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Evaluation of in-beam PET treatment verification in
particle therapy with different reconstruction

methods
Veronica Ferrero*, Francesco Pennazio*, Piergiorgio Cerello, Elisa Fiorina, Vincenzo Monaco, Richard Wheadon,

and Magdalena Rafecas

Abstract—In-beam PET monitoring in particle therapy can
provide early treatment quality assessment. Usually, geometrical
constraints limit the scanner to open ring configurations, de-
grading image quality and hampering range assessment accuracy.
Moreover, low production yields of positron emitters enhance im-
age noise. To achieve the highest precision for range monitoring,
it is compulsory to mitigate image noise and compensate for data
truncation. The goal of this work is to study the performance
of various state-of-the-art algorithms for in-beam PET image
reconstruction, evaluating the impact of the system response
model, and assessing the accuracy of range deviation mea-
surement. The approaches investigated here were maximum-a-
posteriori algorithms combined with total-variation and median-
root priors. MLEM was used as reference. The system response
was studied by comparing a Monte Carlo simulated system
matrix with a single-ray tracing model. The proposed methods
were tested on simulations of clinical treatment plans delivered
on phantoms with air gaps of different dimension to assess
the accuracy of range deviation detection. The I3PET scanner
geometry was used as case study. Results show how Monte Carlo-
based images lead to a more accurate range assessment, with
similar performances among the used reconstruction methods.
On the other hand, the addition of priors notably improves range
estimation when using single-ray tracing. Our work points out the
importance of carefully selecting the reconstruction approach and
its implementation, since an accurate range assessment strongly
depends on the accuracy of reconstruction.

Index Terms—Radiation Therapy, Particle Therapy, Proton
therapy, Clinical Imaging System, Positron Emission Tomogra-
phy, Range Monitoring, Image Reconstruction

I. INTRODUCTION

Ion beams used in particle therapy have a well defined,
finite penetration depth, allowing at the same time a highly
homogenous dose distribution in complex targets and an
optimal sparing of organs at risk. However, the steep dose
gradient at the end of the beam’s trajectory, identified by the
Bragg peak, has to be precisely localized so as not to under-
dose the tumor volume or over-dose normal tissues.

Robust conservative plans are employed in the clinical
practice, with (2.5 - 3.5) % ± (1 - 3) mm safety margins
in the tumor volume to account for range uncertainties [1].
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These can derive from a number of issues related to the patient
(such as positioning, anatomical changes due to weight loss or
tumor reduction during the course of the treatment, etc.), dose
calculation, or Hounsfield Unit conversion methods. To better
control the given treatment and reduce the safety margins,
in-vivo range verification has been explored, developing the
concept of secondary-radiation imaging for particle therapy
applications.

The secondary particles generated from the beam inter-
actions with the tissues include prompt photons, charged
fragments, and β+ emitting isotopes [2], [3], [4], [5], [6], [7].
The latter, in particular, have been thoroughly explored with
Positron Emission Tomography (PET).

PET scanners measure the β+ activity exploiting the co-
linear 511 keV photons resulting from positron annihilation.
Due to tissue composition, the most abundant β+ emitters
produced are carbon and oxygen isotopes. Alas, the resulting
activity is of the order of tens of Bq/ml [8], which is at least
an order of magnitude lower of that typically employed in
nuclear medicine PET scans.

The low production yield and short decay time of the
isotopes result in a small number of detected events - e.g., a
total of 7.6 · 104 coincidences were measured with a dual-head
PET scanner while monitoring a patient treated with a proton
beam [9]. Moreover, the activity shape changes depending on
the PET scan duration with respect to the treatment delivery,
which introduces additional challenges as to how to perform
a reliable range activity assessment. Nonetheless, recent work
on particle therapy monitoring might pave the way to early
treatment assessment exploiting in-beam PET scanners [10].
That is, in-beam PET scanners have the intrinsic advantage
of being able to acquire the signal during the delivery of the
treatment.

On the other hand, in-beam PET scanners must assure
the passage of the beam and the correct patient positioning
and handling. Hence, most scanners, such as the PMT-based
BASTEI scanner [11], BOLPs-RGp [12], and DOPET [13],
as well as the state-of-the-art INSIDE scanner [6], feature
open geometries and limited angular coverage. Consequently,
highly truncated projections and low statistics are some of the
challenges in-beam PET must address.

