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One important confounder in genome-wide association studies (GWASs) is population
genetic structure, which may generate spurious associations if not properly accounted for.
This may ultimately result in a biased polygenic risk score (PRS) prediction, especially when
applied to another population. To explore this matter, we focused on principal component
analysis (PCA) and asked whether a population genetics informed strategy focused on
PCs derived from an external reference population helps in mitigating this PRS
transferability issue. Throughout the study, we used two complex model traits, height
and body mass index, and samples from UK and Estonian Biobanks. We aimed to
investigate 1) whether using a reference population (1000G) for computation of the PCs
adjusted for in the discovery cohort improves the resulting PRS performance in a target set
from another population and 2) whether adjusting the validation model for PCs is required
at all. Our results showed that any other set of PCs performed worse than the one
computed on samples from the same population as the discovery dataset. Furthermore,
we show that PC correction in GWAS cannot prevent residual population structure
information in the PRS, also for non-structured traits. Therefore, we confirm the utility
of PC correction in the validation model when the investigated trait shows an actual
correlation with population genetic structure, to account for the residual confounding effect
when evaluating the predictive value of PRS.
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INTRODUCTION

The last 15 years have offered great opportunities to explore the genetic component of complex
diseases and traits by using genome-wide association studies (GWASs) (Visscher et al., 2017).
Associated variants generally have a small effect on the biological outcome (Wray et al., 2007;
Visscher et al., 2017) and are often combined into a polygenic risk score (PRS) to estimate a person’s
genetic susceptibility for a trait or disease (Wray et al., 2014). PRSs have already demonstrated their
clinical potential by detecting individuals in high-risk groups for several diseases such as type 2
diabetes, cardiovascular diseases, Alzheimer’s disease, breast cancer, prostate cancer, and colorectal
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cancer (Lecarpentier et al., 2017; Khera et al., 2018; Schumacher
et al., 2018; Läll et al., 2019; Pärna et al., 2020) sometimes reaching
risk detection equal to monogenic mutations (Khera et al., 2018).

Although the concepts of GWAS and PRS are widely used, one
important confounder remaining is population genetic structure,
whichmight result in spurious disease associations if not properly
accounted for (Helgason et al., 2005; Kang et al., 2010; Choi et al.,
2020) and which may hinder the applicability of effect sizes
discovered in one cohort to compute PRS in another. Indeed,
it has been shown that GWAS summary statistics based on one
population might result in a much lower PRS predictability when
applied to a population with different structure, that is, limiting
its transferability (Duncan et al., 2019; Martin et al., 2019;
Bitarello and Mathieson, 2020; Marnetto et al., 2020; Sakaue
et al., 2020). For example, Sakaue et al. (2020) detected
substructures and differences in PRS performance between
these sub-groups among the Japanese population. In
particular, it has been shown that the presence of genetic
structure in Europe at a continental (Novembre et al., 2008;
Peter et al., 2020) and finer geographical scale can bias GWAS-
based statistics and affect PRS transferability even between
populations with relatively similar genetic backgrounds
(Haworth et al., 2019; Kerminen et al., 2019; Sohail et al.,
2019; Byrne et al., 2020; Pankratov et al., 2020).

Several methods to control for population genetic structure
have been proposed and successfully applied to improve
discovery of true genetic effect sizes such as principal
component analysis (PCA) (Price et al., 2006), genomic
control (GC) (Devlin and Roeder, 1999), linear mixed models
(LMMs) (Loh et al., 2015), and linkage disequilibrium score
regression (LDSC) (Bulik-Sullivan and Neale, 2015). However,
it remains unclear to what extent the correction applied on the
discovery cohort may affect the transferability of the resulting
summary statistics. Notably, in case of discovery and target set
similarity, a contribution of indirect factors other than direct
genetic effects would lead to higher PRS prediction accuracy, but
likely at a transferability cost, even between groups of the same
ancestry (Mostafavi et al., 2020). Here, we focus on correction for
population genetic structure via PCA, by far the most broadly
adopted control method in genetic association studies, where the
analysis of each genetic variant in the GWAS is adjusted for the
discovery cohort’s specific principal components (PCs) (Price
et al., 2006). Despite its broad adoption, as demonstrated by
recent analyses (Berg et al., 2019; Sohail et al., 2019; Zaidi and
Mathieson, 2020), its efficacy and potential side effects such as the
risk of removing part of the phenotype-genotype association
along with the population structure are still a matter of
discussion. It has been shown, for example, that when the
population exhibits recent changes in its genetic structure, the
PCs received based on common variants will not capture well the
full extent of information and such incomplete correction at each
locus could be amplified by summing single SNP effect sizes as
done for PRS construction (Mathieson and McVean, 2012;
Lawson et al., 2020; Zaidi and Mathieson, 2020). Likewise,
GWAS results deriving from large consortia such as GIANT
have been shown to still carry residual population stratification,
despite PCA correction in the original studies (Berg et al., 2019).

