simpler to support such archi-
tectures). Each VM Π j disposes of m j virtual CPUs (vCPUs)
{π

j
0, . . . , π

j
m j−1} and hosts a guest Operating System (OS), with

a corresponding kernel that provides its own CPU scheduler S j

(simply named guest scheduler from now on) mapping guest
tasks over the vCPUs of the VM Π j. While in theory each VM
Π j can have a generic number of vCPUs m j, which does not
strictly depend on the number of physical CPUs M, in practice
there are no reasons to set m j > M. The only constraint on the
vCPUs π j

k and their scheduling parameters is that they should
be schedulable on the host, as will be discussed at the end of
Section 3.1.

When addressing a VM in isolation, it is convenient to omit
the index “ j” of the VM to simplify the notation, so that a
VM can be denoted by just Π, its guest scheduler by S, and
its vCPUs by πk with k = 0, . . . ,m − 1.

When a new real-time application arrives in the system, a
software component is in charge of allocating resources to the
application (by creating a multi-core VM on which the appli-
cation will execute) so that its temporal constraints can be re-
spected. In particular, this software component must:

1. Compute the number m of vCPUs that are required to
serve the application, and create a real-time VM with m
vCPUs.

2. Configure the guest scheduler to properly schedule the
application’s real-time tasks on the m vCPUs.

3. Design the scheduling parameters for scheduling the m
vCPUs on the M physical CPUs of the host.

Notice that if a VM has already been created for other real-time
applications and is not fully utilized, it cannot be re-used for
the new application (otherwise, the isolation between applica-
tions would be at risk). In theory, the computational capacity
not used by a VM could be donated to other VMs by using
appropriate reclaiming algorithms [52, 53], but this would not
affect the design of the scheduling parameters (which is based
on worst-case analysis and hence consider the reclaimed CPU
time as 0).

Every real-time application must provide a description of its
requirements and temporal constraints. Based on this descrip-
tion the application is either accepted to the real-time virtual

1The terms “CPU”, “core” and “processor” are used interchangeably to
mean a hardware component capable to perform computation.

3 4 n21

. . .

. . .

. . .

Virtual CPUs

Virtual Machine

π π π

τ τ τττ

guest scheduler S

host scheduler

Physical CPUs

1 2 m

Figure 1: Hierarchical scheduling architecture overview.

environment, by performing the above three steps, or rejected.
When accepting a new real-time application, it is fundamental
to guarantee that all the temporal constraints of the applica-
tion will be respected. To understand how to express the ap-
plication’s requirements and temporal constraints and how to
provide such a guarantee, it is first important to introduce defi-
nitions about real-time computing and VMs.

This paper addresses the design and configuration of VMs
and the partitioning of the application’s tasks by considering the
traditional task model [34]. The scheduling of real-time tasks
with more complex structures executed in VMs [54] can then
be analyzed based on the analysis of periodic/sporadic [55, 56]
tasks.

A real-time application running inside a VM is hence mod-
eled as a set of n independent real-time tasks Γ = {τ1, . . . , τn}.
Each task τi generates an infinite sequence of jobs (i.e., acti-
vation instances) Ji,1, Ji,2, Ji,3, . . . , Ji,h, . . ., where each job Ji,h

becomes ready for execution at time ri,h and finishes at time fi,h
after executing for a time ci,h. The behavior of tasks is sub-
ject to timing constraints. The release times of two consecu-
tive jobs of task τi, i.e., ri,h+1 and ri,h, must be separated by
at least the minimum inter-arrival time Ti, formally stated by
∀h = 1, 2, . . . , ri,h+1 − ri,h ≥ Ti. The execution times of all the
jobs Ji,h must be smaller than τi’s worst-case execution time
(WCET) Ci, i.e., ∀h = 1, 2, . . . , ci,h ≤ Ci. Finally, every job
Ji,h must complete no later than its absolute deadline di,h, i.e.,
∀h = 1, 2, . . . , fi,h ≤ di,h. The absolute deadline di,h of job Ji,h is
set by di,h = ri,h + Di, where Di is the relative deadline of task
τi. In this paper, the constrained-deadline model is assumed,
that is Di ≤ Ti for all tasks τi.

3.1. Hierarchical scheduling framework

As shown in Figure 1, the architecture considered in this
work results in a two-level scheduling hierarchy: a host sched-
uler selects the vCPUs πk to be executed on the host’s physical
CPUs, and then the VM’s guest scheduler S selects a task τi for
each vCPU. In these hierarchical scheduling systems, a com-
mon approach to guarantee that no deadline is missed relies on
guaranteeing that each vCPU of the VM can execute for a min-
imum guaranteed amount of time, which can be guaranteed by
using resource reservation algorithms in the host scheduler.

3

P−QQ2(P−Q)

2(P−Q) 2P−Q 3P−2Q 3P−Q 4P−2Q 4P−Q

2(P − Q) P − Q

t

sbf(t)

P

Q

P P

t 0

Figure 2: Computation of the supply bound function for a CPU reservation.

A reservation-based scheduler schedules some entity (a thread,
process, or in this case a vCPU) for an amount of time Q, typ-
ically called budget, every period P. When applying this con-
cept to real-time VMs, the host scheduler provides each vCPU
πk with a budget Qk every period Pk. Note that enforcing a bud-
get for πk also means reserving a portion of time for the tasks
selected to execute over πk by the guest scheduler S.

The schedulability of real-time tasks running in a VMΠ can
be analyzed by computing the minimum amount of CPU time
provided by the host scheduler toΠ over any interval of length t.
For a single vCPU πk, this quantity can be modeled through the
so-called supply bound function sbfk(t), representing a lower
bound to the amount of CPU time that a vCPU πk is guaranteed
to receive in any time interval of length t. The logic of the
computation of sbfk(t) for a reservation (Qk, Pk) is shown in
Figure 2, where t0 indicates the arrival time of any task τ (hence,
the time interval of size t considered by sbfk(t) starts at time t0).
The shape of the supply bound function is shown in the upper
part of the figure. In the worst case, the task τ may be released
exactly at the instant of budget exhaustion and then receive no
budget for 2(Pk−Qk). This implies that sbfk(2(Pk−Qk)) = 0. At
time 2(Pk − Qk), the function sbfk(t) must necessarily increase
with slope 1 for an amount of time Qk, reaching the value Qk at
time 2Pk − Qk. Then it is flat for an amount of time Pk − Qk,
and so on. More formally, the function is defined as [40]:

sbfk(t) =

0 if t < 2(Pk − Qk)
(n − 1)Qk if t ∈ [nPk − Qk, (n + 1)Pk − 2Qk)
t − (n + 1)(Pk − Qk) otherwise.

(1)
Due to the complexity of this equation, various authors [38,

39, 40, 41] proposed a linear lower bound for the supply func-
tion sbfk(t) as sbfk(t) ≥ αk(t − ∆k), where:

• αk =
Qk
Pk

is the so-called bandwidth of vCPU πk, and

• ∆k = 2(Pk − Qk) is the so-called allocation delay experi-
enced by vCPU πk, representing the longest time interval
in which πk receives no CPU time.

This is the so-called “α−∆” model that will be used later in this
paper.

Whenever a VMΠ has multiple vCPUs π1, ...πm, it is served
by m reservations {(Q1, P1), (Q2, P2), ...(Qm, Pm)} and the guest

scheduler S must schedule tasks on more than one vCPU. In
this case, S typically uses a global or a partitioned scheduling
approach as mentioned in Section 2.

Summing up, accepting a new real-time application (ac-
cording to the 3 items previously highlighted) requires to first

1. select a guest scheduler S (since the following steps de-
pend on S), then

2. design the VM scheduling (by computing the number of
vCPUs m and the (Qk, Pk) reservations needed to serve
the application without missing deadlines), and finally

3. check if the (Qk, Pk) reservations are schedulable on the
host’s physical CPUs.

In the design step at item 2, the number of vCPUs m is first
decided (remember that there are no strict constraints on the
value of m, but it is generally selected as m ≤ M). As will
be shown and discussed in Section 6, for some partitioning al-
gorithms the choice of a large value of m does not impact the
efficiency of the design (because the algorithm is able to allo-
cate tasks only on some of the m possible vCPUs, if needed),
while for other partitioning algorithms it is important to select
a reasonable value for m (because the algorithm otherwise risks
to spread the tasks over all the possible vCPUs, at the cost of re-
sulting in an over-allocation of CPU time and generating reser-
vations that are not schedulable on the host). For this second
class of algorithms, m can be initially selected as the smallest
integer number larger than the taskset’s utilization, and itera-
tively increased if the design fails.

The check at item 3 depends on the actual reservation-based
algorithm used by the host scheduler (for example, if the reser-
vations are implemented by using partitioned EDF, then they
are schedulable if the sum of the reservations’ bandwidths on
each core is smaller or equal than 1). If the check is passed,
then the real-time application can be accepted in the system.
Some of the partitioning algorithms discussed in this paper al-
low to take the existing real-time load into account when de-
signing the CPU reservations at item 2 so that they can pass the
schedulability check at item 3; see the discussion in Section 5.4.

