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ABSTRACT 20 

This study aims to discuss the microbial ecology of the broiler gut environment, 21 

Campylobacter prevalence across the broiler production chain with a follow-up focus on a 22 

possible mitigation strategy  based on the use of bacteriophages. Scientific literature published 23 

from the last two decades was reviewed and data were collected to establish the ranges of 24 

Campylobacter loads from different samples. Results showed that the pathogen load in the 25 

sample is likely to increase from the different stages of the production chain. Contamination of 26 

water and feed represents the most notable source of contamination during the primary 27 

production, while cross-contamination of broiler carcasses, skin, and meat occurs during the 28 

slaughter, dressing, and processing via machinery, work surfaces, water, and air partially due to 29 

the leaking of contaminated feces from visceral rupture. Knowledge gaps were identified and 30 

included: a lack of studies detecting Campylobacter in broilers in most of the European countries 31 

over the last decade and a low number of studies determining the bacterial load in crates used to 32 

transport broilers to the slaughterhouse. Determining the prevalence of Campylobacter in the 33 

broiler industry will enable us to set critical control points to produce broiler flocks and meat 34 

products with a low risk of Campylobacter contamination.  35 

 36 
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1. INTRODUCTION 38 

Zoonoses are defined as those infectious diseases naturally transmitted from vertebrate 39 

animals to humans through direct or indirect contact (food or water contamination). Zoonotic 40 

agents include a wide variety of bacteria, viruses, protozoa, insects, and helminths. According to 41 

the World Health Organization (WHO), almost 600 million cases of food-borne zoonoses were 42 

reported worldwide in 2015, of which 52% were caused by pathogenic bacteria (WHO, 2015). 43 

Campylobacter is the most common pathogen responsible for food-borne zoonotic diseases in 44 

humans and it is considered a serious public health issue in both developing and developed 45 

countries. The most recent summary report of the European Food Safety Authority (EFSA) 46 

stated that campylobacteriosis is the most frequently reported food-borne zoonoses in the 47 

European Union (EU), with 220 682 confirmed cases in 2019, reported from 18 different 48 

members states (EFSA and European Centre of Disease Prevention and Control (ECDC), 2019). 49 

The most common source of infection in humans due to Campylobacter are broiler meat and 50 

milk (EFSA and European Centre of Disease Prevention and Control (ECDC), 2019). 51 

Campylobacter is a genus of microaerophilic and Gram-negative bacteria belonging to 52 

the Proteobacteria phylum. Bacterial cells generally appear as slender, spirally curved, or 53 

comma-shaped rods characterized by inability to form endospores and ability to change to 54 

spherical or coccoid form under stress conditions (Lastovica et al., 2014). Campylobacter species 55 

have an optimal growth temperature, O2, and CO2 concentration of 30- 42°C, 5-10%, and 3-5%, 56 

respectively (Lastovica et al., 2014). In terms of biochemical characteristics of Campylobacter 57 

species, they are oxidase-positive, with the capacity to reduce fumarate to succinate but are not 58 

able to metabolize lipids, starch, gelatin, and casein (Lastovica et al., 2014). Currently, 33 59 

species have been taxonomically described from this genus, but this number is increasing due to 60 
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the identification of new species (bacterio.net). The main natural reservoir of 61 

thermophilic/thermotolerant Campylobacter species has been extensively reported in warm-62 

blood animals, including most mammals, birds, and food-producing animals (Silva et al., 2011). 63 

The mechanism of colonization, adherence, and invasion of host by pathogenic Campylobacter 64 

species such as C. jejuni, has been previously reviewed elsewhere (Elmi et al., 2021). In 65 

summary, successful colonization of the bacteria depends on the ability to attach to the gut 66 

mucosa, motility, chemotaxis, spiral shape of the cell, the functionality of the flagella, production 67 

of toxins and secreted proteins (cytolethal distending toxin -CDT) and other virulence factors 68 

(Elmi et al., 2021).  69 

Interestingly, Campylobacter does not multiply outside a warm-blooded host due to the 70 

absence of microaerobic conditions. However, they can survive when protected from dryness. In 71 

this regard, it has been shown that Campylobacter can survive up to 3 months in slurries and 72 

dirty water (Nicholson et al., 2005). The mechanism of survival of the Campylobacter species 73 

when exposed to stress environments has been explained by its ability to form a biofilm on 74 

abiotic surfaces, this biofilm ensures a supply of nutrients and mechanical protection to survive 75 

