
Frontiers in Endocrinology | www.frontiersi

Edited by:
Riccarda Granata,

University of Turin, Italy

Reviewed by:
Francesco Cavagnini,

Istituto Auxologico Italiano (IRCCS),
Italy

Monica Marazuela,
Autonomous University of Madrid,

Spain

*Correspondence:
Andreas G. Moraitis

amoraitis@corcept.com

Specialty section:
This article was submitted to

Neuroendocrine Science,
a section of the journal

Frontiers in Endocrinology

Received: 11 October 2021
Accepted: 22 November 2021
Published: 04 January 2022

Citation:
Pivonello R, Munster PN, Terzolo M,

Ferrigno R, Simeoli C, Puglisi S, Bali U
and Moraitis AG (2022) Glucocorticoid

Receptor Antagonism Upregulates
Somatostatin Receptor Subtype 2

Expression in ACTH-Producing
Neuroendocrine Tumors: New Insight
Based on the Selective Glucocorticoid

Receptor Modulator Relacorilant.
Front. Endocrinol. 12:793262.

doi: 10.3389/fendo.2021.793262

HYPOTHESIS AND THEORY
published: 04 January 2022

doi: 10.3389/fendo.2021.793262
Glucocorticoid Receptor Antagonism
Upregulates Somatostatin Receptor
Subtype 2 Expression in ACTH-
Producing Neuroendocrine Tumors:
New Insight Based on the Selective
Glucocorticoid Receptor
Modulator Relacorilant
Rosario Pivonello1, Pamela N. Munster2, Massimo Terzolo3, Rosario Ferrigno1,
Chiara Simeoli 1, Soraya Puglisi 3, Utsav Bali 4 and Andreas G. Moraitis5*

1 Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico Il di Napoli, Naples, Italy,
2 Department of Medicine (Hematology/Oncology), University of California San Francisco, San Francisco, CA, United States,
3 Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy,
4 Bioscience Department, Sygnature Discovery Ltd, Nottingham, United Kingdom, 5 Drug Research and Development,
Corcept Therapeutics, Menlo Park, CA, United States

Somatostatin exhibits an inhibitory effect on pituitary hormone secretion, including
inhibition of growth hormone and adrenocorticotropic hormone (ACTH), and it can have
antisecretory and antitumor effects on neuroendocrine tumors (NETs) that express
somatostatin receptors. Although the precise mechanism remains unclear, the finding
that glucocorticoids downregulate somatostatin receptor subtype 2 (SSTR2) expression
has been used to explain the lack of efficacy of traditional SSTR2-targeting analogs in
patients with ACTH-secreting NETs. Glucocorticoid receptor (GR) antagonism with
mifepristone has been shown to reverse the glucocorticoid-induced downregulation of
SSTR2; however, the effects of GR modulation on SSTR2 expression in ACTH-secreting
NETs, particularly corticotroph pituitary tumors, are not well known. The current study
presents new insight from in vitro data using the highly selective GRmodulator relacorilant,
showing that GR modulation can overcome dexamethasone-induced suppression of
SSTR2 in the murine At-T20 cell line. Additional data presented from clinical case
observations in patients with ACTH-secreting NETs suggest that upregulation of
SSTR2 via GR modulation may re-sensitize tumors to endogenous somatostatin and/or
somatostatin analogs. Clinical, laboratory, and imaging findings from 4 patients [2 ACTH-
secreting bronchial tumors and 2 ACTH-secreting pituitary tumors (Cushing disease)] who
were treated with relacorilant as part of two clinical studies (NCT02804750 and
NCT02762981) are described. In the patients with ectopic ACTH secretion, SSTR2-
based imaging (Octreoscan and 68Ga-DOTATATE positron emission tomography)
performed before and after treatment with relacorilant showed increased radiotracer
uptake by the tumor following treatment with relacorilant without change in tumor size at
n.org January 2022 | Volume 12 | Article 7932621
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computed tomography. In the patients with Cushing disease who received relacorilant
prior to scheduled pituitary surgery, magnetic resonance imaging after a 3-month course
of relacorilant showed a reduction in tumor size. Based on these findings, we propose that
GR modulation in patients with ACTH-secreting NETs upregulates previously suppressed
SSTR2s, resulting in tumor-specific antisecretory and anti-proliferative effects. The effect
of relacorilant on pituitary corticotroph tumors is being investigated in an ongoing phase 3
study (NCT03697109; EudraCT 2018-003096-35).
Keywords: glucocorticoid, cortisol, somatostatin, relacorilant, neuroendocrine tumor, adrenocorticotropic
hormone, Cushing disease, ectopic ACTH syndrome
INTRODUCTION