The limited angular coverage of open geometries usually
leads to high image noise and undesirable artefacts when using
common PET reconstruction algorithms. Elongation artefacts
are, for one, common in dual-head geometries, hindering an
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accurate estimation of the edges around the irradiated volume
[14]. As the delineation of the activity volume is the most
important point when doing range assessments, the develop-
ment of an in-beam PET application-specific reconstruction
algorithm is paramount to reduce the noise and maintain the
activity edges.

To achieve the highest precision for range deviation analy-
sis, it is compulsory to mitigate image noise and compensate
for data truncation. To this aim, promising results were ob-
tained for pencil beams and realistic treatment plans using
maximum-a-posteriori (MAP) algorithms combined with total
variation (TV) and median root priors (MRP) [15], [16], [17].
These studies, however, did not focus on range measurement
capabilities.

MAP algorithms use a regularization parameter in the
reconstruction to limit the noise, according to certain a priori
assumptions about the data to be reconstructed, which are
expressed by a weighted penalty term, here called prior. The
regularization parameter is used to set the prior weight, and
has to be optimized for the specific case under consideration,
which is a drawback towards the general use of the algorithms.

Alternatively to MAP algorithms, early stopping of
conventional maximum-likelihood expectation-maximization
(MLEM) can be addressed. Previous studies have shown good
results in treatment verification assessments, especially if in
combination with additional post-reconstruction filtering [10],
[9], [18].

The goal of this work is to study the performance of state-
of-the-art algorithms for in-beam PET image reconstruction.
MLEM, MAP-TV and MAP-MRP algorithms were consid-
ered. Moreover, the effect of the system response model is
assessed by considering a simple single-ray tracing system
matrix (SM) versus a Monte Carlo generated SM. Realistic
clinical treatments are simulated and a range analysis is carried
out considering the mentioned reconstruction algorithms.

II. CASE STUDY

To enhance online monitoring performances in particle
therapy, a small-scale in-beam PET scanner prototype is under
development within the In-beam PET Innovative Imaging
(I3PET) project.

The I3PET scanner will be made of 6 detector modules
arranged in a 3 versus 3 partial ring configuration with 160
mm diameter, so as to permit phantom imaging with clinical
hadron beams. One detector module features 4 matrices of 8
× 8 pixels (3.2 mm pitch) of segmented lutetium fine silicate
(LFS) scintillating crystals. Each crystal is coupled one-to-one
to Hamamatsu MPPCs, resulting in 589824 lines of response
(LORs) within a 80 × 54.4 × 137.6 mm3 field of view (FOV).
A 1.6 × 1.6 × 1.6 mm3 voxel dimension is considered. A
picture of the I3PET module is reported in Fig. 1.a.

Simulation of the I3PET scanner were performed with the
FLUKA Monte Carlo simulation tool [19], [20] to preliminary
assess the scanner performance and are reported in [21]. The
I3PET simulated scanner geometry is shown in Fig. 1.b.

For this work, the simulation of a realistic treatment plan
delivered on a PMMA phantom was carried out with a biased

technique already validated in a previous work [10]. Four
different cases (Tab. I) were taken into consideration, so as
to simulate the effects of range uncertainties: in particular, the
activity distribution originating from the same treatment plan
was studied on 5 × 5 × 5 cm3 phantoms containing air gaps
of 0, 2, 5, and 10 mm depth (namely case 1, case 2, case 3,
case 4). The first case, corresponding to a target with no gaps,
was taken as reference.

TABLE I
SIMULATED TREATMENT PLANS.

Particle Energy (MeV) Air gap (mm)

Case 1 Protons 43-80 0
Case 2 Protons 43-80 2
Case 3 Protons 43-80 5
Case 4 Protons 43-80 10

Fig. 1. (a) Picture of the I3PET detector module. (b) Geometry of the
implemented simulation. The target was simulated with air gaps of different
depths so as to assess the accuracy of the reconstruction algorithm in detecting
range deviations. The reference system in use is shown.

A proton beam with 2 · 108 primary particles was delivered
with a spread out Bragg peak (SOBP) configuration in the
43-80 MeV energy range, covering an area of 28 × 28 mm2.
The simulated statistics was evaluated according to the typical
number of primary particles found in a proton treatment plan
(of the order of 1010 primaries) and scaled to the I3PET pro-
totype dimension. About 3 · 104 coincidences were detected
for each of the simulated cases, which is comparable with the
statistics observed in a clinical monitoring of a patient [9].

The simulated events were then saved in list-mode files and
reconstructed with the different approaches proposed, so as
to study the impact of the reconstruction algorithm and the
system response model on range assessment. Five cycles per
simulation were run in order to take into account statistical
effects.