In addition, there is still a lack of consensus on whether PC
adjustment should be applied only to the discovery or also to the
target cohort (Pärna et al., 2020; Choi et al., 2020; Läll et al., 2017;
Abdellaoui et al., 2019; Privé et al., 2022; Wünnemann et al.,
2019).

It is important to stress that PCs used in such adjustments,
both during discovery and testing, are inherently dataset-specific
and therefore might introduce cohort-specific biases that limit
PRS transferability. We hypothesized that a broader population
dataset to receive the PCs to adjust for in the discovery cohort
could mitigate these cohort-specific biases, hence decreasing the
summary statistics transferability issues and counterbalancing the
lower prediction accuracy of the resulting PRS performance when
applied in another cohort. This could be achieved by projecting
the samples onto a reference PC space, as previously done for very
large discovery sets (Bycroft et al., 2018). Therefore, here, we set
out to systematically investigate whether 1) decreasing the
specificity of the PCs used to correct for population structure
in the discovery cohort may improve the model fit of the resulting
PRS, when applied to a cohort from a population different from
the one used for the discovery and 2) whether or not adding PCs
in the validation model (whether or not specific to the validation/
target cohort) increases the model fit in the target set.

We adopted two quantitative model traits, height, and body
mass index (BMI), each with its peculiar dependence on
population stratification. We computed GWAS summary
statistics in one European cohort (United Kingdom Biobank,
UKBB) for the calculations of PRS and validated these in
independent subsets from the same cohort (UKBBtest) and
from another European cohort (Estonian Biobank, EstBB).

Although the PC projection approach presented here
presumably leads to an increase in false positives when
discovering new GWAS loci, we consider the projection
approach useful in testing the PRS prediction performance.
Our exploration is indeed intended to inform the best strategy
to adopt when applying publicly available effect sizes onto
individuals coming from populations for which available
sample size is not sufficient to perform independent
discovery.

METHODS

Study Populations
Genetic data from the UK Biobank (UKBB) (Bycroft et al., 2018),
Estonian Biobank (EstBB) (Leitsalu et al., 2015) and 1000
Genomes Project (1000G) phase 3 were used for the current
study (Auton et al., 2015). UKBB and EstBB have been approved
by the North West Centre for Research Ethics Committee (11/
NW/0382) and by the Ethics Committee of Human Studies,
University of Tartu, Estonia, respectively, and all participants
have signed an informed consent. We selected 362,846 unrelated
individuals with European ancestry from UKBB. To define the
genetically “European” sample, we adapted a method from the
Neale Lab (https://github.com/Nealelab/UK_Biobank_GWAS)
to select samples which were closer than 7 standard deviations
cumulated over the first 6 PCs pre-computed by the UKBB
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workgroup with respect to the UKBB samples used for GWAS in
previous studies (Bycroft et al., 2018). Second, we removed up to
third-degree relatives. We divided the UKBB data in 3
independent sets: (1) a discovery set (UKBBtrain) with
350,745 individuals, (2) a target set (UKBBtest) with 7,100
individuals, and (3) an external group to build PC space onto
which the other samples were projected (n = 5,000). Such a
sample subdivision has been devised to maximize the discovery
set following what is considered the golden standard for GWAS
(Marees et al. (2017)) (Marees et al., 2018). From the EstBB, after
removing up to third-degree relatives as in the UKBB dataset, we
randomly selected a target set (EstBBtest; n = 7,070) and an
external group to build a PC space (n = 5,000). The 1000G phase 3
(n = 2,504) genetic dataset was used as an external publicly
available reference for building a PC space.

