CHAPTER 15

Some metric results in Transcendental Numbers
Theory

1. Introduction

In this Chapter we describe some results in the metric theory of transcendental
numbers. Let begin with some notation. If P € Z[z1,...,Zy) is & non — zero
polynomial, we define its size t(P) as h(P) + deg(P). Here, h(P) is the Weil's
logarithmic height of P (so, if the ged of the coefficients of P is 1, then h(P) is the
logarithm of the maximum module of the coefficients of P) and deg(P) is the total
degree of P. Let a = (a, ... ,am) € C™ with oy, ... , an, algebraically dependent:
we define () as the minimum size of a non — zero polynomial P € Z[z,... , Zm]
such that P(a) = 0.

We shall prove the following conjecture of Chudnovsky (see [Chu2, Problem
1.3, page 178]):

CONJECTURE 1.1. Let m be an integer, m > 1. Then for almost all w € C™
there exists a positive constant C such that

log | P(w)] > ~Ct(P)™*

for any non — zero P € Zlz1,... ,ZTm].

Let @« € C™ and let » > 0; we denote by By, («a,r) the set of points w € C™
such that |w — a| = maxi<j<n |0 — w;| < 7. Given a positive real number 7 we
also denote by T™ the set of w € B, (0,1) such that the inequality

|P(w)| < exp{-Ct(P)"}

has nontrivial solutions P € Z[z1,. .. ,%n] for any C > 0. Therefore, Chudnovsky’s
conjecture is equivalent to the statement: meas(Tpr, ;) = 0. We also remark that
m C TT if 7 < 7/. Moreover, by the box principle (see Lemma 3.2), T =
B (0,1) for any 7 € (0,m + 1).
Define an other subset of the unit ball as follow. Let n > 0 and let A7 be the
set of w € By, (0,1) such that for any C’ > 0 the inequality

0< |w—a| <exp{-C't(a)"}

has a solutions @ = (ay,... ,am) € C™ with oy, ...,y algebraically dependent.
As before, we have A2 C A if ) < n'. Moreover, it is easy to see that
m
Ay C TV
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for n > n+ 1. Indeed, let w be in the unit ball of C™ and assume that there exists
a=(0,... ,0,) € C™ with oy, ..., algebraically dependent such that

0 <|a—w| <exp{ - Ct(x)"}

for some n > m+1. Let P € Z[z;,... , 2] be a non - zero polynomial with integer
coefficients, vanishing at o and sucht that ¢(P) = t(c). Then, using the relation

Iai‘l Ceapm — wi\‘ -wm| < D]o — w| max{|a|, |w|,1}P~1,
which holds for any multiindex lg of weight A\; +-- -+ \,, < D, we can easily prove
that

|P(w)| < exp{ — B~'Ct(P)7}

for some positive constant B = B(m), provided that C > B.

The opposite inclusion T72 | C AT, | is also true (Theorem 4.2), but the proof
is much more difficult. The proof of the Conjecture 1.1 easily follows from this last
inclusion and from the fact that A", ; is a negligeable set (Theorem 4.2).

More generally we can define, for m € N and 7 > m + 1 a real number 7(7, m)
as

n(r,m) =sup{n; TMC AZ‘}
and ask whenever we have 1(7,m) = 7 (“comparison problem”). The conjectural
answer is 7(7,m) = 7, but this is still an open question. If m = 1 the conjecture

n(7,1) = 7 is true. In several dimension, only partial results are known. In [Amo2)

it is proved that
—{m+1
n(r,m) > max{m—{-l + T___(__“_F_),T _ 1},

which gives n(m + 1,m) = m + 1 (and therefore prove Chudnovsky’s conjecture).
Moreover, if m > 2

T—2
,m) > ,T—1
n(Tm)_max{m—l—m_lT }

which implies 7(7,2) = 7.