III. IMAGE RECONSTRUCTION

A custom C++ based software has been developed for image
reconstruction, in order to achieve both flexibility and speed
optimization. Multi core CPUs are exploited by processing
the list-mode coincidence file by means of BOOST-based
lock-free threads. ITK libraries [22] were used for image
processing.

MLEM, MAP-TV and MAP-MRP reconstruction algo-
rithms were implemented and tested for full 3D reconstruction.
In general, an iterative reconstruction algorithm can be used
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for the estimation of an activity image, according to the
following formula:

f
(n+1)
j =

f
(n)
j∑

i cij + β · prior
∑
i

cij∑
k cikf

(n)
k

(1)

where f (n)j is the intensity of the j-th pixel after iteration
n. The SM elements cij represent the probability of detecting
a coincidence originated within the j-th pixel by the detector
pair described by the i-th LOR. Their sum over all possible
LORs,

∑
i cij , is the system sensitivity for voxel j. Finally, the

term β is the regularization parameter governing the weight
given to the prior, whose form depends on the implementation,
and it is zero for MLEM (i.e., β=0).

A. MLEM

The MLEM approach has been historically exploited in PET
image reconstruction, and is also typically used in particle ther-
apy PET monitoring, either with or without subsets [9], [13],
[14], [17]. Ordered-subset expectation maximization (OSEM)
are, in this specific application, not used, because of the little
count rate statistics.

B. MAP-TV

The use of total variation was first introduced in a con-
strained minimization problem [23], and later used for 2D
[24] and 3D [25] image reconstruction. The total variation
method was found to have the capacity to smooth noise and
maintain sharp edges without introducing edges artefacts. The
improvement in image quality led to the suggestion of its use
in particle therapy applications [15], [26].

Basically, TV uses the norm of the image gradient as the
penalization criterion. Data is assumed to be locally uniform
(i.e., monotonic), with pixel values approximately constant in
a local neighborhood, except for at the object boundaries,
where values are discontinuous. Intensity edges thus result
in high gradient, preserving the discontinuity. Moreover, the
TV optimization mitigates undesirable artefacts such as image
elongation [15].

In this study, the MAP-TV prior was evaluated as:

prior =
∂

∂fj
TV (fj)|fj=f

(n)
j

(2)

where the cost function TV (fj) is described by

TV (fj) =
∑
k,l,m

√
f12 + f22 + f32 + ε

f1 = fk+1,l,m − fk,l,m
f2 = fk,l+1,m − fk,l,m
f3 = fk,l,m+1 − fk,l,m (3)

with k, l,m indices of the j-th pixel in the three directions,
and ε an additional parameter included to ensure differentia-
bility [25]. In this case, the value ε = 10−6 was used.

A side effect of TV optimization is, though, the inability
to remove the salt-and-pepper noise tipically found in PET
images [27]. When the magnitude of the noise is large, it

might be interpreted by the algorithm as an intensity edge and
kept. An effective way to remove it is the application of a
post-reconstruction median filter [28].

C. MAP-MRP

The median root prior is a well known alternative to TV
to regularize image noise. That is, MAP-MRP penalizes the
noise to accomodate fluctuation in the data, at the same time
reducing the noise and preserving the edges [16].

To our knowledge, MAP-MRP was applied to in-beam PET
proton therapy activity reconstruction first in [17], because of
its robustness against missing projections.

As with the TV prior, a monotonicity of data has to be
assumed. The MAP-MRP prior can be then calculated as:

prior =
f
(n)
j −M (n)

j

M
(n)
j

(4)

where M (n)
j represents the elements of an image computed

as the median value of the prediction at iteration n. The image
M was obtained by processing the current prediction

∑
j f

(n)
j

with a median filter of 6.4 × 6.4 × 6.4 mm3 (4 × 4 × 4
voxels).

D. MAP-TV and MAP-MRP Parameter Optimization

The weight of the priors described by Eq. 2 and 4 for MAP-
TV and MAP-MRP depends on the regularization parameter
β. That is, if the implemented algorithms were to be applied
for the reconstruction of a treatment in a clinical situation, in
order to have an on-the-fly response the value of β should be
chosen in advance.

To this purpose, the impact of β was studied on a fixed
dataset with features known a priori. A FLUKA Monte Carlo
simulation was conducted to produce the dataset of an evenly
activated water cube of 30 × 30 × 30 mm3 size. The same
number of coincidences as those arising from the treatment
plan simulation (i.e., 3 · 104 coincidences) was generated so
as to match the working conditions of the algorithms for the
case study.