.

4. Scheduling Real-Time Tasks in VMs

As previously mentioned, real-time VMs are executed by
scheduling each vCPU πk through a (Qk, Pk) reservation (mean-
ing that vCPU πk is reserved an amount of time Qk every period
Pk). In bare metal hypervisors such as Xen [57], the hyper-
visor implements a vCPU scheduler that must support resource
reservations; in hosted hypervisors, the vCPUs are generally
seen by the host OS as threads and the host OS kernel is re-
sponsible for implementing the CPU reservation mechanism
in its CPU scheduler; for OS-level virtualization (for example,
Docker2, Linux containers3 or similar), the OS kernel provides
some form of real-time containers.

2www.docker.com
3www.linuxcontainers.org

4

www.docker.com
www.linuxcontainers.org

In any case, the temporal constraints of the real-time tasks
running inside the VM are respected if the reservations’ pa-
rameters Qk and Pk are properly configured. While design-
ing the reservation for VMs composed of a single vCPU is a
widely studied problem (see Section 2), the analysis and design
of multi-vCPU, reservation-based VMs is more challenging as
it adds the difficulty of scheduling vCPUs to the host to the
traditional server design problem. In particular, the design of
reservations heavily depends on the guest scheduling strategy,
which, as previously mentioned, can be either global or parti-
tioned.

4.1. Global guest scheduling

If the guest OS uses a global scheduler (for example, a
global fixed priority scheduler or global EDF), the CPU reser-
vations (Qk, Pk) can be designed by leveraging the MPR model.
According to MPR, each real-time VM is reserved a total amount
of CPU time Θ every period Φ, to be allocated over at most m
virtual CPUs. Hence, the scheduling parameters of the VM can
be expressed as (Θ,Φ,m); obviously, the constraint Θ ≤ mΦ
must be always respected (since the maximum amount of time
that can be provided by m vCPUs on a period Φ is mΦ). In
other words, the VM is associated with a multi-core reservation
(Θ,Φ,m) that can be implemented by using m single-core reser-
vations (Qk,Φ) with

∑m−1
k=0 Qk = Θ (all the vCPU reservations

have the same period Φ of the multi-core reservation and the
sum of their budgets Qk is equal to the multi-core budget Θ).
The schedulability of the real-time workload running inside a
VM served by a multi-core reservation (Θ,Φ,m) is checked by
computing a multi-core supply function for (Θ,Φ,m) and by
comparing it with the amount of time demanded by the global
guest scheduler to respect all the temporal constraints of the
workload.

The computation of the multi-core supply function used by
MPR assumes that the multi-core reservation (Θ,Φ,m) is im-
plemented by using m synchronized single-core reservations (the
reservation periods of all the m reservations start simultane-
ously), and if this assumption is not respected the resource sup-
ply bound for MPR can be smaller than the one computed in
the original MPR analysis. The Bounded-Delay Multi-partition
(BDM) model has then been proposed to address this issue, at
the price of some additional pessimism in the analysis (as it will
be shown in Figure 3).

Under the BDM approach, the supply bound function of
each vCPU is approximated by using the α − ∆ model, and the
constraint that all the vCPUs have the same allocation delay ∆
is imposed. The vCPU reservations are correctly configured if
all the tasks τi ∈ Γ are schedulable. A task τi is schedulable if

∃k = 1, . . . ,m
k−1∑
j=0

max{0, α j(Di − ∆)} ≥ kCi +Wi, (2)

where Wi is the interference of other tasks, computed as in [58].
The optimal bandwidth values αk can be found by solving

the following optimization problem:

minimize
∑m−1

k=0 αk (objective A) or maxk{αk} (objective B)
subject to
∀τi ∈ Γ,∀k = 1, . . . ,m,

L · (1 − qi,k) +
∑k−1

j=0 max{0, α j(Di − ∆)} ≥ kCi +Wi

∀τi ∈ Γ,
∑m

k=1 qi,k ≥ 1
(3)

where qi,k is a binary variable with qi,k = 1 indicating that task τi

satisfies the schedulability constraint of Equation (2) for the in-
teger k, and L is a constant large enough to make the inequality
always true when qi,k = 0. The N “

∑m−1
k=0 qi,k ≥ 1” constraints

indicate that for each task at least one of the k schedulability
constraints must be satisfied, as required by Equation (2). This
results in a MILP with 2 ·N ·m constraints, which can be solved
by means of standard software tools, either commercial (for ex-
ample, CPLEX) or open-source (such as GLPK).

4.2. Partitioned guest scheduling
Partitioned scheduling in the guest is generally performed

by first partitioning the tasks on the m vCPUs, and then design-
ing the reservation parameters for each vCPU. The first step
(partitioning) can, for example, be implemented by solving the
following optimization problem [14]:

minimize
∑m−1

k=0 αk (objective A) or maxk{αk} (objective B)
subject to
∀τi ∈ Γ,∀k = 1, . . . ,m, ,∀1 < q ≤ |tSeti|,

Ci +
∑
τ j∈hp(i)

⌈
tSeti[q]

T j

⌉
(C j · x j,k) ≤

αk−1 · tSeti[q] + L · (2 − pi,q − xi,k)
∀τi ∈ Γ,

∑m
k=1 xi,k = 1

∀τi ∈ Γ,
∑|tSeti |

q=1 pi,q ≥ 1
(4)

where tSeti is the set of schedulability check-points of task τi

(with each element denoted by tSeti[q]) in which the request
bound function of τi (rb fi(t)) is computed [59], pi,q is a bi-
nary variable with pi,q = 1 indicating that the schedulability
constraint is satisfied for the qth checkpoint (demanded time is
smaller than the available time), xi,k is a binary variable indi-
cating that task τi is assigned to the kth vCPU, and L is again a
large enough constant. Again, this is a MILP problem that can
be solved by using standard tools.

Informally speaking, the first inequality in this optimiza-
tion problem imposes that for each virtual CPU πk, every task
τi assigned to such vCPU (hence having xi,k = 1) respects a

schedulability condition (Ci+
∑
τ j∈hp(i)

⌈
tSeti[q]

T j

⌉
(C j ·x j,k) ≤ αk−1 ·

tSeti[q]) in at least a checkpoint tSeti[q]; the L · (2 − pi,q − xi,k)
term ensures that the inequality is true (and hence the schedu-
lability condition does not need to be checked) if the task is not
assigned to vCPU πk (xi,k = 0) or if pi,q = 0. The second in-
equality states that each task is assigned to 1 and only 1 virtual
CPU and the third inequality states that the schedulability con-
dition of the first inequality is satisfied for at least a scheduling
point tSeti[q] per task. Again, note that the scheduling condi-
tion used in the first inequality is of the form rb fi(t) ≤ α · t,
which uses the α − ∆ approximation of sb f (t) with ∆ = 0.

5

Hence, this model will be called the “α − 0 model” from now
on.

Using the α − 0 model, the partitioning algorithm aims at
assigning tasks to virtual CPUs so that a valid (Qk, Pk) reserva-
tion can be computed for each vCPU. This is because the first
inequality basically imposes that on each vCPU πk the schedu-
lability test of fixed-priority scheduling is passed using a por-
tion of the processor bandwidth αk−1 ≤ 1. As such, in the worst
case, reserving the whole processor for a vCPU, i.e., with a
limit-case reservation (Qk, Pk) with Qk = Pk, guarantees that
all the tasks of the vCPU respect all their deadlines.

In general, if the total utilization of the tasks assigned to
vCPU πk is low enough, an optimal reservation design algo-
rithm can compute a reservation (Qk, Pk) with Qk < Pk. Notice,
however, that in this case the resulting reservation will typically
have a bandwidth Qk/Pk larger than αk, as the first inequality
of Equation (4) imposes ∆ = 0 (and hence does not account
for any reservation-related service delay ∆k). Hence, in this
case αk−1 does not actually represent the real vCPU bandwidth
(which is equal to the utilization of the CPU reservation serving
the vCPU), but only a lower bound for it. This is an important
difference between this α − 0 model and the more traditional
α − ∆ model.

Finally, it is worth noticing that the first inequality is similar
to the inequality used for BDM (there are more constraints, but
the main constraints only contain a single αk and not a sum on
αk). The main difference between the optimization problems
of Equation 3 and Equation 4 is that, in the first one (used for
BDM), the interference Wi is computed in a very pessimistic
way, while in the second one (used for partitioned scheduling) it

is possible to use the exact workload rb fi(t) =
∑
τ j∈hp(i)

⌈
t

T j

⌉
(C j ·

x j,k).