(Johnson et al., 2017). Although the bacteria cannot multiply outside the animal hosts or in food 76 

during storage, it has been shown that they are able to develop complex mechanisms of virulence 77 

which remain poorly understood.  78 

Recent studies have facilitated a greater appreciation of the complex mechanism of 79 

virulence of the members of the Campylobacter genus. The full genome of Campylobacter 80 

jejuni, has elucidated strain-specific genetic diversity with high genome plasticity (Bacon et al., 81 

2000). The ability to survive and adapt to stress environments indicates that C. jejuni harbors 82 

complex virulence and fitness factors (Tegtmeyer et al., 2021). Virulence factors and 83 
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pathogenicity islands in C. jejuni have been identified and are reported elsewhere (Ali et al., 84 

2012; Bacon et al., 2000; Sierra-Arguello et al., 2021; Tang et al., 2020; Zhang et al., 2017). 85 

Virulence-associated genes such as flaA, cadF, cdtA, cdtB, cdtC, cheY, iamA, and virB11 were 86 

recently identified in C. jejuni and Campylobacter coli isolates originating from broiler of 31-day 87 

or 37-day age at the rearing period to slaughtering process (Tang et al., 2020). Besides the 88 

identification of virulence-associated genes, invasion-associated genes, plasmid genes and CDT-89 

associated genes were also recognized in C. jejuni strains isolated from cloacal, broiler carcasses, 90 

and broiler slaughterhouses (Sierra-Arguello et al., 2021). The aforementioned genes are 91 

involved in the adhesion, invasion, chemotaxis, motility, toxin-activity, and host immune system 92 

evasion. Interestingly, there is a difference of virulence factors between C. jejuni and C. coli, 93 

where a higher number of virulence genes were retrieved in C. jejuni if compared with C. coli, 94 

this difference might contribute to the higher colonization of C. jejuni in the broilers’ intestines 95 

(Tang et al., 2020; Zhang et al., 2017).  96 

Antibiotic resistance in Campylobacter is also considered a global trend. In this regard, 97 

C. jejuni and C. coli had shown a multi-drug resistance to several antibiotics such as 98 

tetracyclines, macrolides, aminoglycosides, and β-lactams. However, a higher number of 99 

antibiotic resistance genes were retrieved for C. jejuni if compared with C. coli (Tang et al., 100 

2020). On the increase of antibiotic resistance to more than one class of antibiotics, further 101 

research is needed to understand the mechanism of antimicrobial resistance to improve not only 102 

human but also animal health.   103 

Besides the genetic makeup, the main factors that influence the occurrence of Campylobacter 104 

in broilers are related to the host gut environment, production chain, or farm practices (Barker et 105 

al., 2020; Djennad et al., 2017; McKenna et al., 2020; Perez-Arnedo and Gonzalez-Fandos, 106 
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2019; Sibanda et al., 2018; Tang et al., 2020). A conceptual framework of the factors increasing 107 

the occurrence of Campylobacter and a prevention guideline to stipulate the best conditions and 108 

food processing management to reduce the risk of Campylobacter contamination in the broiler 109 

production chain has been developed (EFSA, Panel on Biological Hazards, 2011; Lyngstad, 110 

Jonsson, Hofshagen, & Heier, 2008).  111 

Several intervention methods have been developed in recent years, such as the combination 112 

of strict biosecurity measures, good manufacturing practice (GMP), hazard analysis and critical 113 

control points (HACCP), Campylobacter vaccines, antibiotic alternatives to control 114 

Campylobacter, probiotics, and phytochemicals  (Deng et al., 2020; European Food Safety 115 

Authority Panel on Biological Hazards, 2011; Umar et al., 2016; Ushanov et al., 2020). 116 

However, the problem has not been completely eradicated and the prevalence of this pathogen is 117 

still high. Ante- and post-mortem veterinary inspections of broilers are routinely used at the 118 

slaughterhouse level as a strategy to ensure that meat does not bear fecal or other contaminants. 119 

However, the presence of Campylobacter in broiler carcasses cannot be detected visually. As an 120 

attempt to mitigate this issue, the application of Campylobacter-specific bacteriophages has 121 

emerged as one of the most promising approaches to be applied within the farm-to-fork poultry 122 

process (Atterbury et al., 2003; Fischer et al., 2013; Hammerl et al., 2014; Kittler et al., 2013; 123 

Richards et al., 2019). In this context, this review focuses on discussing the most updated 124 

scientific achievements made on the microbial ecology of the gastrointestinal (GI) tract of 125 

broilers and the interaction between chickens’ gut microbiota and Campylobacter, 126 