2. One dimensional results

As mentioned in the introduction, the answer to the comparison problem in
dimension 1 is easy:

PROPOSITION 2.1. Let w be a compler number. Assume that there ezists a
polynomial P € Z[z] such that

|P(w)| < exp{ — Ct(P)"}
for some T > 2 and some C > 5271, Then we can find a root o of P such that
la —w| <exp{-27""1Ct(c)"}.

PrROOF. If P(w) = 0 the result is obvious, so assume P(w) # 0. Let P =
Pt ... P2* be the factorisation of P into irreducible factors. We first prove that

(116) |Pj(w)| < exp{ ~ C(t(P;)/2)7}
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for at least one index j. Assume the contrary: then,

~log|P(w 1<02ej (t(P;)/2)" <0< ZeyaP))

j=1
Gelfond’s inequality (see [Gel2, Ch.3,§4, Lemma 2])
erh(Py) + - - + exh(Py) < deg(P)log2 + h(P) < t(P)
gives e1t(Py) + -+ + ext(Py) < 2t(P). Hence we obtain —log|P(w)| < Ct(P)"
which contradict our assumption.
Let now Pj(z) = a(z — oq) - - ( — ag) (where d = deg(P;)) and assume
w—a1] < < |w— oyl
From the inequality |w — ;| > o1 — @;/2 (1 = 2, ... ,d) we easily obtain
(117) |Pj(w)] = 27w — aa| - | Pj(aa)].
To find a lower bound for |Pj(e)|, we quote the following well known resultant
inequality (see [Wall, p.5.5]): Let F, G be two co-prime polynomials with integer
coefficients and let z be any complex number. Then:
1 < (deg(F) + deg(Q))|| F[|48 9| G||%# ) max{| F(2)], |G(2)|},
where || - || is the euclidean norm, i.e. the square root of the sum of the square of
the coefficients. This inequality, with F = P;, G = P} and z = o, gives (using the
upper bounds log||P|| < 1logd + h(P) and h(P’) < logd + h(P) which hold for
any polynomial P € Z[z] of degree < m):
—log |Pj(cu)| < 3dlogd + 2dh(P;);
Hence, using (116) and (117),
log |w — a1| < (d — 1) log 2 — log | P (1)| + log | Pj(w)]
< d+ 3dlogd + 2dh(P;) — C(t(P;)/2)"
< 6t(P;)® — C(8(P5)/2)7 < =277 Ct(ay)".

O

As a corollary, we find that T2 = Al for any 7 > 2. We now recall the definition
of Hausdorff’s dimension.

DEFINITION 2.2. Let Q be a subset of R™ and let d a positive integer. We say
that € has Hausdorff’s dimension < d if for any € > 0 we can find a denumerable
set of balls B; of radii r; < ¢ such that

aclys D ri<e
ieN i

We also define the Hausdorff’s dimension of a set §2 as the infimum of the set

of d > 0 for which Q has Hausdorff’s dimension < d.

If Q has Hausdorff’s dimension < n, then 2 is a negligeable set (in the sense of
the Lebesgue measure in R").
We can now prove the main result of this section (see [Amol, Theorem 2]):
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THEOREM 2.3. T} has Hausdorff’s dimension 0.

PROOF. Since T} = A}, we will show that A} has Hausdorff’s dimension 0.
For t € N let

Ay = {P € Z[z] such that [t(P)] = t}.
Let also, for k € N,

Qk=U U U Bi(a,exp{—kt?}).

teENPeA; <«€C

P(a)=0
‘We have
Aj= )%
keN

Let d, € be two positive real numbers. Since
log Card(A;) < ct?

for some absolute constant ¢, we also have

Z Z Z exp{—dkt’} < e.

tEN PEAf P‘E‘GC

o)=0

This proves that A} has Hausdorff’s dimension < d for any d > 0.
O

Using [Fed]'Corollary 2.10.12, p.176, and [Rog]?, Theorem 4, p.48, and The-
orem VII 3, p.104, we deduce:

COROLLARY 2.4. The set C\T} is totally disconnected. The set T} is arcwise
connected.
3. Several dimensional results: “comparison Theorem”