Somatostatin receptors (SSTRs) are expressed in organs and
tissues throughout the body (1–3) as well as in many different
tumor types, including neuroendocrine tumors (NETs) (4–7)—a
heterogeneous group of neoplasms (eg, pituitary tumors, carcinoid
tumors, gastroenteropancreatic tumors, phaeochromocytomas,
medullary thyroid carcinomas, and small cell tumors of the lung
and prostate) arising from neuroendocrine cells. SSTRs include
five different subtypes (SSTR1-5) belonging to the G-protein-
coupled receptor class (1, 7). SSTR2 and SSTR5 are
predominately expressed in endocrine tissues (eg, pituitary
gland), and SSTR2 is one of the most abundantly expressed
receptor subtypes in many NETs (2, 5, 6, 8). The presence of
SSTR2 on NETs has led to the use of synthetic somatostatin
analogs (eg, octreotide and lanreotide) (9–13) and radiolabeled
somatostatin analogs (eg, 111In-pentetreotide [Octreoscan] and
177Lu-DOTATATE) (14, 15) for tumor localization and treatment.

Somatostatin is a potent inhibitor of pituitary hormone
secretion, including inhibition of growth hormone and
adrenocorticotropic hormone (ACTH) secretion (1, 8, 16).
Similarly, somatostatin analogs have antisecretory effects and
show antitumoral activity (9–12). However, many patients with
NETs develop resistance or do not respond to somatostatin
analogs targeting SSTR2. For instance, octreotide is partially
effective in patients with extra-pituitary corticotroph tumors
responsible for ectopic Cushing syndrome or ectopic ACTH
secretion and is generally ineffective in patients with pituitary
corticotroph tumors responsible for the most common form of
ACTH-dependent Cushing syndrome, namely, Cushing disease
(17, 18). Pituitary corticotroph tumors have lower expression of
SSTR2 and higher expression of SSTR5 and dopamine type 2
(D2) receptors (19, 20), leading to the clinical use of dopamine
agonist cabergoline, which has high affinity for D2, and the
multi-somatostatin analog pasireotide, which has high affinity
for SSTR5 (21, 22), over analogs targeting SSTR2.
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The lack of efficacy of somatostatin analogs targeting SSTR2
in patients with Cushing disease supports the hypothesis that
SSTR2 is downregulated by glucocorticoids. In vitro studies have
shown that dexamethasone treatment of At-T20 corticotroph
tumor cells induced significant suppression of SSTR2 messenger
ribonucleic acid (mRNA) expression (23). Glucocorticoids have
also been shown to attenuate the inhibitory effects of octreotide
on ACTH release in vitro (18, 23). This downregulation by
glucocorticoids might explain not only the lack of efficacy of
SSTR2-targeting somatostatin analogs in patients with Cushing
disease but also their partial effect in patients with ectopic ACTH
syndrome. The ACTH-secretory capacity of these latter patients’
tumors has been shown to be more “resistant” to the negative
feedback of cortisol excess, as an intact glucocorticoid signaling
pathway is not always present within these cells (24–27).

The glucocorticoid receptor (GR) antagonist mifepristone, a
non-selective steroidal GR antagonist with progesterone receptor
activity, has been shown to reverse the inhibitory effects of
glucocorticoids on SSTR2 mRNA expression in the human
neuroendocrine cell lines BON (carcinoid) and TT (medullary
thyroid carcinoma) (27). Treatment with dexamethasone
resulted in 71% and 69% reductions in SSTR2 mRNA
expression in BON and TT cells , respectively. Co-
administration with mifepristone completely inhibited the
dexamethasone-mediated downregulation of SSTR2 mRNA.
The in vitro effects of mifepristone on SSTR2 expression in
corticotroph tumor cell lines have not been studied. A clinical
report of two patients with ectopic ACTH syndrome treated with
mifepristone noted upregulation of SSTR2 on diagnostic imaging
(24). However, mifepristone treatment in patients with ACTH-
dependent Cushing syndrome, including ectopic ACTH
syndrome, has not been shown to affect tumor growth or
decrease the ACTH-secretory capacity of the tumor (28, 29).