4.3. Comparing global vs. partitioned guest scheduling

Before focusing on a specific scheduling approach, it makes
sense to compare the performance of global guest schedulers
with the performance of partitioned guest schedulers. A prag-
matic metric that can be evaluated to perform such a compar-
ison is the allocation overhead, defined as the difference be-
tween the sum of all the bandwidths of the vCPU reservations,
i.e.,
∑m−1

k=0
Qk
Pk

, and the utilization
∑

i
Ci
Ti

of the taskset: O =∑m−1
k=0

Qk
Pk
−
∑

i
Ci
Ti

.
To compare the performance of global and partitioned sche-

duling approaches, we generated a large number of task sets
using the popular Randfixedsum algorithm as implemented by
Emberson et al. [60] and designed the vCPU reservations (Qk, Pk)
for three scheduling approaches: MPR, BDM, and the partition-
ing algorithm from [14]. As a representative example of the ob-
tained results, Figure 3 reports the allocation overhead for task
sets composed of different numbers of tasks (from N = 4 to N =
8) and having different utilizations (ranging from U = 1.0 to
U = 1.8) scheduled on VMs composed by 2 vCPUs (m = 2). In
the figure, “MPR Original” indicates the utilization computed
using the original MPR algorithm, which uses a global EDF
scheduler in the guest and “MPR BCL” indicates the utiliza-
tion computed using the CARTS tool [61], which implements a

modified version of the analysis, using the interfering workload
computation by Bertogna, Cirinei and Lipari (BCL) [58] and
a global fixed priority scheduler in the guest4. BDM uses the
same interfering workload computation used by “MPR BCL”.

From the results presented in Figure 3 it is possible to im-
mediately notice that the allocation overhead introduced by a
partitioned guest scheduler is almost constant and quite small.
On the other hand, global scheduling approaches tend to intro-
duce much higher allocation overheads. Similar experiments
with different numbers of tasks and vCPUs (and different tasksets’
utilizations) confirmed these results.

Based on the results of these experiments, the rest of the
paper will focus on partitioned guest schedulers, which in this
kind of hierarchical scheduling always significantly outperform
global approaches.

Notice that similar results have been noticed for non-hier-
archical fixed-priority and EDF schedulers, and are due to the
pessimism of the global schedulability analysis [62]. While for
non-hierarchical systems this is merely an analysis issue and
the only consequence is that schedulable task sets will not be
accepted (many task sets that do not pass the admission test are
actually schedulable), for scheduling hierarchies like the ones
considered in this paper it results in a design issue with more
important consequences. In fact, since the MPR or BDM algo-
rithms are used to design the vCPU servers (finding appropri-
ate (Qk, Pk) assignments for all vCPUs), the pessimism of the
analysis actually results in much larger CPU allocations and the
consequent waste of system resources.

5. Partitioning Algorithms

As previously noticed, the α − 0 model allows minimizing∑
k αk, but this does not necessarily minimize the total fraction

of CPU time
∑

k Qk/Pk allocated to the VM, which, in practice,
is the important metric to be actually minimized. As a sim-
ple example, consider Γ = {τ1 = (C1,T1), τ2 = (C2,T2)}, with
C1/P1+C2/P2 = 0.5, scheduled on 2 vCPUs. The optimization
problem based on Equation (4) will place τ1 on the first vCPU
and τ2 on the second one, with α1 = C1/P1 and α2 = C2/P2,
which leads to the minimum possible sum α1+α2 = 0.5. When
designing the actual reservation servers (i.e., with∆k > 0), how-
ever, Q1/P1 + Q2/P2 will be larger than 0.5, and it might hap-
pen that placing both the tasks on the same vCPU can result in a
lower total CPU bandwidth. As it will be shown in Section 6, an
optimal algorithm minimizing

∑
k Qk/Pk often places as many

tasks as possible on a single vCPU5.
As a result, designing a VM for a real-time taskset Γ = {τi}

based on the α − 0 model requires a 2-steps algorithm: first

4Note that the original MPR algorithm uses a less pessimistic computation
of the workload, but global EDF analysis is more pessimistic than global fixed
priority analysis.

5Under global scheduling, it has been formally proved [63] that the “opti-
mal” allocation, i.e., the one providing the minimum possible fraction of CPU
time to the VM while guaranteeing its schedulability, is the one that uses the
smallest possible number of vCPUs — this is the so-called minimum paral-
lelism form.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

N=4 tasks

BDM
MPR BCL

MPR Original
Partitioned

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

N=6 tasks

BDM
MPR BCL

MPR Original
Partitioned

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

N=7 tasks

BDM
MPR BCL

MPR Original
Partitioned

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

N=8 tasks

BDM
MPR BCL

MPR Original
Partitioned

Figure 3: Figure comparing the allocation overhead (the lower the better) of global scheduling approaches (MPR and BDM) vs. partitioned scheduling under the
α − 0 model. The y-axis of the plots reports the allocation overhead while the x-axis reports the task set utilization.

partition the taskset, then design the vCPU reservations. As
discussed above, this might lead to sub-optimal resource allo-
cations.

Moreover, in many practical situations it is important to im-
pose a maximum Umax

k to the fraction of CPU time Qk/Pk re-
served to a vCPU. For example, this is important for online
admission control of the VMs (as discussed in Section 5.4),
for preventing the starvation of other tasks/VMs (it is impor-
tant to leave some unused CPU time for background tasks), or
for leaving some vCPU time for the guest OS. However, when
using the α − 0 model αk , Qk/Pk, hence constraints such as
“αk ≤ Umax

k ”, would not guarantee that Qk/Pk ≤ Umax
k after the

design of the reservation in the second step. Again, accounting
for the allocation delay ∆k when partitioning the taskset could
help to solve this problem.

5.1. Accounting for the Allocation Delay

To address some of the issues with the α − 0 model, it is
possible to use the α − ∆ model with a fixed ∆ > 0. While
still leading to sub-optimal solutions, being the service delay
not optimized, this approach has the important property that
αk = Qk/Pk already at the stage of partitioning. As such, it
allows to do partitioning and design in one single step.

Since short reservation periods might result in increased
scheduling overhead (the OS kernel generally arms a timer fir-
ing at the end of the reservation period), when designing the
VM scheduling parameters it is important to also impose a min-
imum value for the reservation period Pk. Hence, a constraint
Pk ≥ Pmin should be added to the optimization problem of
Equation 4 for each vCPU πk. However, this is difficult to ex-
press in terms of αk and ∆k without using non-linear constraints.
In theory, the minimum reservation period could be enforced by
using a constraint ∆k ≥ ∆

min on the minimum allocation delay.
However, the modified schedulability constraints would require
a non-linear term of the form αk(t−∆k), which would make the
optimization problem not anymore a MILP.

This issue can be addressed without renouncing to the MILP
formulation by introducing a new variable βk = αk∆k and mod-

7

ifying Equation 4 as follows:

minimize
∑m−1

k=0 αk (objective A) or maxk αk (objective B)
subject to
∀τi ∈ Γ,∀k = 1, . . . ,m,∀1 < q ≤ |tSeti|,

Ci +
∑
τ j∈hp(i)

⌈
tSeti[q]

T j

⌉
(C j · x j,k) ≤

αk−1 · tSeti[q] − βk−1 + L · (2 − pi,q − xi,k)
∀τi ∈ Γ,

∑m
k=1 xi,k = 1

∀τi ∈ Γ,
∑|tSeti |

q=1 pi,q ≥ 1
∀0 ≤ k < m, βk ≥

Pmin

2 .
(5)

Lemma 1. The optimization problem presented in Equation 5
partitions the tasks on m different vCPUs so that for all the
vCPUs the tasks assigned to πk are schedulable with parame-
ters (Qk, Pk) and Pk > Pmin.

Proof. The optimization problem is similar to the one presented
in Equation 4, but uses the schedulability condition

Ci +
∑
τ j∈hp(i)

⌈
tSeti[q]

T j

⌉
(C j · x j,k) ≤ αk−1 · (tSeti[q] − ∆k−1)

instead of

Ci +
∑
τ j∈hp(i)

⌈
tSeti[q]

T j

⌉
(C j · x j,k) ≤ αk−1 · tSeti[q]

By introducing βk = αk∆k, the constraints of the form αk(t −
∆k) = αkt − αk∆k can be rewritten as αkt − βk, hence

Ci+
∑
τ j∈hp(i)

⌈
tSeti[q]

T j

⌉
(C j ·x j,k) ≤ αk−1 ·tSeti[q]+L·(2−pi,q−xi,k)

becomes

Ci +
∑
τ j∈hp(i)

⌈
tSeti[q]

T j

⌉
(C j · x j,k) ≤ αk−1 · tSeti[q] − βk−1

+ L · (2 − pi,q − xi,k)

which is still a linear constraint6.
The relationship between βk and Pk can be found by remem-

bering that αk = Qk/Pk and ∆k = 2(Pk − Qk), so

βk = αk∆k = αk2(Pk − Qk)⇒ βk = 2Pkαk(1 − αk)

Hence, a minimum period Pmin can be enforced by imposing
βk ≥ 2Pminαk(1 − αk). Since αk(1 − αk) has a maximum for
αk = 1/2, the constraint can be written as

βk ≥ 2Pmin 1
2

(1 −
1
2

)⇒ βk ≥
Pmin

2

independently of the server bandwidth αk. Combining these
constraints, the MILP shown in Equation (5) is obtained. □

6As for Equation 4, the L · (2− pi,q − xi,k) term has been introduced to make
the inequality true when pi,q = 0 or xi,k = 0, regardless of the other variables.