The aim of this section is the proof of the following theorem, which is a special
case of main result of [Amo2] :

THEOREM 3.1. There exists a constant A = A(m) > 1 having the following
property. Let k < m be a positive integer and let w € P™(C) Let us assume that
there exists an homogeneous unmized ideal I C Q[zo, ... , ] of rank k such that

I[(w)] < exp{ _ c't(z)<m+1>/k}
for some C > (24)m*~km+m)/k  Then Jo € V(I) such that

llo — wll < exp {"";-A_zck/(mz——km+m)t(a)m+l} _

We recall that, for a=[og: -], w = [wo : -+ : wy] € P?(C),
e L
lo = wll = , .
max |o;| max |w]
0<i<m 0<i<m

1[Fed] M. Federer. Geometric measure theory, Springer, Berlin, (1969).
%[Rog] C.A. Rogers, Hausdorff measures, Cambridge Univ. Press, Cambridge, (1970).
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and || = max |o;] (see Chapter 3). We also refer to Chapter 3 for the definitions
0<j<m 7

of |[I(w)|. Finally, the quantity ¢(I) in the Theorem 3.1 is the size of I, i.e. deg(I)+
h(I) (see again Chapter 3 for the definitions of deg I and h(I)).

In the sequel of this section we denote by ¢y, ... ,cs positive constants depend-
ing only on m. The proof of Theorem 3.1 splits in several lemmas. We start with an
easy consequence of the box — principle. For a non — zero homogeneous polynomial
P € Q|zo, ... ,Zm] of degree d and for w € P™(C), we denote, as in Chapter 3,

1Pl = [Pw)] - |P|™* - w| ™4,
where |P| is the maximum absolute value of the coefficients of P.
LEMMA 3.2. Let m > 1 be an integer and let w € P™(C). Then for any real

number T > c; there exists a non — zero homogeneous polynomial P € Q[zo, ... , Tm)
with size < T satisfying

|Plle < exp { — 7 'T™*},
PRrROOF. Let H and d be two positive integers which will be choosen later and

let A be the set of homogeneous polynomials P € Z{zy, . .. , Zm] of degree d with non

negative coefficients bounded by H. Let D = (**™) be the number of monomials

of total degree d, and remark for further references that
(d+1)"/m! <D < (d+m)™/ml.

Let also
6 =lw|™ min |Pi(w) - Py(w)]
Py #£Py

Since for any P € A we have |w|~%|P(w)| < DH, the ball of C with centre at the
origin and radius DH + §/2 contains the disjoint union of the open balls of centre
|w|~¢P(w) and radius 6/2, where P runs on A. Comparing the areas, we obtain

Card(A)(6/2)2 < (DH + 6/2)%.
The cardinality of A is (H + 1)?; hence:

2DH
H+1)P/2 -1 52D

and so there exist two polynomials P;, P, € A, P; # P», such that
| Py — Py, < 2DH'D/2,

5_<_(

The polynomial P = P; — P, has degree d, maximum absolute value of the coef-
ficients < H and satisfies || P||, < 2DH'~P/2, The lemma easily follows taking
d = [T/2] and H = [exp{T/2}]. O

LEMMA 3.3. Let C > ¢y be a positive real number and I C Q[zo, ... ,Zy] be an
homogeneous unmized ideal of rank k < m such that

()] < exp { —ot(l) <m+1>/k}.
Then there exists a homogeneous prime ideal p C I of rank k such that

lp(w)] < exp { - cg—lc’t(p)(m+l)/k}_
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PROOF. Let I = I;N...NI; be the reduced primary decomposition of I and let
p; = +/I; and e; be the exponent of I;. We can assume w ¢ V(p;) forj=1,...,s.
From the Proposition 4.7 of Chapter 3 we obtain:

> est(pg) < (m? + 1))
g=1
and
8
> ejloglpj(w)| < log|I(w)| +mPH(I) < —Ct(I)™+D/F 4 m34(1).
j=1
Let now assume log |p;(w)| > —Ct(p;)™+V/k for j =1,... , s and for some C > 1.
Then:

8
C(I) DR < mB(I) + C ) ejt(py)mTi)/E
Jj=1

s (m+1)/k
S m3t(I) + é’ (Z ejt(pj))

j=1
< m(I) + C(m® + 1)™ (1) m+D/k
< 2(m2 + 1)m+1ét(]’)(m+1)/k'

Hence C > 2(m?+1)"™~1C. The lemma follows choosing ¢, = 2(m2+1)™+l. O

We also recall two results of Chapter 3. The first one follows immediately from
Corollary 4.12 in Chapter 3, while the second one follows from Proposition 4.13 in
Chapter 3.

LEMMA 3.4. Letp C Q[zo, ... ,Zm] be a homogeneous prime ideal of rank k < n

and let Q € Q[xo, ... ,Zm] be a homogeneous polynomials such that Q & p. Let also
w € P™(C) such that w & V(p) and define

= min |jw — all.
p= min |w-a

Assume that there exist S > 0 and 0 € N such that
Ip(w)] < e, [Pl < e”2mdes P
and

—9log || P||,, > 2min(S, log %).

Then, if k < m — 1, there exists a homogeneous unmized ideal J of rank k + 1 such
that V(J) = V((p, P)) and

t(J) < m(m + 2)0t(Q)t(p),
log |J(w)| < =8 + 13m26t(Q)t(p).

Moreover, if k =m we have
S < 13m26t(Q)t(p).
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LEMMA 3.5. Let I C Q[zg,...,Zm] be a homogeneous unmized ideal of rank k.
Then for any w € P™(C) such that w ¢ V(I) there exists a zero o € V(I) such that

1
—all < ——1 34(1).
(deg I)log||w ~ af| < e og |I(w)| + 4m°t(I)

We shall prove Theorem 3.1 by induction on the rank k of I. The following
lemma resume the inductive step.

LEMMA 3.6. There exists a constant A = A(m) > 1 having the following prop-
erty. Let C be a positive real number and 6 be a positive integer such that C > 6 A.
Let us assume that there exists a homogeneous unmized ideal I C Q[zg, ... ,Zm] of
rank k < m such that

1I(w)] < exp {—Ct(1)<m+1>/k} .
Then, either 3a € V(p), such that
la = w| < exp{—A~"6¢(a)™ '}

or there exists an homogeneous unmized ideal J C Q[zo, ... ,zn] of rank k+1 such
that V(J) c V(I) and

|J(w)] < exp {_A—la—m/(k-}-l)Ck/(k+1)t(J)(m+1)/(k+1)} .
Moreover, if k = m only the first case can occur.

ProOOF. We can assume w ¢ V/(I), otherwise we choose o = w. Lemma 3.3
gives a homogeneous prime ideal p D I of rank k such that log |[p(w)| < —S where

S = ;1 Ct(p)m+/k,

Let a € V(p) such that p = || — w|| is minimal, and define a real number T" by the
following equality:

Ocy1T™ ! = 2min (.S’, log %) .

Assume
C > 8m402;
then, by Lemma 3.5,

1 1
. > = — 4m3
deg p - log =2 " m log |p(w)| — 4m>t(p)

> _;_m-lcglct(p)(m+l)/k
1
> gm“lc'z’lO deg p.
Hence,
min { S, lo 1 > 1m"lc’”lC
and

(118) T > (m~lercy2(C/0)) /™Y = ey(C/6) Y/ m D,
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We also remark the inequalities:

1.1 _
(119) log; > e orm,
(120) T < (2e1678) /™Y = ¢y (0/6) Y m Dy VE,
It

A 2 (Cl/c3)m+17
we have T' > c; by (118); hence we can apply Lemma 3.2, which gives a polynomial
P of size < T such that:
(121) log | Pl < 7T,

We now distinguish two cases.
e First case: P € p.
Then t(a) < ¢t(P) < T, hence, by (119),

11 _
log; 2 54 10t (o)™ 1.