Relacorilant (CORT125134, Corcept Therapeutics, Menlo
Park, CA) is a highly selective non-steroidal GR modulator
(SGRM) that modulates cortisol activity (30) and, unlike
mifepristone, lacks progesterone receptor activity. Relacorilant is
under clinical investigation for the treatment of patients with
endogenous Cushing syndrome (NCT03697109, NCT04308590,
and NCT04373265). The effects of relacorilant on SSTR2
expression have not been previously assessed, and the diagnostic
and therapeutic implications of the relationship between GR
modulation and SSTR2 in patients with ACTH-secreting NETs
remain unclear.
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HYPOTHESIS

This report provides new insight into the relationship between
GR modulation and SSTR2, suggesting that GR modulation
with relacorilant may overcome the glucocorticoid-induced
suppression of SSTR2, enabling SSTR2-mediated effects in
ACTH-secreting NETs (Figure 1). Presented in this report are
in vitro laboratory data and findings from several clinical
observations supporting the hypothesis that SGRM-induced
upregulation of SSTR2 by relacorilant may enhance tumor
localization via SSTR imaging and may also sensitize tumors to
the antitumor effects of somatostatin and its analogs.
EXPERIMENTAL STUDY: EFFECT OF
RELACORILANT ON SSTR2A/2B mRNA
EXPRESSION

An in vitro analysis was undertaken to assess, for the first time,
the effects of relacorilant on SSTR2 mRNA in a mouse pituitary
corticotroph cell line. In mice, two isoforms of SSTR2, SSTR2A
and SSTR2B, have been identified, with human tissues expressing
SSTR2A almost exclusively (31, 32). Using the murine At-T20
cell line, a well-studied corticotroph model (23), an assessment of
the effects of dexamethasone alone on SSTR2A/2B mRNA levels
was conducted followed by an assessment of the effects of
dexamethasone and relacorilant combined.

At-T20 cells were cultured in complete medium, and mRNA
expression levels of SSTR2A and SSTR2B were determined upon
pretreatment for 24 hours across a dexamethasone concentration
gradient (detailed Methods can be found at the end of the
report). Dexamethasone treatment (100 nM) resulted in a 3-
fold and 2.4-fold reduction in SSTR2A and SSTR2B mRNA
levels, respectively.

Relacorilant inhibited the dexamethasone-mediated
reduction of SSTR2A/2B mRNA in a concentration-dependent
manner (Figure 2). At relacorilant concentrations greater than
Frontiers in Endocrinology | www.frontiersin.org 3
1 µM, an increase in SSTR2A/2B mRNA levels above basal
(untreated) levels was observed, reaching an ~1.5-fold increase
at 10 µM, the highest relacorilant concentration tested.
CLINICAL OBSERVATIONS

Four patients with NETs received investigational relacorilant as
part of two clinical studies: a phase 2 Cushing syndrome study of
relacorilant (NCT02804750, EudraCT 2016-000899-23) and a
phase 1 oncology study of relacorilant + nab-paclitaxel
(NCT02762981). Unique changes to the patients’ tumor
characteristics were observed, based on magnetic resonance
imaging (MRI) or SSTR imaging. In the Cushing syndrome
study, radiologic imaging was included as standard of care,
outside the study.

Case 1: Effect of Relacorilant on
Octreotide Scintigraphy in a Patient
With Ectopic Cushing Syndrome
A 46-year-old woman with an ectopic ACTH-secreting tumor
was enrolled in the phase 2 Cushing syndrome study of
relacorilant and received relacorilant 250 mg/day titrated to
400 mg/day. Octreotide scintigraphy (Octreoscan) performed
before relacorilant treatment was positive for a lung lesion, but a
CT scan and MRI of the lungs did not show any discrete mass at
study entry.