The value of β was then optimized by evaluating the signal-
to-noise ratio (SNR) and spill-over-ratio (SOR) of the activity
cube dataset, reconstructed with MAP-TV and MAP-MRP,
with both single-ray tracing and Monte Carlo generated SM.
By studying SNR and SOR as a fuction of β, eventual staircase
artefacts (for MAP-TV) [27], or over-smoothing of the edges
(for MAP-MRP) [29], should be avoided.

SNR and SOR are calculated considering specific regions-
of-interest (ROIs):

SNR =
µ

σ

∣∣∣
ROI1

SOR =
µROI2

µROI1

(5)

where µ and σ are the mean intensity and standard deviation
found in the hot (cold) region ROI1 (ROI2). ROI1 is considered
as the activated cube volume, while ROI2 takes into account all
surrounding background. Pixels at ROIs borders were excluded
in the evaluation.
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E. Stopping Criterion

As the main aim of in-vivo range verification is to provide a
reliable response in as little time as possible, computing time
is a crucial matter. On the other hand, it has been shown how,
for tomographic reconstruction, early stopping of MLEM helps
reduce the noise, improving image quality [30]. Following this
considerations, it was decided to consider a low number of
iterations, so as to avoid noise build-up caused by low statistics
and also to reduce computational time.

Five iterations were used for all algorithms considered here,
as computational speed is essential for range verification. In
other works it was shown that early stopping of the algorithms
does not negatively affect range estimation [6], [9], [13], [18].
On the contrary, it avoids noise amplification.

F. System Response Model

To study how the accuracy of the system response model
affects range verification, two approaches for the system
matrix were considered.

The methods of choice represent two opposite strategies.
First, a simple geometrical model based on Siddon ray-tracing
[31] was calculated, considering the center of the crystals as
the LOR endpoint. This method is fast and can be used for
on-the-fly calculation of the matrix elements. On the other
hand, as crystal penetration is not modelled, parallax errors
might degrade the spatial resolution. The opposite strategy
is to calculate a very accurate model using Monte Carlo
simulations [32]. In this way, parallax errors can be efficiently
compensated for. Simulations for the SM were carried out
with FLUKA, exploiting the geometry of the I3PET scanner
reproduced in Fig. 1.b.

A first order visual comparison between the two implemen-
tations was made by calculating the sensitivity of the two
systems. The sensitivity images are shown in Fig. 2. As it
can be seen, the simple geometrical model based on single-
ray tracing (a) introduces some grid pattern artefacts which
disappear when using the Monte Carlo generated SM (b). It
follows that a more precise reconstruction is expected when
using the latter.

Fig. 2. Sensitivity images at comparison: single-ray tracing (a) and Monte
Carlo generated (b) models. The central slice in the coronal view is shown.
Images are normalized to their maximum intensity.

IV. RESULTS

A. MAP-TV and MAP-MRP Parameter Optimization

The regularization parameter β was selected so as to maxi-
mize SNR and minimize SOR for each reconstruction method.
The found values for β were equal to 0.045, 0.12 for MAP-TV,
MAP-MRP images reconstructed with the single-ray tracing
model, while 0.028 and 0.12 were found for the Monte Carlo
model.

An example showing the activity cube reconstructed with
the selected β values for MAP-TV and MAP-MRP with the
single-ray tracing model is reported in Fig. 3, along with the
same image reconstructed considering a non-optimal β. For the
latter case, staircase artefacts can be appreciated for MAP-TV,
while MAP-MRP presents an over-smoothing of the activity
edges. It can also be noted how MAP-TV presents a high
salt-and-pepper noise, which is treated by the algorithm as
a discontinuity and thus enhanced. MAP-MRP, on the other
hand, at all effects behaves as a median filter, efficiently
reducing the noise.

Fig. 3. Simulated 30 × 30 × 30 mm3 activity cube, reconstructed with
MAP-TV and MAP-MRP methods, considering an optimal value for the
regularization parameter β, and an exemplary non-optimal value. The central
slice in the coronal view is shown. Intensities are normalized to the image
maximum.

B. Evaluation Of Range Deviations

The simulated realistic treatment plans were reconstructed
with MLEM and MAP algorithms, considering both SM
implementations, for a total of 6 images per case. A sample
of the reconstructed images is shown in Fig. 4, where the
simulation with no air gap and air gap of 10 mm depth
are shown for the reconstruction methods of choice. Images
are reported without post-reconstruction filtering: it can be
observed that Monte Carlo SM produces smoother images, as
expected, due to the more complex description of the system
model.