This will be called the α − β model in the rest of the paper.
Although imposing βk ≥ Pmin/2 guarantees that Pk ≥ Pmin (as
shown above) and has the advantage of not breaking the linear-
ity of the optimization problem (which is still a MILP, easily
solvable with many tools), this constraint on βk is much stricter
than the actual minimum period constraint, i.e., there may ex-
ist many valid solutions with Pk ≥ Pmin that do not respect
βk ≥ Pmin/2). As a result, the optimization problem of Equa-
tion (5) risks resulting in a resource over-allocation.

The only way to avoid the over-allocation issues presented
by the α − β optimization problem is to impose the actual min-
imum period constraint and avoid fixing β. However, this im-
plies renouncing to linear problem formulations. For instance,
it would be tempting to encode the joint partitioning and server
design problem with convex optimization techniques such as
Geometric Programming (GP) [64]. Indeed, it is possible to
reshuffle the equation of the linear α − ∆ supply function to en-
code the corresponding schedulability test as a set of GP con-
straints. Nevertheless, when attempting this solution it is not
possible to correctly encode the required decision constraints
(task-to-vCPU allocation and selection of valid check-points for
the schedulability test) in a GP. This is due to the fact that the
problem formulation requires boolean decision variables (i.e.,
in {0, 1}), while GP, even in its mixed-integer form, only al-
lows working with strictly positive variables. This limitation
has been assessed by testing both commercial (MOSEK) and
open-source (CVX) solvers for convex programming [65] that
support GP.

5.2. Optimal partitioning and server design

As an alternative way to find an optimal solution to the de-
sign problem, a Constrained Programming (CP) problem has
been formulated to compute the optimal partitioning and server
parameters (budgets and periods for each vCPU). CP also al-
lows directly encoding important constraints such as enforcing
a minimum server period Pmin. Although CP formulations are
notably hard and slow to solve, this approach represents a base-
line for comparison in the experimental evaluation to assess the
distance of other solutions from the true optimal one.

The CP formulation is reported next:

minimize
∑m−1

k=0 Qk/Pk

subject to
∀τi ∈ Γ,∀k = 1, . . . ,m,∀1 < q ≤ |tSeti|,(

Ci +
∑
τ j∈hp(i)

⌈
tSeti[q]

T j

⌉
(C j · x j,k)

)
·

·xi,k · pi,q ≤ sbf(tSeti[q],Qk−1, Pk−1)
∀τi ∈ Γ,

∑m
k=1 xi,k = 1

∀τi ∈ Γ,
∑|tSeti |

q=1 pi,q ≥ 1
∀0 ≤ k < m, Pk ≥ Pmin

(6)

where tSeti is the set of check-point for verifying the schedula-
bility of task τi, pi,q is a binary variable with pi,q = 1 indicating
that the schedulability test for task τi is satisfied in the check-
point tSeti[q], and xi,k is a binary variable indicating that task
τi is assigned to the kth vCPU.

8

Lemma 2. A solution of the CP formulation in (6) is an optimal
configuration of the reservation servers with minimal

∑m−1
k=0 Qk/Pk

that ensures the task set schedulability.

Proof. For each processor with index k, the first constraint in (6)
encodes the (exact) schedulability test for fixed-priority schedu-
ling considering the tasks allocated to the k-th processor only.
Indeed, note that (i) whenever task τi is not allocated to the
k-th processor (xi,k = 0) the constraint has no effect, (ii) the
schedulability constraint does not have to be verified for all the
check-points, but only for the ones having pi,q = 1, and (iii)
whenever an interfering task τ j is not allocated to the k-th pro-
cessor (x j,k = 0) its workload contribution to the first constraint
is zero.

The second constraint enforces that each task is allocated
on exactly one processor, and the third constraint enforces that
for each task the schedulability test is verified in at least one of
its check-points.

The fourth constraint simply enforces a minimum period for
the servers.

Hence the correctness of the CP formulation. □
Equation (6) can be seamlessly extended to perform the se-

lection of the server parameters with a certain granularity by
replacing variables Qk and Pk with Qk · Qgrain and Pk · Pgrain,
where Qgrain and Pgrain are the granularity of the server budget
and period, respectively.

5.3. Heuristic algorithms
All the partitioning and design algorithms described above

require a formulation of the problem as a MILP or CP, which
can be solved by using tools like GLPK or CPLEX. These tools
generally require from a few milliseconds (for small tasksets)
to some tents of seconds (for larger tasksets scheduled on more
vCPUs) to generate a solution and are hence mostly suitable for
off-line design.

Conversely, appropriate heuristics algorithms can be used
to support online partitioning and design. For example, the
well-known FF, BF and WF heuristics can be modified to sup-
port scheduling hierarchies with the α − 0 and α − ∆ mod-
els, or even using exact schedulability tests. The basic idea is
that the usual *F algorithms can be applied by using a pseudo-
utilization pu instead of the taskset utilization

∑
C/T , as shown

in Algorithm 1. If such a pseudo-utilization is computed as in
Algorithm 2, then the resulting algorithm can find approximate
solutions based on the α − 0 model. Notice that this algorithm
tries to ensure that rb fk(t)/t ≤ Umax for at least a scheduling
check-point of each task τk (for each task τk, the minimum of
the ratio rb fk(t)/t on all the scheduling check-points is used,
so that the condition is verified for at least a scheduling check-
point). Moreover, the maximum on all the tasks of the taskset
is used to ensure that the condition is respected for all tasks. As
it will be shown in Section 6, these heuristics can successfully
partition a task set over multiple vCPUs in a few milliseconds.

If we want to use an exact model of the sb f (), instead, then
Algorithm 3 can be used. Notice that this algorithm computes
the pseudo-utilization by designing the optimal server for the
vCPU (performed by the design server() function). Such

a function tries all the possible periods Pk ≥ Pmin and budgets
PkU(Γk) ≤ Qk ≤ Pk, checking if the task set Γk is schedulable
with them; then, the (Qk, Pk) pair that can correctly schedule
Γk and minimizes Qk/Pk is selected. This algorithm can be
optimized by reducing the (Qk, Pk) search space [66].

Finally, it is important to notice that the FF, BF and WF
heuristics, which are traditionally used for bin-packing, might
be sub-optimal when partitioning tasks among vCPUs sched-
uled through CPU reservations. For example, using BF on
the pseudo-utilizations will end up placing a task on the vCPU
where it increases the pseudo-utilization more (consuming more
bandwidth, and hence causing a higher allocation overhead). To
reduce the allocation overhead, it would be more interesting to
allocate a task on the vCPU where it would cause the minimum
increase in the overhead (computed as the difference between
Qk/Pk and the utilization of the tasks allocated to the CPU —
obviously subject to the constraint that the vCPU’s reservation
(Qk, Pk) is schedulable). This will be referred to as the “Ovh”
heuristic in the rest of the paper.

Input: The set of vCPUs (with the tasks allocated to
them)

Input: The new task τi to be allocated
Output: The vCPU on which the task should be

allocated
foreach vCPU π j do

Add τi to π j;
pseudo u← Compute pseudo u(π j);
if pseudo u < 1 then

/* Apply the standard FF / WF / BF

heuristics */

if mode == FF then
return π j

end
if pseudo u > pseudo u max then

pseudo u max← pseudo u;
Vmax← π j

end
if pseudo u < pseudo u min then

pseudo u min← pseudo u;
Vmin← π j

end
end

end
if mode == WF then

return Vmin
end
if mode == BF then

return Vmax
end
return Error!
Algorithm 1: The heuristic partitioning algorithm.

5.4. Discussion

When comparing the various partitioning algorithms, there
are different aspects to be considered. For example, as men-

9

Function Compute pseudo u(V):
pseudo u← 0 ; foreach task τk ∈ V do

compute scheduling points (checkpoints);
pu← 1.1 ;
foreach scheduling point t do

compute rb fk(t) =
∑
τ j∈hp(k)⌈(t/T j)⌉C j;

if rb fk(t)/t < pu then
pu← rb fk(t)/t

end
end
if pu > pseudo u then

pseudo u← pu
end

end
return pseudo u

Algorithm 2: PseudoU computation: Approximate α − 0
model.

Function Compute pseudo u(V):
(Q, P)← design server(V);
return Q/P

Algorithm 3: PseudoU computation: Exact supply bound
function model.

tioned in Section 3, the resource control component of some
real-time virtual environments (such as real-time cloud/edge/fog
systems) must be able to dynamically accept new real-time ap-
plications at runtime. Assuming a known guest scheduling al-
gorithm (fixed-priority scheduling with static partitioning of the
tasks), when a new application arrives, the system must de-
cide how many vCPUs to use, partition the application’s task
set among vCPUs, and design the (Qk, Pk) reservation param-
eters for each vCPU. The resulting (Qk, Pk) reservations must
be scheduled on the physical CPUs, hence they must pass a
schedulability test that depends on the host scheduling algo-
rithm. If the system is not able to compute appropriate reser-
vation parameters or if the CPU reservations do not pass the
admission tests, then the application cannot be accepted in the
system. This means that the partitioning and design algo-
rithms must be fast enough to be executed online during
the system operation. As it will be shown in Section 6, the
heuristic algorithms are always fast enough to support online
admission tests, while the partitioning algorithms based on op-
timization problems (MILP or CP) can be used only for small
task sets scheduled on a limited number of vCPUs.