Compared to baseline, repeat octreotide imaging performed
after 16 weeks of treatment with relacorilant showed increased
uptake at the tumor site (Figure 3A). The tumor continued to
remain undetectable on repeat CT scans. ACTH and cortisol
levels were 66.8 pg/mL (normal range, 6.0–50 pg/mL) and 22.7
µg/dL (normal range, 4.6–20.6 µg/dL), respectively, at baseline.
After an initial increase, levels of ACTH and cortisol decreased
near or below baseline levels at week 16 (Figure 3B), in contrast
to the increase seen in patients with ACTH-dependent Cushing
syndrome treated with mifepristone (28, 29).
FIGURE 1 | The effects of glucocorticoid and glucocorticoid modulation with relacorilant on SSTR regulation. Created with BioRender.com.
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Case 2: Effect of Relacorilant on SSTR
Positron Emission Tomography Imaging in
a Patient With an ACTH-Secreting
Metastatic Bronchial Carcinoid NET
A 68-year-old man with a metastatic carcinoid NET (bronchial
primary) was enrolled in the phase 1 oncology study of
relacorilant + nab-paclitaxel. The primary tumor pathology
was consistent with a typical carcinoid. Previous treatments
included octreotide long-acting release (LAR), everolimus,
carboplatin + etoposide, sunitinib, and capecitabine +
temozolomide. The patient received relacorilant 200 mg/day
on the day before, the day of, and the day after nab-paclitaxel
infusion (80 mg/m2 administered on days 1, 8, and 15 of a 28-day
cycle). During the study, the patient received octreotide LAR
20 mg monthly.

ACTH [56.4 pg/mL [normal range, 6–50 pg/mL)] and cortisol
levels [23.5 µg/dL (normal range, 4.6–20.6 µg/dL)] were elevated
in this patient at study baseline (Figure 4A). 68Ga-DOTATATE
scans with CT showed increased uptake of the radiotracer at lung
and bone lesions during relacorilant treatment compared to
baseline without an increase in tumor size (Figures 4B–D).
68Ga-DOTATATE imaging of the pituitary showed no
uptake at baseline (Figure 4E). Normally, the pituitary
gland expresses SSTR2, and physiologically increased uptake
is seen in eucortisolemic patients’ DOTATATE scans (33, 34).
During relacorilant treatment, however, the pituitary uptake
was restored (Figure 4E). ACTH and serum cortisol decreased
during concomitant relacorilant and octreotide LAR treatment
(Figure 4A), suggestive of an increased effect of octreotide
LAR due to upregulation of SSTR2 without tumor shrinkage.
Frontiers in Endocrinology | www.frontiersin.org 4
Cases 3 and 4: Effect of Relacorilant on
Pituitary Tumor Size in Two Patients With
Cushing Disease
Two patients with de novo Cushing disease due to pituitary
macroadenomas received relacorilant 100 mg/day titrated to
200 mg/day as part of a phase 2 Cushing syndrome study prior
to previously scheduled transsphenoidal pituitary surgery (35).
Patient 3 was a 50-year-old woman with a pituitary
macroadenoma measuring 10.01 × 6.29 × 4.91 mm on MRI
(tumor volume 155 mm3). Patient 4 was a 43-year-old man with
a pituitary macroadenoma measuring 22 × 25 × 26 mm (tumor
volume 7,150 mm3) with suprasellar extension, right
displacement of the pituitary stalk, and invasion of the left
cavernous sinus on MRI. MRI with gadolinium was conducted
before the initiation of relacorilant and within 12 weeks after the
last dose of relacorilant. In both patients, imaging revealed
reduction in the size of their tumors (Figures 5A, 6A) after
treatment with relacorilant. Tumor volume decreased from 155
mm3 to 84 mm3 for Patient 3 and from 7,150 mm3 to 4,389 mm3

for Patient 4. Changes in ACTH and serum cortisol levels, as
shown in Figures 5B, 6B, showed a similar trend to those
of Patient 1 (initial increase followed by reduction below
pretreatment levels).
DISCUSSION

SSTR2s are expressed in a variety of tumor types, which has led
to the use of SSTR2-targeting analogs for diagnosis and
treatment. However, the effects of GR modulation on SSTR2
FIGURE 2 | Log2 fold change in SSTR2 mRNA in murine At-T20 cells upon treatment with increasing concentrations of relacorilant for 24 h in the presence of 100 nM
dexamethasone. 0%, 2-fold, and 3-fold inhibition and 1.5-fold increase in levels are highlighted by dotted lines on the y-axis. Zero relative expression is in the absence
of dexamethasone. Data points show average fold change compared to baseline and SD error bars. Data are technical replicates with an underlying n=1.
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A