Genetic Data Filtering
We started with the set of 784,256 autosomal SNPs genotyped in
the UKBB with the UK Axiom Array by Affymetrix (Affymetrix,
2015), which were extracted from each study sample: (1)
UKBBtrain, (2) UKBBtest, (3) external UKBB sample, (4)
EstBBtest, (5) external EstBB sample, and (6) 1000G. On
genetic data of each study sample, we applied the following
quality control steps: removing duplicates, indels and
palindromic SNPs, ≤ 5% missing data allowed and removing
SNPs with minor allele frequency less than 0.01. After the filtering
steps, we had n = 557,215, n = 556, 834 and n = 529, 030 SNPs left
for the further analysis in UKBBtrain, UKBBtest, and EstBBtest,
respectively.

Principal Component Analysis
Four different PC spaces were built with different sets of individuals
used to infer the eigenvectors (1) PCUKBB or PCEstBB include the
5,000 external individuals from the cohort depending onwhether the
analysis is run on UKBB or EstBB, respectively, (2) PC1KG includes
all samples from 1000G (n = 2,504); (3) PCEUR includes the
European samples from 1000G (n = 503); and (4) PCNEU

includes non-European samples from 1000G (n = 2,001). For all
PC spaces listed above, the individuals from the discovery and target
sets, which were independent of the ones used to infer the PCA
eigenvectors, were projected onto the generated PC space to obtain
their PC coordinates. The PCAswere conductedwith Eigensoft-6.1.4
software (Price et al., 2006) each time performing LD pruning on the
relevant dataset using the parameters --indep-pairwise 50 10 0.1.
Outlier individuals (>6 SD along one or more of the top 10 PCs of
each experiment) were removed during five iterations of PC
analyses. Least square optimization was applied for interpolation
(projection) of the remaining samples onto the four PC spaces.
Specific to each PCA, with the --poplistname and --indivname
parameters, a subset of individuals was selected to compute the
PC space. We also performed additional PCAs to explore the impact
of 1) size of the sample sets used to compute the PCs—we ran the
above by a fixed sample size of 500 samples; 2) effect of shrinkage on
the PCprojection (run PCswith shrinkmode: YES); 3) use identity by
descent (IBD) matrix instead of raw genotypes to compute a
Multidimensional Scaling (MDS) and compared it with the
genotype-based PCAs.

GWASs for Height and BMI
GWASs for height and BMI were performed based on the
UKBBtrain data (n = 350,745 individuals and n = 557,215
SNPs left after the quality control steps). Assuming an
additive genetic model, summary statistics were estimated with
PLINK version-1.9.0 (Purcell et al., 2007) using a linear regression
analysis adjusted for age, sex, genotyping platform, and, except
for the control model, 20 principal components Eq. 1.

̂trait � β̂0 + β̂1age + β̂2sex + β̂3gp + β̂4X + β̂5PC1 + β̂6PC2

+ . . . + β̂24PC20 + εi

Eq. 1 was applied in all GWASs, except the control one, where
no PC adjustment was used. Trait: BMI or height; gp =
genotyping platform; X = SNP; PC = principal component; εi
= random error term.

For both traits, five different GWASs were performed: a
control GWAS with no PC adjustment plus four GWASs each
adjusted for one of the four PC sets derived as described in the
section principal component analysis.

PRS Calculation and Testing
The summary statistics from the five GWASs described above were
next used for PRS calculation in two independent target sets
(UKBBtest with n = 556,834 SNPs and EstBBtest with n =
529,030 SNPs); PRSs were computed as a sum of risk variants
that were more significant than a prespecified threshold (see
below) weighted by the effect sizes from the GWASs. To include
only independent SNPs in the PRS, clumping was applied with the
parameters: -clump-r2 0.05 --clump-p 1 --clump-kb 1000 using PLINK
version-1.9.0. To select the best-performing set of SNPs for PRS, we
applied different p-value cut-offs (0.00005, 0.0005, 0.001, 0.005, 0.01,
0.05, 0.1, and 0.5) from which PRSice version 2.2.11. b (Choi et al.,
2020) flags the best-performing p-value threshold resulting in the PRS
with the highest R2 value. PRS was standardized for better
interpretation. Note that since PRSs are constructed based on
different GWASs, across the different validation models, the best-
performing PRS can contain different numbers of SNPs.