Moreover, when a new real-time application arrives, some
of the physical CPUs might already host some real-time load
with utilization Uk, meaning that they cannot accept a reserva-
tion with Qk/Pk > 1 − Uk. Hence, a constraint Qk/Pk < Umax

k ,
with Umax

k = 1−Uk should be added to the design problem. As
already noticed, this could be problematic when using the α− 0
model with the problem formulation of Equation 4, because
in this model αk , Qk/Pk (hence, even imposing constraints
αk ≤ Umax

k the solution of the problem can result in reservations
(Qk, Pk) with 1−Uk < Qk/Pk ≤ 1, which cannot be scheduled).
In this case, the algorithms that can take the allocation delay

into account (such as the ones based on the α − β model, or
the heuristic algorithms with the pseudo-utilization computed
as in Algorithm 3) are more useful and can be directly used (by
adding αk ≤ Umax

k in Equation 5 or by changing “if pseudo u

< 1” into “if pseudo u <Umax
k in Algorithm 1).

The third important thing to be considered is that the MILP
(for α−0 and α−βmodels) and CP partitioning algorithms can
be used only if all the real-time tasks composing an application
are known when the application starts (so, real-time tasks can-
not be dynamically created). This constraint is due to the fact
that the MILP or CP problem used to partition the tasks requires
a complete knowledge of the whole task set. The heuristic algo-
rithms, instead, can be used also if real-time tasks are dynam-
ically created (each task is assigned to a vCPU when it is cre-
ated). If all the real-time tasks of the application are created at
the same time, when the application starts, the performance of
the heuristic algorithms can be improved by pre-ordering (for
example, by decreasing utilization) the tasks before applying
the FF, WF, or BF heuristics. When tasks are ordered by de-
creasing utilization before assigning them to vCPUs (so that
tasks with higher utilization, which are more difficult to place,
are served first) the partitioning heuristics will be named U-FF,
U-WF, U-BF and so on.

6. Experimental Evaluation

The various partitioning and design algorithms presented
and discussed in Section 5 have been compared through a set
of experiments, based on synthetic task sets with various char-
acteristics. All the task sets have been generated by using the
Randfixedsum algorithm, which is a standard way to generate
sets of real-time tasks. In each experiment, multiple task sets
composed of different numbers N of tasks (ranging from N = 4
to N = 16) and having different utilizations U (ranging from
1.0 to values immediately smaller than N) have been generated,
partitioned over m vCPUs (ranging from m = 2 to m = 16), and
used to design the vCPU reservations (Qk, Pk) (with 0 ≤ k < m)
based on the different algorithms presented above. This section
reports and comments some selected results that allow to under-
stand and evaluate the various partitioning algorithms. When-
ever differently specified, 100 task sets per point have been gen-
erated to obtain the plots presented in the following.

Notice that if a partitioning and design algorithm is able
to partition a taskset among m vCPUs and to design the vCPUs
scheduling parameters, then all the tasks of the taskset are guar-
anteed to respect all of their deadlines. Hence, measuring val-
ues such as the number of missed deadlines, the deadline miss
ratio or similar is not a good way to compare different algo-
rithms. The performance of the algorithms can be instead eval-
uated by measuring how much CPU time the algorithms require
to reserve for the VM, or, better, the allocation overhead, as
defined in Section 4. However, evaluating only the allocation
overhead could be misleading, because some algorithms might
be able to correctly partition tasksets that other algorithms mark
as unschedulable. Hence, it can be interesting to measure also
another metric: the fraction of schedulable tasksets. This met-
ric is measured by testing each algorithm on a large number of

10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=5 tasks

α-0 4vCPUs
α-0 2vCPUs

α-β (β=5000) 4vCPUs
α-β (β=5000) 2vCPUs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=6 tasks

α-0 4vCPUs
α-0 2vCPUs

α-β (β=5000) 4vCPUs
α-β (β=5000) 2vCPUs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=8 tasks

α-0 4vCPUs
α-0 2vCPUs

α-β (β=5000) 4vCPUs
α-β (β=5000) 2vCPUs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=9 tasks

α-0 4vCPUs
α-0 2vCPUs

α-β (β=5000) 4vCPUs
α-β (β=5000) 2vCPUs

Figure 4: Figure comparing the allocation overhead of the α − 0 and α − β models when different numbers of vCPUs are used. The x-axis of the plots reports the
task set utilization while the y-axis reports the allocation overhead.

tasksets, and counting how many of these tasksets the algorithm
is able to correctly partition and mark as schedulable.

This section is organized as follows: first of all, the α − 0
model is compared with the new α − β model (in terms of al-
location overhead), showing an issue with the old model and
how the new model addresses such an issue. Then, the various
heuristic algorithms from Section 5 are compared, highlight-
ing the three algorithms that perform better. Finally, such algo-
rithms are compared (in terms of allocation overhead, fraction
of schedulable tasksets, and running time) with the partitioning
algorithms based on the α−0 and α−βmodels and with the op-
timal solution based on Constrained Programming presented in
Section 5.2 (notice that due to the large amount of time needed
to solve the Constrained Programming problem, the optimal so-
lution has been computed only on the first 30 tasksets).

6.1. Issues with the α − 0 Model

First of all, the differences between the allocations obtained
using the α−0 and the α−βmodel have been investigated. Fig-
ure 4 shows the allocation overhead measured when task sets
composed of N = {5, 6, 8, 9} tasks and utilization U ranging
from 1 to 1.7 are scheduled over m = 2 and m = 4 vCPUs.
Tasks are partitioned using the α − 0 and α − β models; since
Pmin = 10ms is considered, β has been set equal to 5ms =

5000µs. From the figure, it is immediately possible to notice
that the α − 0 model results in tasks partitionings that depend
on the number of vCPUs: when more vCPUs are used, the tasks
are distributed over all the vCPUs (because the model does not
consider the allocation delay ∆) and the allocation overhead in-
creases. In particular, the figure shows that the α−βmodel (with
β = 5000) results in almost the same allocation overhead when
m = 2 or m = 4 vCPUs are used, while the α − 0 model gives
comparable results when m = 2 vCPUs are used, but results in
a much larger overhead for m = 4 vCPUs.

These results show that, when the allocation delay is not
considered, the VM design must cope with the selection of the
“right” number of vCPUs to be used (see the discussion at the
end of Section 3.1), while, when the allocation delay is ac-
counted for, the VM can be designed by using the largest avail-
able number of vCPUs (and the problem’s solution will result
in Qk = 0 for the vCPUs that are not needed — not allocating
any task to them).

Experiments with different values of N, U, and m, not re-
ported here due to lack of space, confirmed this result.

6.2. The Heuristic Algorithms

After comparing the α−0 and α−βmodels, the performance
of the heuristic algorithms has been evaluated. As discussed in

11

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=5 tasks

FF
U-FF
Ovh

U-Ovh
BF

U-BF
Opt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=6 tasks

FF
U-FF
Ovh

U-Ovh
BF

U-BF
Opt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=8 tasks

FF
U-FF
Ovh

U-Ovh
BF

U-BF
Opt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=9 tasks

FF
U-FF
Ovh

U-Ovh
BF

U-BF
Opt

Figure 5: Allocation overhead of the heuristic algorithms on 2 vCPUs.

Section 5, different heuristics are possible, using FF, BF, WF,
or Ovh and evaluating the pseudo-utilization in different ways.
Moreover, if real-time tasks are not dynamically created, then
the task set can be ordered by decreasing utilization before ap-
plying the partitioning algorithm. When task sets are ordered
by the decreasing utilization, the corresponding heuristic algo-
rithm is named with the ‘U-’ prefix.

The experiments showed that the WF-based algorithms al-
ways cause a large allocation overhead (this is consistent with
some previous results on partitioning of real-time tasks on non-
hierarchical schedulers [35]), hence the results of these algo-
rithms have been removed from the figures presented in this
section. Figure 5 reports the results obtained scheduling a lim-
ited number of tasks (ranging from N = 4 to N = 10) on only
m = 2 vCPUs and shows that in this case all the heuristics (ex-
cept for U-Ovh in some cases) behave similarly, but the Ovh
heuristic generally causes a smaller allocation overhead. More-
over, the allocation overhead of the heuristics is similar to the
minimum possible (the optimal CP-based partitioning, marked
as “Opt” in the figures).