A total of 10 s were necessary to reconstruct images using
the single-ray tracing model on-the-fly, with each iteration
taking less than one second. On the other hand, using a Monte-
Carlo generated SM increased the reconstruction time to about
1 min, as the SM elements generated by the FLUKA simula-
tion needed to be stored and accessed during the reconstruction
process. A multi-core system with 128GB RAM was used.

The activity distributions resulting from the addition of an
air gap in the target (case 2-4) were compared to the reference
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Fig. 4. Example of images reconstructed with different iterative algorithms
for a treatment plan delivered on phantoms with 0, 10 mm air gap. No post-
reconstruction filtering is applied to point out the differences between single-
ray tracing and Monte Carlo reconstruction. The central plane in the coronal
view is shown. Images are normalized to their maximum.

image (case 1). Since 5 cycles per case were run, statistics
was increased by considering the non-repeated combination
of images compared to each other.

The basis of the range evaluation analysis used in this
work were described and validated in-vivo in [9], [10]. The
analysis relays on the extraction of an iso-activity surface to
discriminate the activity signal from the background, which is
then used to assess the distal edge of the activity distribution
along the beam direction. Range analysis considering the
preferential direction of the beam were also suggested by other
studies [12], [33], [34].

In the cases under consideration, the iso-activity surface
was obtained by applying a threshold to exclude intensities
below 10% with respect to the image maximum, followed by
erosion and dilation filter in order to obtain a fully-connected
distribution. Then, the distal edge of one image was subtracted
from its reference, for all voxels beloging to a specific ROI
(Fig. 5) in the plane normal to the beam direction. The
mean value of the resulting difference distribution was then
considered as the metric to describe range deviations.

To smooth out the noise caused by low statistics, MLEM
images were also pre-processed with a median filter of 5 mm
kernel. Despite the addition of the prior, MAP-TV and MAP-
MRP images described by the single-ray tracing model also

resulted too noisy to obtain a reliable iso-activity surface, so
that the same pre-filtering had to be applied. Monte Carlo
MAP-based images, on the other hand, already presented a
smoother distribution, as shown in figure 4, thus not needing
post-reconstruction filtering.

The analysis was first carried on considering only the voxels
belonging to the region with the air gap (ROI (1) in figure 5).
Results are summarized in Fig. 6. The range deviations are
shown for the simulated treatment plan with air gaps with
respect to the reconstructed reference case. The theoretical
range deviation, equal to the gap dimension, is represented by
the dashed line. The error bars of the calculated points were
evaluated as the stardard deviation of the mean range differ-
ences, obtained by performing a non-repeated combination of
images of cases 2-4 compared with the reference case 1 (i.e.,
the 5 images of each case were analysed with respect to the 5
images of the reference case, for a total of 25 combinations).
Errors are small (below 0.5 mm) and comparable for the
different methods used for the system described by the Monte
Carlo SM. Similar values are obtained for images with single-
ray tracing SM when considering MAP algorithms, whereas
errors up to ±2 mm are found in the MLEM case.

Results show how, for images reconstructed considering the
single-ray tracing model, MLEM tends to diverge from the
expected value, underestimating it for wider range deviations.
MAP-TV and MAP-MRP values are, on the other hand,
systematically higher, overestimating the range difference.
However, results are, for all considered cases, within 1.2 mm
from the expected value.

More accurate and precise range estimations are observed
for images whose system response is described by the Monte
Carlo generated SM. In this case, the agreement between the
found range uncertainties and the expected values are within
0.6 mm. Interestingly, when using this SM the performances
of the explored algorithms are very similar, even though it
has to be remembered that post-reconstruction filtering was
necessary for MLEM images to perform the analysis.

Fig. 5. Regions of interest used for the range analysis: (1) ROI including the
air gap in the phantom and (2) ROI without inhomogeneities in the phantom.
An exemplary image with 10 mm air gap is shown. The beam direction is
also included.

In addition, the range analysis was also performed consid-
ering the region of the phantom not containig the air gap (ROI
(2) in figure 5). No significant variations are expected to occur
between the images in this part of the activity distribution,
since no inhomogeneities are present. Results showed an
agreement within 0.5 mm for all recontructed cases.
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Fig. 6. Average range deviations as a function of the air gap depth. Activity
images were reconstructed considering different MLEM and MAP iterative
algorithms and analysed; the treatment delivered on a phantom with no
gap was considered as reference. The system response was also evaluated
considering a single-ray tracing SM (a) and a Monte Carlo generated SM (b)
model. Error bars refer to the standard deviation of the mean range differences
obtained from the analysis. The dashed line represents the expected range
deviation. Data points are slightly shifted in the horizontal axis so as to help
visualization.