To assess the association between the outcome trait and a PRS, we
fitted a linear regression model on the target sets of the UKBBtest
and EstBBtest, including the PRS and the covariates age, sex,
genotyping platform/batches and, except for a control model,
20 PCs. The five PRS defined above were independently tested in
combination with each one of the five different sets of PCs (as
defined in the “Principal component analysis” section) or no PCs for
the control model (five options), yielding 25 different validation
models. When analyzing the UKBBtest and EstBBtest cohorts, PCs
were derived either from the same PC spaces constructed from the
1000G data (PC spaces 2–4) or from the one with the 5,000 external
individuals from UKBB or EstBB, accordingly.

PRS, PC, and Trait Correlations
To investigate the relationships of the traits with PRS and PCs in
more detail, we analyzed six different regression models:

(1) trait_res ~ PCs
(2) PRS ~ PCs
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(3) trait_res ~ PRS
(4) trait_res ~ PCs + PRS
(5) trait_res_PRS ~ PCs
(6) trait_res_PCs ~ PRS

In these models, for both traits, we used their residuals
(trait_res) after first regressing out the effect of non-genetic
covariates: age, sex, and genotyping batch. In models 5 and 6,
we additionally regressed out either the effect of the standardized
PRS or of the first 20 PCs, which we defined as “trait_res_PRS”
and “trait_res_PCs”, respectively. We repeated this analysis for
each of the five PRSs, while PCs always represented the first
20 dataset-specific principal components (PCUKBB or PCEstBB).

To find out if any of these above-mentioned linear regression
models provide better fit to our data than the model without
independent variables, that is, only with the intercept, we applied
the F-test. For the model to be significantly better than the model
only with the intercept while accounting for multiple testing, we
considered a Bonferroni-corrected one-sided p-value cut-off of <
0.005 due to the 10 combinations of PRSs and traits. We used R2

to describe how much of the total variance the independent
variables in each above-mentioned model could explain for the
dependent variable.

Model Performance
To evaluate model performance, we used the Bayesian
Information Criterion (BIC), total R2 and added R2 by PRS
alone. BIC is a criterion for choosing the best-fitting validation
model while penalizing for the number of parameters included
(Kass and Raftery, 1995; Fabozzi et al., 2014):

BIC � −2likelihood + k p log(n)
where k = number of parameters and n = number of samples. The
lower the BIC value, the better the goodness of fit of the model is.
We calculated ΔBIC, the difference between the BIC value for
each model minus the BIC of the best fitting model. For ΔBIC, the
rules of thumb are (Fabozzi et al., 2014) that a difference of:

a) less than 6 units is considered weak
b) between 6 and 10 is considered strong
c) greater than 10 is considered as a very strong difference in

model performance.

R2, on the other hand, yields a simple interpretation of fit as a
measure of explained variance but does not consider the
number of model parameters.

RESULTS

Accounting for Population Genetic
Structure With PC Projection in UKBB
We started by defining four different PC adjustment approaches
to correct for population genetic structure: 1) PC projection onto
the PC space obtained from a subset (n = 5,000) of independent
samples from the same cohort as the discovery or target set
(PCUKBB); 2) PC projection onto the PC space obtained from all

samples from the 1000 Genomes Project (PC1KG); 3) similar to
approach 2, but using only European samples (PCEUR); 4) similar
to approach 2 but using only non-European samples instead
(PCNEU). For each four above-mentioned PC adjustments, the
external sample set was used to infer the eigenvectors of the PC
space, then genetic data from discovery or target samples were
transformed applying these eigenvectors, with an operation called
“projection” (Bycroft et al., 2018).

We computed the PC coordinates of the discovery and target
samples of the UKBB by projecting these samples onto the four
different PC spaces (Supplementary Figure S1). Next, we ran
four independent GWASs correcting for the first 20 PCs derived
from the four different PC spaces described above, and computed
PRS relying on summary statistics derived from these association
studies. Depending on the PC set used for the GWAS correction,
we obtained summary statistics to calculate PRSUKBB, PRS1KG,
PRSEUR, and PRSNEU in the independent target set of UKBB
samples. As a control, we also used the results from the GWAS
without any PC adjustment for both traits to construct a PRS
(PRS0). Genomic inflation values for each GWAS version have
been reported together with the QQ-plots (Supplementary
Figure S2a and Supplementary Figure S2b for height and
BMI, respectively). We then validated these PRSs applying
linear regression in target sets also including sex, age,
genotyping batch and one of the four PC sets or no PCs as
covariates. As a result of four different PC sets and one model
without PC adjustment, we reached 25 independent validation
models for height and BMI both. See Figure 1 for a schematics of
the study design.