Therefore in this case, the first assertion of Lemma 3.6 is satisfied (if we choose
A > max(1, 8micy, (c1/c2)™*?, 1/(2e1)).
e Second case: P¢pand k <m — 1.

From the choice of S and from (121) we see that [p(w)| < e~ and —flog || P||,, >
2min(S,log(1/p)). Moreover the other hypothesis of Lemma 3.4,

”P”w < e—2mdeg P
is satisfied if T™ > 2¢;m (see (121)) which certainly occur if we choose
A > C;m—l(zclm)(m+1)/m

(see (118)). Hence we can apply Lemma 3.4.
Assume first £ < m — 1. Then Lemma 3.4 gives a homogeneous unmixed ideal
J of rank k + 1 such that V(J) = V((p, P)) and

(122) log |J(w)] € =S + 13m20Tt(p),
(123) t(J) < m(m + 2)0Tt(p).
Assume

A __>_ (26c204m2)(m+1)/m.
Then, by (120),
13m20Tt(p) < 13cym24™/(m+D L/ (mAD)y () (k+1)/k

1 1
< 5cgl(,’t(p)("“fl)/’c < §S.

Henceforth, from (122),
(124) log |J(w)| < —%cglc't(p)(erl)/k:‘
On the other hand, again by (120),
m(m + 2)0Tt(p) < m(m + 2)649m/(m+1)Cl/(m+1)t(p)(k+1)/k_

Therefore, from (123) we obtain the following lower bound for t(p):
t(p) > csf~ ™R/ ((mAD+1) o=/ (1) (R+D) g 7yk/ (k+D)
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Inserting this lower bound in (124), we finally found
log | ()] < —cofm/(-H DGR/ (g 1y (m 1)/ ()
Therefore, in this case, the second assertion of Lemma 3.6 holds, choosing
C1 mt m41 mir 1
(125) A > max{1, 8mics, (C—) ,cgm'1(2c1m) ™ ,(266204m2) L —
3 Ce

e Third case: P & p and k = m.
As before, we can apply Lemma 3.4 provided that A > c3 m—1 (2¢, m)ﬂﬁ‘l‘ . Since
k = m, this lemma gives
S < 13m20Tt(p).
The same computation as before shows that this relation is inconsistent if we assume
A > (13cycgm?)m+D/m,

So this case can not occurs if A satisfies (125).
Lemma 3.6 follows, choosing

m--1
n k113 1
A = max {1, 8mics, (Z—;) ,(2¢1)71, cgm"l(ZClm)"#, (26c2c41m2)"1':5_1, -C—é-} .

O

We can now prove Theorem 3.1 by induction on k. Obviously, we can assume
w & V(I). Let A be the constant which appear in Lemma 3.6.
o k=m. Let§=[A"'C]. By assumption, C > 24, hence 6 > 1 A~1C; moreover
C/6 > A. Lemma 3.6 gives o € V(I) such that

log [l — w|| < —A~10t(c)™+! < —%A‘ZC’t(a)m“.

e k<m. Let

9 — [A—lck/(m2~km+m)] _
By assumption C > (ZA)(mz"km‘*‘m)/ * hence
(126) _;_A-—lck/(mz—-km+m) < 6;
moreover we also have
(127) < A~1CHk/(m®—kmtm)

This last inequality gives C/0 > A, thus we can apply Lemma 3.6. If there exists
o € I such that
loglla — w|| < —A™0t(a)™*!

our assertion follows, since, by (126),
A—le > lA—2ck/(m2—km+m).