Campylobacter prevalence across the broiler production chain with a follow up of the application 127 

of bacteriophage along the farm-to-fork process.  128 

 129 
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2. MICROBIAL ECOLOGY IN CHICKEN’ ECOSYSTEMS 130 

Chicken ecosystems harbor complex, diverse, and dynamic microbial communities 131 

composed of bacteria, protozoa, fungi, yeasts, bacteriophages, and other viruses. The integrity of 132 

the GI tract and the gut microbiota composition has a direct influence on chicken’ health, 133 

affecting the development of their digestive and immune systems (Clavijo and Flórez, 2018; 134 

Khan et al., 2020). The avian gut microorganisms are mainly responsible for the continuous 135 

generation of energy and nutrients, such as vitamins (K and B groups), amino acids, short-chain 136 

fatty acids (SCFA like, butyric, propionic, and lactic acids), ammonia, antimicrobial compounds 137 

(bacteriocins) and the decrease of triglyceride concentrations in the avian gut (Vispo and 138 

Karasov, 1997). The positive effect of the production of SCFA on the host includes the inhibition 139 

of pathogens, reduction of the pH levels in the colon, and stimulation of the cell proliferation in 140 

the gut epithelium (Christl et al., 1997; Dibner and Richards, 2005; Ricke, 2003). In contrast, 141 

chickens’ growth can be depressed when competition for energy and protein occurs between the 142 

commensal microbiota. As a result of this competition, toxic metabolites (amino acid catabolites) 143 

can be produced and impact the growth of the animal (Shang et al., 2018). 144 

As reported in recent years, the composition and function of chickens’ microbiota vary 145 

depending on biological changes within and between hosts (age, sex, maternal factors, and 146 

breed), and environmental factors (biosecurity levels, housing, litter, feed access and antibiotic 147 

administration, hygiene, location, and climate) (Kers et al., 2018). Regarding the biological 148 

variation within and between hosts, it has been demonstrated that the chickens’ microbiota 149 

richness increases during the first week of life (Ballou et al., 2016; Crhanova et al., 2011), while 150 

the number of different microbial taxa decreases with chicken age (Lu et al., 2003). The 151 
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microbial composition of chickens does not only change with chicken age but it is also 152 

influenced by the location in the digestive tract and diet (Shang et al., 2018).  153 

Significant progress has been made in understanding the microbial taxonomic 154 

composition of the different sections of the chickens’ GI tract. Overall, Firmicutes is the phylum 155 

most abundant in both ilea and ceca of chickens (Kumar et al., 2018; Lu et al., 2003; Oakley et 156 

al., 2014). Interestingly, in the ceca, the relative abundance of members of the Clostridium genus 157 

increased by 10 fold between weeks 1 and 6 post-hatch (Oakley and Kogut, 2016). Concerning 158 

the bacterial community within the small intestine, in this section lactobacilli mainly dominated 159 

the microbial ecosystem (Gong et al., 2007; Lu et al., 2003). According to Lu et al., the 160 

microbial composition of the ceca and ileum of three days of age broilers (chickens for meat 161 

production) fed with a vegetarian corn-soy diet was mainly composed of Lactobacillus 162 

delbrueckii (13 and 42%, respectively), Clostridium spp. (31 and 1%, respectively) and 163 

Clostridium perfringens (13 and 16%, respectively), however differences in the microbial 164 

composition between these sections (ceca and ileum) were reported (Lu et al., 2003). Regarding 165 

seven to 49 days old chickens, Clostridium spp. remained the most abundant bacteria in the ceca, 166 

followed by Ruminococcus, while differences in the relative abundance of bacterial species 167 

overtime were reported in the ileum (Lu et al., 2003). In detail, Lactobacillus acidophilus (50-168 

59%) was the most abundant bacteria in chickens of seven to 21 days of age, while a unique 169 

community was reported in the ileum of three, 28, and 49 days of age broilers. Interestingly, 170 

regardless of the absence of Clostridium spp. and Ruminococcus spp. in the ileum section at an 171 

early age (between three to 14 days), significant differences of the microbiota between the 172 

different sections of the GI tract (ileum and ceca) were only found after 14 days of age (Lu et al., 173 

2003).  174 
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Overall, it is still not clear whether Proteobacteria and Bacteroidetes are also abundant 175 

phyla during the first six weeks in the chicken’s ceca (Shang et al., 2018). These contradictory 176 

results may be related to the different chicken breeds studied. According to Kers and colleagues 177 