We compared the model fit by their BIC values and by the
added R2, the amount of variance explained by PRS in each
validation model, received by subtracting from the model’s total
R2 the one obtained without PRS, as shown in Figure 2. To see the
relative difference in the fit of the validation models, we reported
ΔBIC values (difference between each model’s BIC value and the
BIC of the best-fitting model) when predicting height and BMI in
Figures 2A,B, respectively. Themodel with smallest BIC value for
both height and BMI contained the PRS based on the summary
statistics received from GWAS adjusted for the dataset dependent
PCs resulting in PRSUKBB and no inclusion of PCs as covariates.
The validation models containing PRS0, that is, the PRS built
from GWAS summary statistics that were not corrected for PCs,
provided the worst fit to the data (Figure 2A, ΔBIC = 563–1143)
when predicting height. PRSs obtained from GWAS summary
statistics adjusted for PCs from an external reference set clearly
yielded a lower model fit than PRSUKBB (Figure 2A, ΔBIC =
319–992 for the PCs from an external set). This trend can be
explained by a less rigorous correction of population structure
offered by the externally derived PCs during GWAS, which is
most severe for the PRSNEU (ΔBIC = 506–992).

For BMI, besides having the same best-fitting validationmodel
as for height (Figure 2B, PRSUKBB combined with PC0), the
combinations of any PRSs with no PC adjustment in the
validation model lead to smaller BIC values (Figure 2B, ΔBIC
= 0–144). While all validation models including PCs as covariates
provide larger BIC values (ΔBIC = 152–295), PCUKBB seems to
perform better than any other PC adjustment (ΔBIC = 154–198).
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As expected, when looking at the added R2 by PRS (Figures
2C,D), the best performance was obtained by PRSUKBB both
when predicting height and BMI (13.98–13.51% and
8.48–8.23%, respectively), irrespective of the PC set chosen
as covariates. While this results underlines the inadequacy of
projected PCs in accounting for population stratification
during GWAS, it also shows that the residual confounding
effect decreases PRS predictivity when validating it in a
separated sample set, even within the same cohort. Notably,
the sharp decrease in added R2 shown by other PRSs (the
lowest R2 value of 8.64% for height in case of PRS0-PCNEU) is
less extreme when including dataset-specific PCs during
validation (11.35% for PRS0-PCUKBB). This can be due to a
mild case of Simpson’s paradox (Wagner, 1982), where
projected PCs (or no PCs at all) are unable to resolve the
population stratification during PRS validation, causing a loss
of PRS predictivity (see Supplementary Figure S3).
Nevertheless, when focusing on PRSUKBB, we observe a
decrease in added R2 when using PCUKBB, a sign that
indeed residual population stratification might be present
also in what is considered the golden standard. To further
investigate the correlations between PRS, PCs, and predicted
trait, we focused on PCUKBB, which provided the highest
explained variance during validation for both traits
(Supplementary Figure S4a-4d, last column) and tested its
correlation with other covariates. Population structure
summarized by the first 20 PCs did indeed explain some

variance in height (1.4%, see Supplementary Table S1), but
not in BMI (F-test, p = 0.012 at the Bonferroni corrected
p-value threshold of 0.005). However, these PCs still
explained a significant proportion of PRS variance (2.4% for
height PRSUKBB and 1.7% for BMI PRSUKBB), even though the
underlying GWAS and validation model both were corrected
for the same PCs (PCUKBB). A reason for small but very
significant (p = 1.46E-25 for height) PCs and PRS
correlations could be an incomplete correction for
population structure at each locus, a possibility explored by
Zaidi and Mathieson (2020), which is amplified by summing
single SNP effect sizes as done in PRS construction. Indeed,
when correcting GWAS for PCs resulting from projection on
an external reference population or performing no correction
at all, the resulting PRS consistently showed much stronger
correlation (e.g., shown by 49.4% PRS0, 20.0% PRS1KG, 21.6%
PRSEUR, 43.0% PRSNEU explained variance for height) with
population structure (PCUKBB) in the target set. Notably,
height PRSs demonstrated higher correlations with
population structure than BMI PRSs across the board.