Figure 6 plots the allocation overhead of various heuristic
algorithms for larger tasksets, scheduled on 8 vCPUs (in this
case, the utilization ranges from U = 1 to U = 7 and the number
of tasks ranges from N = 4 to N = 16). The results displayed
in this figure are more interesting (exhibiting more differences

in the performance of the various heuristics), but still show that
the “Ovh” heuristic performs quite well in all the cases, result-
ing only in a small increase in allocation overhead (less than
5%) respect to the optimal partitioning. Then, it is interesting
to notice how the BF algorithm generally has performance com-
parable with FF (again, this is in line with previous results [35])
and is worse than FF in some cases. It is also worth noticing
that FF performs well for small values of N (see N = 6 or
even N = 8), but has some issues when the number of tasks
increases (see N = 10 and N = 12). In this case, pre-ordering
the taskset according to decreasing utilization (see the “U-FF”
plot) reduces the allocation overhead.

According to these results, the heuristic algorithms consid-
ered in the next experiments are FF, U-FF and Ovh.

6.3. Comparing all the Algorithms

The next results compare the performance of the practical
heuristic algorithms presented in Section 5 with the partition-
ing algorithms based on the α − 0 and α − β models. Figure 7
shows the allocation overhead obtained when considering small
task sets scheduled on m = 4 vCPUs and permits to notice some
important things. First of all, the α−0 model shows the highest
overhead: this happens because the design is performed over
m = 4 vCPUs, while m = 2 vCPUs would generally suffice
to properly schedule the tasks. Not considering the allocation

12

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7

N=6 tasks

FF
U-FF
Ovh

U-Ovh
BF

U-BF
Opt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7

N=8 tasks

FF
U-FF
Ovh

U-Ovh
BF

U-BF
Opt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7

N=10 tasks

FF
U-FF
Ovh

U-Ovh
BF

U-BF
Opt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7

N=12 tasks

FF
U-FF
Ovh

U-Ovh
BF

U-BF
Opt

Figure 6: Allocation overhead of the heuristic algorithms on 8 vCPUs.

delay ∆, the α − 0 algorithm tends to spread the tasks over all
of the vCPUs, resulting in sub-optimal allocations (see previ-
ous experiments). All the other algorithms do not suffer this
issue. As a second interesting thing, it is possible to notice
that the heuristic algorithms perform quite well, resulting in an
allocation overhead that is similar to the one produced by the
α − β algorithm. The heuristics’ performance, however, tends
to become worse when the number of tasks increases. The third
thing to notice is that the α − β algorithm appears 2 times in
the graphs (the second time with the “with Redesign” suffix,
meaning that the optimal server design algorithm has been ap-
plied to the tasks partitioning generated by solving the α − β
problem). Since the α − β model does not allow imposing the
real “P ≥ Pmin” constraint but imposes “β ≥ Pmin/2”, which
is more stringent than the original constraint, the MILP results
can be pessimistic. The redesign phase addresses this issue by
performing the server design with the correct “P ≥ Pmin” con-
straint after the α − β model has been used for partitioning the
tasks. As a result, the “α − β with Redesign” algorithm pro-
vides the smallest allocation overhead. It is also possible to
notice that the allocation overhead of the “α−β with Redesign”
algorithm is very close to the allocation overhead of the opti-
mal possible assignment (computed by using the “Constrained
Programming” formulation), also shown in the figure. The last
thing to notice is that, in this figure, the difference between the

various heuristic algorithms (FF, U-FF, and Ovh) is not too rel-
evant (FF tends to perform better with a small number of tasks,
and Ovh is always better than the other two heuristics, but the
allocation overheads of the three algorithms are similar — and
not too large with respect to α − β).

The results obtained when scheduling larger tasksets on a
larger number of vCPUs look more interesting. For example,
Figure 8 shows the results obtained for m = 8 vCPUs and look-
ing at the figure it is possible to notice how the curves related
to α−β algorithms tend to become unstable for high utiliza-
tions. This happens because the constraint on β is too strict and
ends up considering most of the task sets unschedulable. By
better investigating this issue, it has been found that the α − β
model is characterized by very low schedulability performance
with respect to the other algorithms. Indeed, when U increases
only a few of the 100 task sets per point actually result in
a correct server assignment. Figure 9 plots the fraction of
schedulable tasksets (fraction of task sets that can be correctly
partitioned — and are hence considered schedulable) for the
various algorithms, showing this effect. From the figure it is
possible to notice that all the algorithms but α − β are able to
schedule almost all of the tasksets (the fraction of schedulable
tasksets is about 1), while for α − β the fraction of schedulable
tasksets rapidly decreases to very low values. Another interest-
ing thing to notice is that the heuristic algorithms perform well,

13

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=5 tasks

FF
U-FF
Ovh
α-0

α-β (β=5000)
α-β (β=5000) with Redesign

Optimal

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=6 tasks

FF
U-FF
Ovh
α-0

α-β (β=5000)
α-β (β=5000) with Redesign

Optimal

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=8 tasks

FF
U-FF
Ovh
α-0

α-β (β=5000)
α-β (β=5000) with Redesign

Optimal

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N=9 tasks

FF
U-FF
Ovh
α-0

α-β (β=5000)
α-β (β=5000) with Redesign

Optimal

Figure 7: Figure comparing the overhead of the α − 0 and α − β algorithms with the heuristic.

and Ovh is often better than α − β (both in terms of allocation
overhead and number of schedulable task sets).

To see how the algorithms’ performance is affected by the
task sets’ sizes, Figures 10 and 11 show the allocation overhead
and the fraction of schedulable task sets, respectively, as a func-
tion of the number of tasks N (at constant utilization U). The
figures confirm that the FF heuristic algorithm performs better
for small task sets (and in some cases even performs better than
U-FF), but it introduces an allocation overhead that increases
with the task set size (and might become worse than most of
the other algorithms). The allocation overhead of the α − 0 and
α − β algorithms also increases with the task set size, while the
allocation overhead introduced by the Ovh heuristic is gener-
ally more constant. Figure 11 confirms that the small allocation
overhead shown for α − β in Figure 10 might be misleading,
as this algorithm is able to partition a much smaller fraction of
task sets with respect to all the other algorithms.

After measuring the allocation overhead and the fraction
of schedulable tasksets, all the algorithms have been evaluated
also considering the partitioning time. These experiments have
been performed on two different server machines: an arm64
server based on an 80-core Cavium ThunderX SOC, and an In-
tel server based on a 40-core Xeon E5-2640 CPU.

Figure 12 reports the maximum partitioning times measured
on the arm64 server: the left of the figure displays the maxi-

mum between the partitioning times for the tasksets with the
same utilization (as a function of the utilization), while the right
of the figure displays the maximum between the partitioning
times of the tasksets having the same number of tasks (as a
function of N). It can be seen that the maximum partitioning
times range from a few milliseconds to about 70ms for the FF
or U-FF heuristic and from about 10ms to about 300ms for the
Ovh and U-Ovh heuristic. The maximum partitioning times for
the α − 0 partitioning algorithm implemented with GLPK are
not visible in the figures, but range from about 100ms to more
than 2 minutes, while the maximum partitioning times for the
α − β partitioning with GLPK are all very high and arrive at
more than 10 minutes. From these numbers, it is immediately
possible to notice how the additional constraints contained in
the α − β model definitively slow down the MILP solver by a
huge amount. The two partitioning algorithms based on GLPK
are not usable online in practical scenarios.

The maximum partitioning times measured on the Xeon
server, instead, are displayed in Figure 13. This figure con-
firms the results already observed on the arm64 server (even
if the α − 0 partitioning algorithm implemented with GLPK is
usable in more situations). On this server, it was also possible
to solve the α − 0 and α − β MILP problems using the com-
mercial CPLEX tool, which is highly optimized and can use
multiple CPU cores. Using CPLEX allowed to reduce the par-

14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7

N=6 tasks

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000) with Redesign

Opt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7

N=8 tasks

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000) with Redesign

Opt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7

N=10 tasks

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000) with Redesign

Opt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7

N=12 tasks

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000) with Redesign

Opt

Figure 8: Overhead of various partitioning algorithms with higher utilizations.

titioning times to less than 400ms. As a result, solving the α−0
problem became feasible online for many tasksets. In any case,
the heuristic algorithms always performed better than α − 0,
resulting in a lower allocation overhead, a similar fraction of
schedulable task sets, and a lower partitioning time.

6.4. Take-Away Messages

Looking at the presented results, it is possible to draw some
important conclusions.

First of all, the experiments showed that the heuristic algo-
rithms should be used for online admission of new real-time
applications (and online design of the VM reservations).

Second, if the applications’ startup time can tolerate a small
additional delay (less than 200ms), then the Ovh algorithm should
be used, otherwise the FF algorithm should be preferred.

Finally, if FF is used and real-time tasks are not dynami-
cally created, then the tasks should be ordered by decreasing
utilization before partitioning them.

In all the cases, using MILP-based solutions (such as the
ones based on the α − 0 and α − β models) does not seem to
provide relevant advantages. If partitioning and design are per-
formed off-line, then an optimal solution based on Constrained
Programming (which provides some small advantages in terms
of allocation overhead with respect to the Ovh heuristic, at the

cost of a huge increase in the partitioning and design time) can
be used.