B

FIGURE 3 | Imaging (A) and ACTH and cortisol levels (B) for case 1: a 46-year-old woman with an ectopic ACTH-secreting tumor (ectopic Cushing syndrome)
treated with relacorilant for 16 weeks. (A) Octreotide scintigraphy. Increased uptake on post treatment imaging was consistent with increased expression of SSTR2s
following treatment with relacorilant. (B) ACTH and cortisol levels before (baseline) and during relacorilant treatment. Normal laboratory ranges: ACTH, 6.0-50 pg/mL;
serum cortisol, 4.6-20.6 µg/dL. To convert ACTH values from pg/mL to pmol/L, multiply by 0.22. To convert serum cortisol from µg/dL to nmol/L, multiply by 27.6.
ACTH, adrenocorticotropic hormone.
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A

B

D

E

C

FIGURE 4 | ACTH and serum cortisol levels (A) and 68Ga-DOTATATE scans (B–E) in case 2: a 68-year-old man with a metastatic carcinoid NET treated with 7
cycles of relacorilant + nab-paclitaxel. (A) ACTH and cortisol levels before (baseline) and during relacorilant + nab-paclitaxel treatment. Patient received concomitant
somatostatin analog. Normal laboratory ranges: ACTH, 6-50 pg/mL; morning serum cortisol, 4.6-20.6 µg/dL. To convert ACTH values from pg/mL to pmol/L,
multiply by 0.22. To convert serum cortisol from µg/dL to nmol/L, multiply by 27.6. (B) 68Ga-DOTATATE scan showed multiple lung and bone lesions at baseline
before treatment with relacorilant. Repeat scan during treatment with relacorilant showed increased uptake without change in size of the lesions on CT. (C) 68Ga
DOTATATE scan showed multiple lung, liver, and bone lesions at baseline before treatment with relacorilant. Repeat scan during treatment with relacorilant showed
increased uptake. (D) 68Ga DOTATATE scan of L5 and left iliac bone lesions at baseline. Repeat scan during treatment with relacorilant showed increased uptake.
(E) Compared with the 68Ga-DOTATATE scan before treatment with relacorilant, the repeat scan during relacorilant treatment showed increased uptake at the
pituitary gland. ACTH, adrenocorticotropic hormone; NA, not available.
A

B

FIGURE 5 | MRI of pituitary macroadenomas (A) and ACTH and cortisol levels (B) in case 3: a 50-year-old woman with Cushing disease treated with relacorilant for
12 weeks. (A) Coronal post contrast T1-weighted MRI obtained at diagnosis (left image) after administration of gadolinium showed a nodular lesion with reduced
enhancement in the median and paramedian anterior part of the sellar region compatible with pituitary macroadenoma. It measured 10.01 × 6.29 × 4.91 mm.
Pituitary MRI obtained (right image) within 12 weeks after the last dose of relacorilant showed a reduction in the size of the macroadenoma (8.04 × 5.70 × 3.65 mm).
(B) ACTH and cortisol levels. Normal laboratory ranges: ACTH, 6.0-50 pg/mL; serum cortisol, 4.6-20.6 µg/dL. To convert ACTH values from pg/mL to pmol/L,
multiply by 0.22. To convert serum cortisol from µg/dL to nmol/L, multiply by 27.6. ACTH, adrenocorticotropic hormone.
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have not been well studied. The preclinical data as well as several
clinical case observations reported here illustrate the potential
effects of relacorilant on ACTH-secreting NETs. In the in vitro
analysis, selective GR modulation with relacorilant inhibited
glucocorticoid-mediated suppression of SSTR2 in the murine
At-T20 cell line. Imaging and laboratory data from four patients
with ACTH-secreting NETs showed increased uptake of
Frontiers in Endocrinology | www.frontiersin.org 7
radiotracer via SSTR2-based imaging and a reduction in
pituitary corticotroph tumor size following treatment
with relacorilant.