The range analysis was also performed between images of
the same simulated case (i.e., case 1 against case 1, case 2
against case 2, and so on). The found agreement was within
0.5 mm for images reconstructed with MLEM and single-ray
tracing SM. On the other hand, an agreement of 0.3 mm was
observed for all the other reconstruction techniques (i.e., MAP-
based implementations with single-ray tracing, and all imple-
mentations with the Monte Carlo SM). These uncertainties
reflect the stocastic effects of the produced activity distribution
reconstructed with the implemented algorithms.

C. Conclusions

This work presents a comparison study between simulated
PET images reconstructed with different methods with the
aim of assessing the methods performances in view of their
application in a clinical monitoring.

A simulated treatment plan delivered on phantoms contain-
ing air gaps to reproduce range uncertainties was reconstructed
using different iterative algorithms. A range analysis was
carried out in the region containing the air gaps to evaluate

the precision of the reconstruction methods into recognising
range uncertainties.

MLEM, MAP-TV and MAP-MRP approaches were ex-
plored considering a system response model described either
by a simple single-ray tracing or a more complex Monte
Carlo generated system matrix. A previous comparison be-
tween MAP-TV, MAP-MRP and MLEM was done in [17]
for different ring configurations and time of flight (TOF)
information, without however discussing the influence of the
chosen methods on the activity range detection, or the system
response model importance.

Out of the selected approaches, the main drawback of
MLEM is, as expected, noise amplification, especially with
low statistics data such as in-beam PET. The use of certain
priors within the MAP algorithm can efficiently reduce noise
and mitigate artefacts while preserving the edges. However,
care is needed to select the adequate value of the regularization
parameter, otherwise over-smoothing or staircase artefacts can
distort the images.

In conventional PET, it is already known that a more
accurate system model leads to higher spatial resolution. The
results reported in this study show, to our knowledge for the
first time, how a better system model also translates into a
higher range assessment accuracy. Moreover, range estimation
becomes less sensitive to the reconstruction method of choice,
be it MLEM or MAP-based.

When the single-ray tracing model is considered, the addi-
tion of median post-reconstruction filtering to smooth out the
noise is needed for the analysis, even for MAP algorithms.
The used reconstruction methods provide a range assessment
slightly divergent from the expected value, improving the
result when the regularization priors are considered. Interest-
ingly, results are very similar for MAP-TV and MAP-MRP
reconstruction.

The improvement due to priors can be particularly signifi-
cant when the system matrix elements have to be calculated
on-the-fly (e.g., when using TOF information). The drawback
is, however, that to use MAP algorithms, whose response
strongly depends on the regularization parameter, β has to
be defined first, and its optimal value may depend, other than
the number of iteration used, also on the detected statistics.

It was also observed, by independently analysing the activity
distribution of different simulation runs referring to the same
case, that the stocastic effects due to the production chain
of the activity distribution are reflected on the image in a
slightly more significant manner when data is reconstructed
with MLEM and single-ray tracing SM, with respect to the
other reconstruction methods. The found agreement between
images of the same case was, nonetheless, equal to or less than
half millimeter. The range analysis performed considering the
activity distribution in the region of the phantom without the
air gap, where no significant changes are expected to occur
in the activity distribution, showed results consistent with the
observed stocastic effects.

The capability to provide an early assessment before the
end of the treatment fraction is one of the main features of
in-beam PET with respect to other PET-based particle therapy
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monitoring techniques. This constrains the reconstruction and
computational time.

Currently, image reconstruction takes less than one second
to compute for each iteration. Multi-core CPUs were exploited
to process the coincidences data in parallel, increasing the
algorithm speed. However, the application of Monte Carlo SM
for real-time range monitoring would presently require further
work and optimization to increase the computational speed. As
a compromise between the accuracy of Monte Carlo SM and
the speed of single-ray tracing SM, a factorized SM including
a model of the point spread function might be a good option.

In the next future we will extend our study to include
the effects of the detected statistics on the choice of the β
regularization parameter, with the aim of having an online
feedback in both a fast and accurate manner.

In addition, the I3PET scanner prototype is now under
construction, and experimental data will be used for further
studies.
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