When predicting height, the incomplete correction of PRS for
population structure results in a portion of explained variance
shared by PRS and PCs. When firstly regressing out the effect of
PCs on the trait, the trait variance explained only by PRSUKBB is
lower than when predicting the trait unadjusted for PCs by
PRSUKBB (−1.2% in trait_res_PCs ~ PRSUKBB vs. trait_res ~
PRSUKBB, Supplementary Table S1). These differences are all

FIGURE 1 | Schematics of our study design. Briefly, we used 1000G as a reference dataset to conduct the PCAs in three subsets (1) only Europeans (EUR), (2) non-
Europeans (NEUR), (3) all 1000G samples (1 KG). Also we conducted PCAs in subsets of 5,000 individuals from the UK Biobank (UKBB) and Estonian Biobank (EstBB),
which are respectively independent from the UKBBtrain (GWAS sample), UKBBtest and EstBBtest target sets. Following, the UKBBtrain, UKBBtest, EstBBtest were
projected in these PC spaces (blue dashed arrow) to receive the PCs (PC1:PC20) to adjust in the GWASs and target sets (blue continuous arrows), where the PRSs
performance was tested. As a result of different PC adjustments plus one control (PC0) in GWAS and accordingly in both target sets, UKBBtest and EstBBtest, we
reached 25 different validation models in both sets. Gray continuous arrow points to the datasets, where the GWAS summary statistics were applied.
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higher for poorly corrected PRSs (−4.5–5.7% for PRS0 or any PRS
received based on an external reference set). Likewise, when the
effect of PRS on the trait is first regressed out, the trait-PCs
correlation is lower than simple PC-explained trait variance
(−0.7% for trait_res_PRSUKBB ~ PCs vs. for trait_res ~ PCs).
R2 and F-test p-values for the tested regressions are shown in
Supplementary Table S1.

PC Correction for a Target Set From a
Population Other Than the Discovery One
To test whether the projection on an external dataset improves
the PRS transferability in a different target cohort, we used as
validation set the data from the EstBB applying the same PC
corrections described for the UKBB target set, except for PCEstBB

being computed onto PCA of 5,000 EstBB instead of 5000 UKBB
samples (Figure 3).

When moving to a different European cohort, similar PCs-
PRS-trait correlation patterns were observed as in case of the
same-cohort discovery and target set. The dependency of trait
and PRSEstBB on population structure (presented for PCEstBB

only) was comparable to the ones in the UKBBtest set
(Supplementary Tables S1), except for the height-PCEstBB

correlation being stronger (3.4%). Similarly to the UKBB
target set, in the EstBB set, the height-PCEstBB correlations

were consistently stronger than for BMI-PCEstBB, which shows
that BMI is again less dependent on population structure.
However, differently from the scenario of testing in the same
cohort, a poor or absent PC correction in GWAS (PRS0) did not
yield a PRS that was highly correlated with population structure
(PCEstBB), although a small increase is still visible compared to the
PRSUKBB (e.g., for height 3.1% PRSUKBB vs. 4.2% PRS0, 4.0%
PRS1KG, 4.9% PRSEUR, 4.2% PRSNEU).

Nevertheless, similar to the scenario of having the discovery
and target set from the same cohort, we now found that when
predicting a trait, the best-fitting model according to BIC value
was the one with PRS computed by applying summary statistics
from the GWAS adjusted for the dataset dependent PCs
(PRSUKBB) and no PC (PC0) adjustment during PRS validation
(Figures 3A,B for height and BMI, respectively). The closest
performance to the best-fitting models was consistently shown by
the models containing PRSUKBB together with any possible PC
adjustment in the validationmodel for height (Figure 3A,ΔBIC =
0–117), although PRS1KG and PRSEUR were better than in the
same-cohort validation. For BMI, the lowest ΔBIC values were
demonstrated by the validation models without PC covariate
(PC0) combined with any PRS (Figure 3B, ΔBIC = 0–20). Similar
to the first scenario, when looking at added R2 of the various
models (Figures 3C,D for height and BMI, respectively), we
observe a slight decrease in validation models including PCs