7. Conclusions and Future Work

This paper analyzed the problem of scheduling real-time
tasks in a VM or container. Starting from the observation that in
this context partitioned scheduling is more suitable than global
scheduling, various partitioning algorithms have been presented
(some algorithms based on a MILP formulation, some heuris-
tics, and an optimal algorithm to be used as a reference). The al-
gorithms have been compared considering their allocation over-
head, the percentage of real-time tasksets that they are able to
accept, and their running time. The results indicate that the pro-
posed heuristic algorithms should be used for online admission
control in a large set of different virtual environments, such as
real-time clouds or similar; in particular, a heuristic based on
First Fit is to be preferred if the running time has to be reduced
to the minimum, while the new “Opt” heuristic can reduce the
allocation overhead (and accept a larger fraction of tasksets) if
the system can tolerate a small delay (less than 200ms) in ad-
mitting and starting a real-time application.

As a future work, these heuristics will be integrated into
a cloud management software such as Kubernetes. Moreover,
the analysis will be extended to support non-identical multicore

15

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

N=6 tasks

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000)

Opt
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

N=8 tasks

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000)

Opt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

N=10 tasks

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000)

Opt
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

N=12 tasks

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000)

Opt

Figure 9: Fraction of schedulable tasksets for the various partitioning algorithms.

architectures (such as, for example, the ARM big.LITTLE ar-
chitecture) and parallel tasks.

16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 5 6 7 8 9 10 11 12
Heuristic FF

Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000) with Redesign

Opt

Utilization U=1.0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 5 6 7 8 9 10 11 12
Heuristic FF

Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000) with Redesign

Opt

Utilization U=3.0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 5 6 7 8 9 10 11 12
Heuristic FF

Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000) with Redesign

Opt

Utilization U=4.5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 5 6 7 8 9 10 11 12
Heuristic FF

Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000) with Redesign

Opt

Utilization U=6.0

Figure 10: Overhead of various partitioning algorithms as a function of the number of tasks.

17

 0.998

 0.9985

 0.999

 0.9995

 1

 5 6 7 8 9 10 11 12

Utilization U=1.0

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000)

Opt

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 6 7 8 9 10 11 12

Utilization U=3.0

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000)

Opt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 6 7 8 9 10 11 12

Utilization U=4.5

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000)

Opt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 6 7 8 9 10 11 12

Utilization U=6.0

Heuristic FF
Heuristic U-FF
Heuristic Ovh

α-0
α-β (β=5000)

Opt

Figure 11: Fraction of schedulable tasksets for various partitioning algorithms as a function of the number of tasks.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8

FF
Ovh

U-FF
U-Ovh

glpk

Design Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 4 6 8 10 12 14 16

FF
Ovh

U-FF
U-Ovh

glpk

Design Time

Figure 12: Maximum partitioning times measured on the ARM server, as a function of the taskset utilization (on the left) and of the number of tasks (on the right).

18

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8

FF
Ovh

U-FF
U-Ovh

glpk
cplex

Design Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 4 6 8 10 12 14 16

FF
Ovh

U-FF
U-Ovh

glpk
cplex

Design Time

Figure 13: Maximum partitioning times measured on the Xeon server, as a function of the taskset utilization (on the left) and of the number of tasks (on the right).

19

References

[1] S.-P. Chuah, C. Yuen, N.-M. Cheung, Cloud gaming: a green solution
to massive multiplayer online games, IEEE Wireless Communications
21 (4) (2014) 78–87.

[2] D. Meiländer, S. Gorlatch, Modeling the scalability of real-time online
interactive applications on clouds, Future Generation Computer Systems
86 (2018) 1019–1031.

[3] M. Ghobaei-Arani, R. Khorsand, M. Ramezanpour, An autonomous re-
source provisioning framework for massively multiplayer online games in
cloud environment, Journal of Network and Computer Applications 142
(2019) 76–97.

[4] M. Mao, M. Humphrey, Auto-scaling to minimize cost and meet applica-
tion deadlines in cloud workflows, in: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2011, pp. 1–12.

[5] S. M. Salman, V. Struhar, A. V. Papadopoulos, M. Behnam, T. Nolte,
Fogification of industrial robotic systems: Research challenges, in: Pro-
ceedings of the Workshop on Fog Computing and the IoT, IoT-Fog ’19,
Association for Computing Machinery, New York, NY, USA, 2019, p.
41–45.

[6] V.-D. Balteanu, A. Neculai, C. Negru, F. Pop, A. Stoica, Near real-time
scheduling in cloud-edge platforms, in: Proceedings of the 35th An-
nual ACM Symposium on Applied Computing, SAC ’20, Association for
Computing Machinery, New York, NY, USA, 2020, p. 1264–1271.

[7] N. Auluck, A. Azim, K. Fizza, Improving the schedulability of real-time
tasks using fog computing, IEEE Transactions on Services Computing
(2019) 1–1.

[8] M. S. Shaik, V. Struhár, Z. Bakhshi, V.-L. Dao, N. Desai, A. V. Pa-
padopoulos, T. Nolte, V. Karagiannis, S. Schulte, A. Venito, G. Fohler,
Enabling fog-based industrial robotics systems, in: 2020 25th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), Vol. 1, 2020, pp. 61–68.

[9] L. Abeni, D. Faggioli, An experimental analysis of the xen and kvm la-
tencies, in: Proceedings of the IEEE 22nd International Symposium on
Real-Time Distributed Computing (ISORC), 2019, pp. 18–26.

[10] L. Abeni, D. Faggioli, Using xen and KVM as real-time hypervisors, Jour-
nal of Systems Architecture 106 (2020) 101709.

[11] H. Li, X. Xu, J. Ren, Y. Dong, Acrn: A big little hypervisor for iot devel-
opment, in: Proceedings of the 15th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, VEE 2019, Asso-
ciation for Computing Machinery, New York, NY, USA, 2019, p. 31–44.

[12] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, I. Lee, Real-time
multi-core virtual machine scheduling in Xen, in: Proc. of 2014 Interna-
tional Conference on Embedded Software (EMSOFT), 2014, pp. 1–10.

[13] J. Lelli, C. Scordino, L. Abeni, D. Faggioli, Deadline scheduling in the
linux kernel, Software: Practice and Experience 46 (6) (2016) 821–839.

[14] L. Abeni, A. Biondi, E. Bini, Hierarchical scheduling of real-time tasks
over linux-based virtual machines, Journal of Systems and Software 149
(2019) 234 – 249.

[15] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. Phan, I. Lee, O. Sokolsky,
Rt-openstack: Cpu resource management for real-time cloud computing,
in: Proceedings of the 8th International Conference on Cloud Computing,
IEEE, 2015, pp. 179–186.

[16] V. Struhár, M. Behnam, M. Ashjaei, A. V. Papadopoulos, Real-Time Con-
tainers: A Survey, in: A. Cervin, Y. Yang (Eds.), 2nd Workshop on Fog
Computing and the IoT (Fog-IoT 2020), Vol. 80 of OpenAccess Series
in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, 2020, pp. 7:1–7:9.

[17] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, A. V. Papadopou-
los, React: Enabling real-time container orchestration, in: 2021 ETFA–
IEEE 26th International Conference on Emerging Technologies and Fac-
tory Automation, 2021, pp. 1–8.

[18] T. P. Baker, M. Cirinei, Brute-force determination of multiprocessor
schedulability for sets of sporadic hard-deadline tasks, in: Proceedings
of the International Conference On Principles Of Distributed Systems
(OPODIS), 2007, pp. 62–75.

[19] N. Guan, Z. Gu, Q. Deng, S. Gao, G. Yu, Exact schedulability analysis for
static-priority global multiprocessor scheduling using model-checking,
in: Proceeding of the IFIP International Workshop on Software Tech-
nolgies for Embedded and Ubiquitous Systems, 2007, pp. 263–272.

[20] V. Bonifaci, A. Marchetti-Spaccamela, Feasibility analysis of sporadic
real-time multiprocessor task systems, Algorithmica 63 (4) (2012) 763–
780.

[21] A. Burmyakov, E. Bini, C.-G. Lee, Towards a tractable exact test for
global multiprocessor fixed priority scheduling, IEEE Transactions on
Computers (2022) 1–1.

[22] J. Goossens, S. Funk, S. Baruah, Priority-driven scheduling of periodic
task systems on multiprocessors, Real-Time Systems 25 (2) (2003) 187–
205.

[23] T. P. Baker, An analysis of edf schedulability on a multiprocessor, IEEE
transactions on parallel and distributed systems 16 (8) (2005) 760–768.

[24] T. P. Baker, Multiprocessor edf and deadline monotonic schedulability
analysis, in: Proceeding of the 24th IEEE Real-Time Systems Sympo-
sium, 2003, pp. 120–129.

[25] S. K. Baruah, J. Goossens, Rate-monotonic scheduling on uniform multi-
processors, IEEE transactions on computers 52 (7) (2003) 966–970.

[26] G. Nelissen, V. Berten, V. Nélis, J. Goossens, D. Milojevic, U-edf: An
unfair but optimal multiprocessor scheduling algorithm for sporadic tasks,
in: 2012 24th Euromicro Conference on Real-Time Systems, 2012, pp.
13–23.