(2018) a variation at the phylum level from the ceca samples of broiler breeds (meat production) 178 

and laying-type chickens (egg production) were observed at different time points using 16S 179 

rRNA gene amplicon sequencing. Specifically, at zero hr, Firmicutes was the most abundant 180 

phylum reported in meat-type chicks (Pedroso et al., 2016; Danzeisen et al., 2011), while 181 

Proteobacteria was identified in laying-type chicks (Ballou et al., 2016). This variability may be 182 

due to sample types (fecal vs cecal), feed intervention, and/or the technical aspects of the 183 

microbial identification as reported elsewhere (Shang et al., 2018). However, from one to 42 184 

days of age, Firmicutes was the most abundant phylum regardless of the type of broiler breeds. 185 

Furthermore, Candidatus arthromitus, a desirable bacterium commonly associated with healthy 186 

GI tracts in animals, has been also identified in the jejunum and ileum of chickens (Gong et al., 187 

2007, 2002). 188 

2.1 Chicken diet and intestinal microbiota interaction 189 

The characteristics of the chickens, feed management, the use of medications or vaccines, 190 

the environmental conditions of the poultry house, and the housing systems are known factors 191 

that have a short- or long-term effect on the intestinal microbiota composition and immune 192 

system development of chickens (Kers et al., 2018). The effect of feed management on the 193 

intestinal microbiota has been extensively studied (Apajalahti, 2005; McKenna et al., 2020; 194 

Singh et al., 2014; Stanley et al., 2012; Takeshita et al., 2021). Differences in the relative 195 

abundance of bacterial species in fecal and cecal samples of broilers following high and low 196 

growth diets were reported elsewhere (Singh et al., 2014; Stanley et al., 2012). Knarreborg and 197 
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colleagues (2002) demonstrated that the divergence in feed can also increase or decrease the 198 

relative abundance of a specific bacterial group: the aforementioned study shows how pellet feed 199 

increases the number of Enterococcus spp. and coliforms and decreases lactobacilli species and 200 

C. perfringens in the ileum of broilers when compared with mash feed (Knarreborg et al., 2002). 201 

In contrast, when chickens consumed corn, this diet favors a decrease in the number of clostridia, 202 

enterococci, and lactobacilli, while when chickens consumed wheat, it favors the increase of 203 

bifidobacteria (Apajalahti, 2005). Interestingly, the amount of protein in the chicken feed also 204 

changed microbial composition, where high amount of protein showed a lower relative 205 

abundance of lactobacilli species compared with chicken feed with a low amount of proteins diet 206 

(Takeshita et al., 2021). The difference in microbial community structure between production 207 

systems together with different management paraments such as stocking density has also shown 208 

to alter the microbiota of broilers (McKenna et al., 2020). To date, broilers’ microbiota studies 209 

have focused on identifying bacterial composition while the identification of other components, 210 

such as fungi, phages, or viruses, remain unclear. A better understanding of the role and 211 

interactions between mycobiota, phagobiota, and virobiota with the broiler microbial ecosystem 212 

may help to improve chicken productivity, health, and welfare and develop novel strategies for 213 

controlling the prevalence of Campylobacter spp. in broilers (Silva et al., 2011).  214 

2.2 Campylobacter and its interactions with gut microbiota in chickens  215 

Campylobacter typically occurs within two weeks onwards and increases during broilers 216 

life cycle (Ijaz et al., 2018; Kalupahana et al., 2013; McKenna et al., 2020; Neill et al., 1984; 217 

Thibodeau et al., 2015). It usually grows in the ceca and cloaca and can also colonize the spleen, 218 

blood, and liver (Lin, 2009). C. jejuni and C. coli are the most commonly isolated 219 

Campylobacter species in broiler samples at different production stages. Interestingly, recent 220 
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studies show contradictory results on how microbial ecology influences Campylobacter 221 

colonization. According to Sofka and colleagues the presence of Campylobacter decreased the 222 

diversity of intestinal microbiota when compared with non-colonized broilers (Sofka et al., 223 

2015). In alignment with the aforementioned study, a significant difference in the relative 224 

abundance of the microbial operational taxonomic units detected in the ceca of chickens fed with 225 

different diets, at different ages from three different commercial broiler farms were reported 226 

between Campylobacter-positive and -negative chickens (Takeshita et al., 2021). Interestingly, 227 

the decrease in lactobacilli abundance in chicken ceca was associated with high levels of 228 