Glucocorticoids induce downregulation of SSTR2, which can
explain the low SSTR2 expression reported in tumors derived
from patients with Cushing disease (20). In the At-T20 cell line,
dexamethasone-mediated suppression of SSTR2 mRNA was
A

B

FIGURE 6 | MRI of pituitary macroadenomas (A) and ACTH and cortisol levels (B) in case 4: a 43-year-old man with Cushing disease treated with relacorilant for 12
weeks. (A) Coronal post contrast T1-weighted MRI obtained at diagnosis (left image) after administration of gadolinium showed a pituitary macroadenoma measuring
22 × 25 × 26 mm with suprasellar extension, right displacement of the pituitary stalk, and invasion of the left cavernous sinus. The tumor was isointense to the gray
matter and slightly inhomogeneous for the presence of cystic changes in its lower aspect. MRI of the hypophysis obtained within 12 weeks after the last dose of
relacorilant (right image), after treatment with relacorilant, showed a reduction in the size of the macroadenoma (21 × 22 × 19 mm). (B) ACTH and cortisol levels.
Normal laboratory ranges: ACTH, 6.0-50 pg/mL; serum cortisol, 4.6-20.6 µg/dL. To convert ACTH values from pg/mL to pmol/L, multiply by 0.22. To convert serum
cortisol from µg/dL to nmol/L, multiply by 27.6. ACTH, adrenocorticotropic hormone.
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reversed by selective GR modulation with relacorilant. At higher
concentrations of relacorilant, SSTR2 mRNA expression even
increased above basal levels in the At-T20 cell line. Studies of the
regulatory effects of somatostatin in normal rat pituitary cells
and in healthy humans have shown that treatment with
somatostatin does not inhibit basal or CRH-stimulated ACTH
secretion (1, 16, 36). However, in patients with Nelson’s
syndrome and elevated plasma ACTH following bilateral
adrenalectomy for Cushing disease, somatostatin infusion was
shown to decrease ACTH secretion (37). In a separate analysis of
patients with primary adrenal insufficiency, somatostatin
injection also resulted in a reduction in ACTH (38). Patients in
both studies had been receiving glucocorticoid replacement
therapy, which was withheld prior to the administration of
somatostatin. Together with the findings of the current study,
these data suggest that either a lack or an excess of
glucocorticoids may lead to abnormal SSTR2 expression
(upregulation in adrenal insufficiency and downregulation in
Cushing syndrome). GR modulation with relacorilant may
overcome the inhibitory effect of glucocorticoids on SSTR2
expression, restoring the efficacy of the endogenous
somatostatin and exogenous somatostatin analogs.

The two patients with ectopic tumors showed increased
uptake of the radioactive somatostatin analog used for imaging
NETs with relacorilant administration. This result is notable, as
in up to 27% of patients with ectopic Cushing syndrome, the
tumor source is not localized even after long-term follow-up
(15). While increased uptake could also have occurred because of
interval increases in the size of the lesions, there was no evidence
of a change in tumor size in these patient cases based on CT
imaging. SSTR2 is normally expressed in the pituitary gland (33,
34), and increased uptake on 68Ga-DOTATATE scan is seen in
eucortisolemic patients. In the patient with an ACTH-secreting
metastatic bronchial NET, there was no physiologic uptake of
68Ga-labeled somatostatin analog in the pituitary gland at
baseline. Of note, ectopic ACTH secretion is common in lung
carcinoid tumors but is not always associated with overt cortisol
excess (39). Because of the low differentiation of these tumors,
the ACTH secreted by the tumors in most cases is biologically
inactive (ACTH-like peptides, also referred to as ACTH
precursors) but can cross-react with commercially available
ACTH assays. The lack of 68Ga-labeled somatostatin analog
uptake in the pituitary gland, along with the elevated serum
cortisol and ACTH levels at baseline, suggests that this patient
had some degree of cortisol excess at baseline; however, no
formal evaluation for Cushing syndrome (eg, urinary free
cortisol, dexamethasone suppression testing, or late-night
salivary cortisol) was required for enrollment in the oncology
study. In this patient, treatment with relacorilant reversed the
effect of cortisol on the SSTR2s in the pituitary, resulting in
restoration of SSTR2 expression in the pituitary and visualization
in the repeat scans. This patient was also receiving concomitant
nab-paclitaxel, but the authors are not aware of any studies
suggesting that nab-paclitaxel has an effect on SSTR2. These
cases highlight the potential effects of GR modulation with
relacorilant in instances of ectopic ACTH secretion and
Frontiers in Endocrinology | www.frontiersin.org 8
suggest that relacorilant can enhance SSTR-based imaging,
which may improve diagnostic accuracy.