FIGURE 2 | Heatmap reporting ΔBIC values for 25 different validation models in case of the independent discovery (UKBBtrain) and target set (UKBBtest)
originating from the same large cohort: (A) height (B) BMI. For eachmodel, we computed ΔBIC (difference between eachmodel’s BIC value minus BIC for the best-fitting
model). The lower ΔBIC value is indicated by darker red color (the lower the ΔBIC value, the better fit the validation model is). Heatmap with the added R2 values by the
PRS for 25 different validation models in case of the independent discovery (UKBBtrain) and target set (UKBBtest) originating from the same large cohort: (C) height
(D)BMI. A higher R2 is indicated with a darker blue color. Y-axis: five GWASs conducted in UKBBtrain, which summary statistics were applied for PRSs calculations used
in the validation models of target set. These PRSs were then used in a validation model also adjusted for age, sex, genotyping batch, and 20 first principal components
from four different PCAs for UKBBtest plus one validation model without any PC adjustment as a control (x-axis).
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(Figures 3B,C, columns two to five), pointing to a residual
presence of population structure in the PRS.

As the datasets to conduct PCAs vary in size (n = 503 for 1000G
EUR subset up to 5,000 for the PCUKBB and PCEstBB), we also
computed ΔBIC, added R2 and total R2 values using a fixed size (n =
500) for the samples used to compute the PCA and onto which the
remaining samples were projected (Supplementary Figures S5–7),
and found this to not alter our results in a qualitative way. Also, the
correlations between the original PCs received based on different size
PCA approaches versus fixed size (n = 500) in UKBBtest and
EstBBtest sets are provided in the Supplementary Tables S2a-d
and Supplementary Tables S3a-d, respectively. We also computed
PCs controlling for shrinkage to mitigate potential issues emerging
during the projection process, as well as computing principal
axes of genetic variation starting from a matrix of identity by
descent (IBD) distances. While the PCs received after
controlling for shrinkage were comparable to the ones
obtained without (Supplementary Tables S4a,b), the IBD-
based analyses (Supplementary Tables S5a-d and
Supplementary Tables S6a-d, respective to the target set)
showed that such an approach could leverage on a finer
level of population structure which, however, is beyond the
scope of the current work aimed at exploring best practices
when using methods controlling for population structure
described by common variants.

DISCUSSION

To test whether adjusting GWAS for the PCs received via the
projection approach would improve the PRS model fit in a target
set from a different cohort and whether the PC adjustment in the
validation model is needed, we performed various sets of PC
corrections in GWASs and in validation models of
corresponding PRSs.

For height, the added R2 of the best-fitting validation model
explained 13.98% and for BMI, 8.48% of the total variance in the
UKBBtest target set. We confirmed that the cohort-specific PCs
in GWAS yield a better performing PRS (PRSUKBB) in a target set
from the same population than the PCs calculated by projecting
the GWAS samples into the reference dataset of 1000G. Such a
reduction is not counterbalanced by an improvement in
transferability to a different cohort than the one from which
summary statistics were obtained, as shown when computing PRS
based on the UKBB GWAS for the individuals from EstBB.

Resorting to a cohort-specific PC adjustment (PCUKBB or
PCEstBB) as the best and most sensible approach in GWAS
and PRS validation, we elaborated on the implications of PCs
inclusion in the validation model. When purely considering
model fitness, adding PCs would be worthless for a trait that
does not show any correlation with population structure, such as
BMI, since they do not add explanatory power while increasing