-2
Otherwise, there exists an homogeneous unmixed ideal J of rank & + 1 such that
V(J) c V(I) and

log |J(w)] < _A—1g—m/(k+1)Ck/(k+1)t(J)(m+1)/(k+1)_
Let C = A~tg—m/(k+1)Ok/(k+1) By (127) and by the assumption
C > (24)(m—kmtm)/k
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we have
G 2 471 (A7 o=k ) T G
= Am—k=1)/(k+1) ok(m®—km)/((k-+1)(m®~km-+m))
(128) > Ck(m® —km)/ ((k+1)(m® —km-+m))
(129) > (2A)<m2—km)/(k+1>_

Hence, by inductive hypothesis, we can find o € V(J) such that

1 .
log [la —w]| < —ZAT20HAD/(m =km)g(qymt

1
< _§A~20k/(m2—km+1)t(a)m+1,

where in the last inequality we have used again (128). O

4. Several dimensional results: proof of Chudnovsky’s conjecture
From Theorem 3.1 we easily deduce the following result concerning polynomials:

COROLLARY 4.1. For any integer m > 1 and for any real number 7 > m + 1
there exists a positive constant B having the following property. Let w be in the unit
ball of C™ and assume that there exists a non — zero polynomial P € Z{zy,... ,Tn)
such that

|P(w)] < exp{ - Ct(P)m"'l}

for some C > B. Then, there exists o € C™ such that P(a) =0 and
lo —w| <exp{ - B'lcl/mzt(a)m“}.

PROOF. We can assume P(w) # 0, otherwise we choose & = w; we also denote
by ¢z, cg two positive constants depending only on m. Let I be the principal ideal
generated by the homogenization »P of P and let w’ = (1,w); by Proposition 4.8
of Chapter 3 we have

log |I(w")]| < log ||Plles + 2m? deg(P) < —Ct(P)™*! + 2m?t(P)
and t(I) < (m? + 1)t(P). Hence

log | (/)] < 5 (m? + 1)"™108()™,

provided that C' > 4m?. Theorem 3.1 gives o such that "P(a’) = 0 and

(130) log [lo — w'|| < —B~1(C/2)Y™ t(a/)m+1.
If C > cr, then ||o/ — w'|| < 1/2, hence of # 0 and the vector o € C™ defined by
a; =of/ag (1=1,...,m) satisfies P(a) = 0 and

o — w| < max{L, o/}’ — W]

Since ||a’ — w'|| < 1/2, this gives at once |a| < 2. Thus |a — w| < 2||a/ — &'||, and
we deduce from (130) that

log |e — w| < —B~YC/2)Y™ ()™ +1og 2 < —(4B)~1CY™ t(a)™ !,
if C > cg. Corollary 4.1 follows, choosing B= max{4m?, c7, cs, 2B}. ]
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As a corollary, we see that Tm+1 = A7 ,1. We can now prove Chudnovsky’s
conjecture:

THEOREM 4.2. The set T, is negligeable.
PROOF. By the previous result, it is enough to show that A%, , is negligeable.
Given P € Z[z1,... ,zn) and € > 0, denote
Up(e) = {w € Bp(0,1) such that min lw—«a| < e}.
acC™m

P(a)=0
For t € N let
= {P € Z[z1,... ,Zn] such that [t(P)] = t}.
Let also, for k € N,

Q= U U Up(exp{—kt™*1}).

teN PEA,
We have
m+1 ﬂ Qm k-
keN
Now, we quote the following lemma;:
LEMMA 4.3. For any € > 0 we have
2m
meas(Up(g)) < =) ——¢e? deg(P).
ProOF. By a theorem of Lelong
P=0}ABn(0,1)) < T Geg(P
=0}lNn -
mea’s({ } m( ? )) - (m——l)' eg( )
(see [Lell]®*Théoréme 7). Hence, by a Fubini — Tonelli argument,
5 9 7r2(m—1)
meas(Up(g)) < m%e” - deg (P).

(m —1)!

Since
log Card(As) < ¢(m)t™+?
for some constant ¢(m) depending only on m, we deduce from the lemma above
that

+oo 2m
meas(Qm i) < Z exp{c(m)tm“}(—ml—l)i exp{—kt™*1}t -0
t=1 ’
as k — +o00. Theorem 4.2 is proved. O

3[Lel1] P. Lelong. Propriétés métriques des variétés analytiques complexes définies par une
équation, Ann. Ecole Norm. Sup. 67, (1950), 393-419.