The increased expression of SSTR2 with relacorilant was also
supported by changes in the patients’ ACTH and cortisol levels.
In patients 1, 3 and 4, ACTH and cortisol levels initially
increased and then decreased later during treatment. The
initial increase was expected based on experience with the GR
antagonist mifepristone (28). The mechanisms for the eventual
decrease in ACTH and cortisol levels with relacorilant are not yet
fully understood. While the decrease in ACTH and cortisol
during relacorilant treatment might reflect an exhaustion of
the stimulatory effect of relacorilant, this effect has not been
observed with mifepristone. In patients with Cushing disease,
mifepristone use is associated with dose-dependent increases in
ACTH and cortisol, and ACTH levels generally remain elevated
over time with continued treatment (29). Furthermore,
mifepristone pretreatment in patients with Cushing disease
was not shown to affect ACTH and cortisol levels in response
to acute octreotide administration (40). The overexpression of
SSTR2 observed at higher doses of relacorilant in the in vitro
analysis offers another possible explanation for the effects
observed with relacorilant. In the previous studies of
mifepristone in NET cell lines, mifepristone reversed the effects
of dexamethasone but was not associated with SSTR2
overexpression (27). Together, these findings suggest a
potential difference in effect between mifepristone and
relacorilant, in which relacorilant-induced increased SSTR2
expression on the tumor can increase the efficacy of
endogenous and exogenous somatostatin on ACTH secretion
and tumor proliferation. In Patient 2, who received octreotide
LAR along with relacorilant, the levels of ACTH and cortisol
decreased throughout relacorilant treatment, without the initial
increase that was observed in patients not receiving concurrent
somatostatin analogs. A possible explanation is that in the
presence of high somatostatin levels achieved with exogenous
administered somatostatin analogs, even lower doses of
relacorilant may lead to sufficient upregulation of SSTR2 to
enhance the effect of somatostatin analogs on the secretory
function of the NET; however, this would need to be confirmed
by further research in a larger, more homogenous population.

Somatostatin analogs have been shown to inhibit tumor
hypersecretion of peptides and slow tumor growth in
gastrointestinal cancers, including NETs (9–12), and
expression of SSTR2 has been associated with improved
survival in patients with gastropancreatic NETs (41). The
antisecretory and anti-proliferative effects of somatostatin and
its analogs are mediated by both direct and indirect mechanisms
(3, 42). Direct effects include cell cycle arrest, inhibition of
growth factor signaling, and apoptosis through the regulation
of MAP kinase and phosphotyrosine phosphatase activities upon
activation of SSTR2. Indirect effects include inhibition of tumor
angiogenesis, secretion of tumor-promoting signals from
immune cells, and secretion of growth factor. Octreotide has
also been shown to reduce tumor volume in patients with growth
hormone-secreting and thyroid-stimulating hormone-secreting
pituitary tumors (3, 42). In the clinical case examples of the
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current study, we observed a decrease in tumor size in two
patients with de novo Cushing disease due to macroadenomas
(patients 3 and 4) following treatment with relacorilant. While
spontaneous tumor regression cannot be ruled out (although
extremely rare) (43), the changes in ACTH and cortisol levels
that occurred in these patients during relacorilant treatment,
characterized by early increases followed by reductions later
during treatment, are consistent with the hypothesized
inhibition of ACTH by endogenous somatostatin due to
upregulation of SSTR2, as also seen in Patient 1. Together,
these data suggest that relacorilant-mediated upregulation of
SSTR2 provides more targets for somatostatin and
somatostatin analogs, which can lead to tumor shrinkage in
ACTH-secreting pituitary tumors.

There are a number of limitations to the data presented in this
report. Although the murine corticotroph tumor At-T20 cell line
is the most frequently studied model for Cushing disease, the
in vitro findings may not necessarily translate to human cells.
Thus, one cannot rule out the possibility of another mechanism
for the trends in ACTH and cortisol levels observed in the patient
cases. The small number and heterogeneous nature of the clinical
cases, including concomitant therapies, must also be considered
when interpreting the clinical observations. The lack of SSTR2
imaging or immunohistochemical analysis of SSTR2 expression
before and after relacorilant treatment is another limitation for
patient cases 3 and 4; however, SSTR2 imaging is not part of the
standard diagnostic evaluation of ACTH-secreting pituitary
tumors (44).