FIGURE 3 | Heatmap with the ΔBIC values for 25 different validation models in case of the discovery (UKBBtrain) and target set (EstBBtest) originating from the
different cohort: (A) height (B) BMI. For each model, we computed ΔBIC (difference between each model’s BIC value minus BIC for the best-fitting model). The lower
ΔBIC value is indicated by darker red color (the lower the ΔBIC value, the better fit the validation model is). Heatmap with the added R2 values by the PRS for 25 different
validation models in case of the discovery (UKBBtrain) and target set (EstBBtest) originating from the different cohort: (C) height (D) BMI. Y-axis: five GWASs
conducted in UKBBtrain, which summary statistics were applied for PRSs calculations used in the validation models of target set. These PRSs were then used in a
validation model also adjusted for age, sex, genotyping batch, and 20 first principal components from four different PCAs for EstBBtest plus one validation model without
any PC adjustment as a control (x-axis).
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the number of covariates, but in principle, they would be
constructive for structured traits, such as height. The
observation that also for height the lowest BIC values for our
validation models were obtained when no PC adjustment was
applied points to a residual presence of population stratification
in the computed PRS, showing its capacity to represent both true
biologically related and spurious population structure
information simultaneously. This indication is further
confirmed by the slight decrease in added R2 when PCs are
indeed included as covariates in the validation models of both
UKBB and EstBB. Doubts over the efficacy of PCs adjustment
have been reported also in previous studies (Haworth et al., 2019;
Zaidi and Mathieson, 2020). Indeed, we show that PRSs contain
information about population structure even when PC-corrected,
and even for traits which appear non-structured (BMI).
Therefore, even if BIC would warrant the exclusion of PCs in
a model selection scope, they should be included when predicting
a structured trait (height), to account for the residual population
structure confounding effect in PRS and correctly evaluate its
added predictive value. Conversely, even if PRSs for ideal non-
structured traits also contain information about population
structure, the latter cannot operate as a confounder: in this
case, PCs inclusion in the validation model does not have any
clear utility or consequence. Since testing the correlation between
PCs and the target trait is computationally inexpensive, we
recommend this as a preliminary check to inform the user
about the need to include PCs in the prediction model.

The same conclusion drawn for the UKBB results holds when
the discovery and target sets originated from different cohorts.
The added R2 of the validation model in EstBB computed using
summary statistics from UKBB explained, respectively, 8.33 and
5.22% of the total variance in height and BMI in the target set. We
acknowledge that besides the differences in the genetic settings
for UKBB and EstBB datasets, the cohorts diverge in age range
and sex proportions, and these could also influence the results.
Indeed, it has been shown that even among the same ancestry
group, the PRS prediction accuracy can vary due to differences in
the discovery and target sets’ age, sex or socioeconomic
distribution (Mostafavi et al., 2020).

Furthermore, we did not detect very large numeric differences
in the total explained variance by the validation models
containing PRSs and PCs received via projection onto
different sets of external reference data. Firstly, it could be that
none of these sets reflected the population structure of our study
sample well. That argument was supported by observing smaller
correlations between the PRS and PCs, when we used the GWAS
summary statistics adjusted for the dataset-dependent PCs
(PCUKBB) for the PRS calculations. Additionally, such small
differences could occur since for each validation model we
allowed the PRSice software to choose the PRS with the
highest R2 value, which means that PRSs in different
validation models could contain different numbers of SNPs.
On one hand, by choosing the best-performing PRS for each
validation model, we might unintentionally diminish the possible
differences caused by four different PC adjustments for GWASs
reflected on the effect sizes differences for each individual
associated SNP. On the other hand, choosing the same

associated SNPs for each PRS calculation would limit the
prediction accuracy of the validation model. Also, a minor
caveat is that the reported added R2 were estimated in-sample;
however, the small parameter space explored during PRS
optimization (PRS effect size and eight different p-value
thresholds) decreases the risk of over-fitting.

Given the clinical potential of PRSs, it is of utmost importance
to explore the methods to adjust for population genetic structure
resulting in less biased predictions and making personalized
medicine more accessible for everyone. Here, we found that
the best-fitting validation models for height and BMI both did
not contain any genetic PCs and it included the PRS applying the
summary statistics from the GWAS adjusted for the dataset-
dependent PCs. This finding was similar for UKBB and EstBB as a
target set, showing that projecting on an external reference set
does not improve its transferability. Furthermore, although
dataset-dependent PC correction during GWAS is the best
approach among the ones we tested, our results confirm that,
while reducing it, cannot prevent residual population structure
information into PRS, which may or may not exert a confounding
effect depending on the trait’s genuine link to population
structure. Finally, we found no evidence pointing against the
usage of dataset-specific PCs also during validation. Therefore,
even though their implications should be carefully evaluated
depending on the PRS, trait and PCs actual correlations, PC
covariates should be conservatively added in the
validation model.
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