[27] P. Regnier, G. Lima, E. Massa, G. Levin, S. Brandt, Run: Optimal mul-
tiprocessor real-time scheduling via reduction to uniprocessor, in: 2011
IEEE 32nd Real-Time Systems Symposium, 2011, pp. 104–115.

[28] G. Levin, S. Funk, C. Sadowski, I. Pye, S. Brandt, Dp-fair: A simple
model for understanding optimal multiprocessor scheduling, in: 2010
22nd Euromicro Conference on Real-Time Systems, 2010, pp. 3–13.

[29] B. Andersson, E. Tovar, Multiprocessor scheduling with few preemptions,
in: 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’06), 2006, pp. 322–334.

[30] H. Cho, B. Ravindran, E. D. Jensen, An optimal real-time scheduling
algorithm for multiprocessors, in: 2006 27th IEEE International Real-
Time Systems Symposium (RTSS’06), 2006, pp. 101–110.

[31] S. K. Baruah, N. K. Cohen, C. G. Plaxton, D. A. Varvel, Proportionate
progress: A notion of fairness in resource allocation, Algorithmica 15 (6)
(1996) 600–625.

[32] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, R. L. Graham,
Worst-case performance bounds for simple one-dimensional packing al-
gorithms, SIAM Journal on Computing 3 (4) (1974) 299–325.

[33] D.-I. Oh, T. P. Baker, Utilization bounds for n-processor rate monotone
scheduling with static processor assignment, Real-Time Systems 15 (2)
(1998) 183–192.

[34] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in
a hard real-time environment, Journal of the Association for Computing
Machinery 20 (1) (1973) 46–61.

[35] J. M. Lopez, M. Garcia, J. L. Diaz, D. F. Garcia, Worst-case utiliza-
tion bound for EDF scheduling on real-time multiprocessor systems, in:
12th Euromicro Conference on Real-Time Systems, Stockholm, Sweden,
2000, pp. 25–33.

[36] J. Lin, A. Srivatsa, A. Gerstlauer, B. L. Evans, Heterogeneous multipro-
cessor mapping for real-time streaming systems, in: 2011 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
2011, pp. 1605–1608.

[37] S. Baruah, An ILP representation of a DAG scheduling problem, Real-
Time Systems 58 (2022) 85—102.

[38] A. K. Mok, X. Feng, D. Chen, Resource partition for real-time systems,
in: Proc. of 7th IEEE Real-Time Technology and Applications Sympo-
sium, 2001, pp. 75–84.

[39] X. Feng, A. K. Mok, A model of hierarchical real-time virtual resources,
in: Proc. of 23rd IEEE Real-Time Systems Symposium, 2002, pp. 26–35.

[40] G. Lipari, E. Bini, Resource partitioning among real-time applications,
in: Proc. of 15th Euromicro Conference on Real-Time Systems, 2003,
pp. 151–158.

[41] I. Shin, I. Lee, Periodic resource model for compositional real-time guar-
antees, in: Proceedings of 24th IEEE Real-Time Systems Symposium,
2003, pp. 2–13.

[42] L. Almeida, P. Pedreiras, Scheduling within temporal partitions:
response-time analysis and server design, in: Proc. of 4th ACM Inter-
national Conference on Embedded Software, 2004, pp. 95–103.

[43] I. Shin, A. Easwaran, I. Lee, Hierarchical scheduling framework for vir-
tual clustering of multiprocessors, in: 2008 Euromicro Conference on
Real-Time Systems, 2008, pp. 181–190.

20

[44] A. Easwaran, I. Shin, I. Lee, Optimal virtual cluster-based multiprocessor
scheduling, Real-Time Systems 43 (1) (2009) 25–59.

[45] G. Lipari, E. Bini, A framework for hierarchical scheduling on multipro-
cessors: from application requirements to run-time allocation, in: Proc.
of 31st IEEE Real-Time Systems Symposium, 2010, pp. 249–258.

[46] E. Bini, M. Bertogna, S. Baruah, Virtual multiprocessor platforms: Spec-
ification and use, in: Proc. of 30th IEEE Real-Time Systems Symposium,
2009, pp. 437–446.

[47] N. M. Khalilzad, M. Behnam, T. Nolte, Multi-level adaptive hierarchical
scheduling framework for composing real-time systems, in: Proc. of 19th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2013, pp. 320–329.

[48] A. Burmyakov, E. Bini, E. Tovar, Compositional multiprocessor schedu-
ling: the GMPR interface, Real-Time Systems 50 (3) (2014) 342–376.

[49] A. Biondi, G. Buttazzo, M. Bertogna, Partitioning and interface synthesis
in hierarchical multiprocessor real-time systems, in: Proc. of 24th In-
ternational Conference on Real-Time Networks and Systems, 2016, pp.
257–266.

[50] L. Abeni, A. Balsini, T. Cucinotta, Container-based real-time scheduling
in the linux kernel, SIGBED Review 16 (3) (2019) 33–38.

[51] S. Funk, J. Goossens, S. Baruah, On-line scheduling on uniform multi-
processors, in: Proceedings 22nd IEEE Real-Time Systems Symposium
(RTSS 2001) (Cat. No.01PR1420), 2001, pp. 183–192.

[52] G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in
constant-bandwidth servers, in: Proceedings 12th Euromicro Conference
on Real-Time Systems. Euromicro RTS 2000, 2000, pp. 193–200.

[53] L. Abeni, G. Lipari, A. Parri, Y. Sun, Multicore cpu reclaiming: Parallel
or sequential?, in: Proceedings of the 31st Annual ACM Symposium on
Applied Computing, SAC ’16, Association for Computing Machinery,
New York, NY, USA, 2016, p. 1877–1884.

[54] J. L. Lorente, G. Lipari, E. Bini, A hierarchical scheduling model for
component-based real-time systems, in: Proceedings 20th IEEE In-
ternational Parallel Distributed Processing Symposium, Rhodes Island,
Greece, 2006, pp. 8 pp.–.

[55] J. C. Palencia, M. G. Harbour, J. J. Gutiérrez, J. M. Rivas, Response-time
analysis in hierarchically-scheduled time-partitioned distributed systems,
IEEE Transactions on Parallel and Distributed Systems 28 (7) (2017)
2017–2030.

[56] A. Amurrio, E. Azketa, J. J. Gutierrez, M. Aldea, M. G. Harbour,
Response-time analysis of multipath flows in hierarchically-scheduled
time-partitioned distributed real-time systems, IEEE Access 8 (2020)
196700–196711.

[57] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, A. Warfield, Xen and the art of virtualization, SIGOPS
operating systems review 37 (5) (2003) 164–177.

[58] M. Bertogna, M. Cirinei, G. Lipari, Improved schedulability analysis of
EDF on multiprocessor platforms, in: Proc. of 17th Euromicro Confer-
ence on Real-Time Systems, 2005, pp. 209–218.

[59] E. Bini, G. C. Buttazzo, Schedulability analysis of periodic fixed priority
systems, IEEE Transactions on Computers 53 (11) (2004) 1462–1473.

[60] P. Emberson, R. Stafford, R. I. Davis, Techniques for the synthesis of
multiprocessor tasksets, in: Proceedings 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS 2010), 2010, pp. 6–11.

[61] L. T. X. Phan, J. Lee, A. Easwaran, V. Ramaswamy, S. Chen, I. Lee,
O. Sokolsky, CARTS: A tool for compositional analysis of real-time sys-
tems, SIGBED Review 8 (1) (2011) 62–63.

[62] Y. Sun, M. Di Natale, Pessimism in multicore global schedulability anal-
ysis, Journal of Systems Architecture 97 (2019) 142–152.

[63] K. Yang, J. H. Anderson, On the dominance of minimum-parallelism mul-
tiprocessor supply, in: Proc. of 37th IEEE Real-Time Systems Sympo-
sium, 2016, pp. 215–226.

[64] S. Boyd, S.-J. Kim, L. Vandenberghe, A. Hassibi, A tutorial on geometric
programming, Optimization and engineering 8 (1) (2007) 67–127.

[65] M. Grant, S. Boyd, Y. Ye, Disciplined Convex Programming, Springer
US, Boston, MA, 2006, pp. 155–210.

[66] A. Biondi, A. Melani, M. Bertogna, G. Buttazzo, Optimal design for
reservation servers under shared resources, in: 2014 26th Euromicro Con-
ference on Real-Time Systems, 2014, pp. 153–164.

21

	Introduction
	Contributions

	Related Work
	Definitions and Background
	Hierarchical scheduling framework

	Scheduling Real-Time Tasks in VMs
	Global guest scheduling
	Partitioned guest scheduling
	Comparing global vs. partitioned guest scheduling

	Partitioning Algorithms
	Accounting for the Allocation Delay
	Optimal partitioning and server design
	Heuristic algorithms
	Discussion

	Experimental Evaluation
	Issues with the -0 Model
	The Heuristic Algorithms
	Comparing all the Algorithms
	Take-Away Messages

	Conclusions and Future Work