Based on these findings, additional examination should be
carried out to formally assess and elucidate the tumor-specific
effects of relacorilant in patients with ACTH-producing NETs to
determine whether it has a potential diagnostic role and
antitumor effects. A therapeutic trial that could sensitize
ACTH-secreting pituitary tumors to endogenous somatostatin
prior to surgery could be beneficial, particularly in patients with
invasive macroadenomas. Ongoing preclinical studies in human
pituitary cell lines and the phase 3 study of relacorilant in patients
with Cushing syndrome (clinicaltrials.gov NCT03697109), which
includes tumor imaging, may provide additional insight.
IN VITRO METHODS

Cell Culture
At-T20 mouse pituitary tumor cells were obtained from ATCC
(CCL-89) and cultured in high-glucose Dulbecco’s minimal
essential medium (DMEM) complete media [10% fetal calf
serum + penicillin and streptomycin (Penn/Strep)]. For
compound treatment, 96-well plates were seeded with 50,000
cells and allowed to adhere for 6 h in complete media containing
charcoal-stripped serum. Agonist treatment with a
dexamethasone concentration gradient was carried out for 24 h
[0.2% final dimethylsulfoxide (DMSO)]. For antagonist assays,
the cells were pre-treated for 30 min with a relacorilant
concentration gradient prior to the addition of 100 nM
(ECmax) dexamethasone and incubated for 24 h (0.2% final
Frontiers in Endocrinology | www.frontiersin.org 9
DMSO). After treatment, the medium was removed, and cells
were lysed directly in lysis buffer (buffer RLT Qiagen RNeasy)
followed by total RNA extraction.

RNA Isolation
Total RNA from At-T20 cellular lysates was isolated using Qiagen
RNeasy Mini kit (Qiagen 74104) by following the manufacturer’s
recommended instructions. RNA was eluted in a 100 µL volume
of nuclease-free elution buffer and stored at -20°C until use.
Contaminating genomic DNA was eliminated by the inclusion of
a deoxyribonuclease treatment step (deoxyribonuclease I at 8 U
per 100 µL of eluate) (45). Total RNA yield and purity were
measured by spectrophotometric analysis (A260 to A280 ratio)
using a Nanodrop 1000 instrument.

Reverse Transcription and Real-Time
Quantitative PCR
Reverse transcription and real-time qPCR were performed as
previously described (45). Total RNA (0.2–1.0 µg) was reverse
transcribed in 20 µL reaction volume using a high-capacity cDNA
reverse transcription kit (Applied Biosystems; 4368814) with
random hexamers. Real-time qPCR experiments were performed
in a 96-well plate using an Applied Biosystems StepOnePlus real-
time PCR instrument. For each sample, the expression of SSTR2
was compared with the expression of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) mRNA, with the latter included as a
housekeeping gene for endogenous control. Taq-Man gene
expression assays were obtained from Life Technologies and
consisted of a 20X mix of unlabeled PCR primers for mouse
SSTR2A (Life Technologies; Mm03015782_s1) andmouse SSTR2B
(Life Technologies; Mm00436685_g1) and for mouse GAPDH
(Life Technologies; Mm99999915_g1) and TaqMan MGB probe
(FAM dye labelled). The reaction mixture for real-time qPCR
contained 9.0 µL cDNA solutions (20–100 ng). Each of the two
primers and the MGB probe were used at 0.9 µM and 0.25 µM,
respectively, and 1X TaqMan Universal Master Mix II with UNG
(Applied Biosystems; 4440038). The mixture was activated (2 min,
50°C), denatured (10 min, 95°C) and subjected to 40 amplification
cycles (15 sec, 95°C; 1 min, 60°C) with a single measurement of
fluorescence for both SSTR and GAPDH primer sets.

Data Analysis
TaqMan qPCR data were analyzed using StepOnePlus software
version 2.3. Amplification plots were visualized across the entire
96-well plate for SSTR2A/B probe sets and GAPDH. Fractional
cycle (CT) values were returned by manually setting the threshold
to intersect at the linear phase of amplification plots (defined
manually at 0.1) (45). No-treatment control sample was selected as
the calibrator, and the data were analyzed relative to the calibrator.
The comparative DDCT method was used for data analyses.
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