Campylobacter, while the growth of Campylobacter increased the levels of Enterobacteriaceae 229 

(Sakaridis et al., 2018). However, according to McKenna and colleagues the presence of 230 

Campylobacter in broilers reared under standard industrial growing systems increased the cecal 231 

microbial community structure (McKenna et al., 2020). Whereas the transplantation of cecal 232 

microbial in chickens shows no significant difference in the ceca microbial communities of 233 

different inbred chickens (Chintoan-Uta et al., 2020). The factors affecting host-pathogen 234 

ecology in terms of the microbiome and the microbial dynamics and Campylobacter presence 235 

remain poorly studied at an industrial or small-scale farm level. 236 

 237 

3. CAMPYLOBACTER PREVALENCE IN THE BROILER PRODUCTION CHAIN  238 

 In terms of Campylobacter diversity in the broiler chain production, a recent study has 239 

demonstrated that C. jejuni predominates during the rearing broiler period while more isolates of 240 

C. coli were detected during the slaughtering process (Chen et al., 2010; Tang et al., 2020; Zhang 241 

et al., 2018).  242 
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Campylobacter from chicken reservoirs may reach humans through the environment or by 243 

direct contact and mainly through the consumption of raw and undercooked contaminated broiler 244 

meat and meat products. The Scientific Opinion of the Panel on Biological Hazards (BIOHAZ), 245 

EFSA in 2010 estimated that the majority of human campylobacteriosis is attributed to the 246 

chicken reservoir as a whole (50 – 80%), while the handling, preparation, and consumption of 247 

broiler meat may account only for 20 to 30% (EFSA, 2010). Other food products such as 248 

unpasteurized dairy products and contaminated water are also vehicles of transmission of this 249 

pathogen, but Campylobacter infections are less common from these sources compared with 250 

meat products (Josefsen et al., 2015). To provide an indication of the possible control points for 251 

Campylobacter at the broiler meat production chain, this review describes the prevalence of 252 

Campylobacter along the process and discusses the risk factors that influence the level of 253 

contamination (Figure 1). 254 

3.1 Primary production 255 

The increases of Campylobacter loads during the first weeks of age of commercial flocks 256 

(Umar et al., 2016) indicate that vertical transmission of the pathogen does not commonly occur; 257 

however, it still represents an important risk factor for the Campylobacter colonization in 258 

broilers (Bull et al., 2008; European Food Safety Authority Panel on Biological Hazards, 2011; 259 

Humphrey, 2006; Tang et al., 2020). The protection of young broilers’ GI tract against 260 

colonization of Campylobacter has been associated with Campylobacter-specific maternal 261 

antibodies (MAB) (Sahin et al., 2001; Vandeplas et al., 2010). MAB, predominantly 262 

immunoglobulin G (IgG) class, are transported from the egg yolk across the yolk sac membrane 263 

into the embryonic circulation to protect young broiler chickens from C. jejuni infections 264 

(Linden and Roth, 1978). However, MAB levels change with the increase in the broiler age. In 265 
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detail, the highest level of MAB is reported during the first two weeks after hatching, followed 266 

by a decrease, reaching minimal values at the third and fourth weeks of age (Sahin et al., 2001; 267 

Vandeplas et al., 2010). The increased risk of Campylobacter colonization in broilers from week 268 

three to week six was demonstrated elsewhere, as shown in Table 1 (Ingresa-Capaccioni et al., 269 

2016; Perez-Arnedo and Gonzalez-Fandos, 2019; Tang et al., 2020; Tangkham et al., 2016). 270 

Interestingly, the prevalence of Campylobacter spp. and C. jejuni at the end of the rearing period 271 

is higher in open housing compared with environmentally controlled housing (Tangkham et al., 272 

2016). Noteworthy, a higher prevalence of C. jejuni isolates compared with C. coli was observed 273 

from the broiler rearing period at the farm level in China (Tang et al., 2020), while in Spain, C. 274 

coli has not been detected throughout chickens progeny (Ingresa-Capaccioni et al., 2016; Perez-275 

Arnedo and Gonzalez-Fandos, 2019). 276 

Natural colonization of broilers by single or multiple Campylobacter species rapidly occurs 277 

through horizontal transmission from vectors such as domestic pets, insects, rodents and 278 

migratory birds, farm equipment, transport vehicles, farmworkers, drinking water, feed, litter, 279 

air, or thinning (Bang et al., 2002; Carvalho et al., 2010; Gharib Naseri et al., 2012; Koolman et 280 

al., 2014; Robyn et al., 2013; Schroeder et al., 2014; Stern et al., 2001). Based on the most recent 281 

studies considered in this review, the highest prevalence of Campylobacter presence has been 282 

detected on drinking water, feed, workers boots, and broilers’ fecal and cecal samples after 283 

thinning, while the lowest prevalence of this bacteria was found on samples from the litter, air 284 

and the infrastructure of the farm (Table 1). 285 

The colonization of the flocks with Campylobacter can also be introduced from external 286 

visitors to the farm, maintenance personnel, bird catching crew, close livestock, when operators 287 

visit more than one farm or are negligent regarding hygienic practices (Berndtson et al., 1996; 288 
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Cardinale et al., 2004; Hald et al., 2000; Johnsen et al., 2007; Kapperud et al., 1993; A. M. 289 

Ridley et al., 2011). Besides human traffic, the proximity of the fresh litter, larger thinning 290 

crews, increasing the number of broiler houses on-site, and the presence of dead broilers in the 291 

house enhances the survival of Campylobacter and thus the risk of positive flocks is increased 292 

(Cardinale et al., 2004; Koolman et al., 2014; Lyngstad et al., 2008). Inadequate biosecurity such 293 

as broiler houses older than 15 years, absence of anterooms and barriers in each house, the use of 294 

shared tools between houses, long downtime, and drinking systems with bells or cups represent a 295 

common risk factor for Campylobacter colonization of broiler flocks (Sommer et al., 2016). 296 

Partial thinning of broiler flocks has also been considered as a potential risk factor for 297 

Campylobacter colonization of the remaining animals, due to the difficulty of keeping 298 

biosecurity measures during the process (Hermans et al., 2011).  299 

The dispersion of Campylobacter originating from broilers into the environment represents 300 

an important factor leading to increased contamination. In broiler, C. jejuni is the most 301 

predominant species colonizing the flocks, followed by C. coli and occasionally by other species 302 

(Rossler et al., 2019; Umar et al., 2016). Once the first bird is infected, Campylobacter is 303 

horizontally transmitted to most of the birds in a flock within only a few days, reaching between 304 

106 and 108 CFU/g in their intestinal tract, and they remain colonized until slaughter (Marotta et 305 

al., 2015).  306 

The increased water consumption by chickens during summer months increases the risk of 307 

drinking water contaminated with Campylobacter (Herman et al., 2002; Lyngstad et al., 2008). 308 

This association has been observed in northern European countries, such as Sweden, Denmark, 309 

Norway, and the Netherlands (Jore et al., 2010). The changes in the temperature throughout the 310 

year can explain the increase in water consumption during summer. However, other factors such 311 
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as the increment in the abundance of transmission vectors of Campylobacter (flies) and the need 312 

for ventilation in the poultry house of broilers can also increase the probabilities of the 313 

introduction of Campylobacter into the environment (Hald et al., 2008; Jore et al., 2010). Also, it 314 

must be underlined that, as expected, climate change is an important factor that might increase 315 

the prevalence of Campylobacter in the future, placing public health at risk. It is worth noting 316 

that colonized birds are predominantly asymptomatic, with no negative effect on their health 317 

(Pielsticker et al., 2012). 318 

3.2 Transportation before slaughter 319 

The transportation step consists of moving the broilers from farm facilities to the 320 

slaughterhouse. During this process, the animals are confined in crowded crates or cages, 321 

deprived of water and feed, and undergo continuous stress that affect not only the meat quality 322 

but also the Campylobacter prevalence, which could increase due to cross-contamination. If a 323 

single broiler is colonized, Campylobacter will be spread to the environment and will be 324 

transmitted to the rest through fecal matter or feathers contact (Stern et al., 2001; Whyte et al., 325 

2001).  326 

In comparison with the primary production, the pre- and post-transportation steps have 327 

been less studied over the last two decades (Table 2). Overall, from the literature available we 328 

observed that during transportation, the floor and transportation cage/crates account for the 329 

highest risk of cross-contamination in broilers (Stern et al., 2001; Willis et al., 2002), while no 330 

clear contamination level in fecal samples between pre-and post-transportation steps is observed 331 

(Whyte et al., 2001). One likely explanation for this phenomenon is that catching and placing the 332 

chickens in cages/crates to transport them to the processing plant increases the risk of 333 

contamination, mostly due to cross-contamination during transportation (Slader et al., 2002). 334 
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However, recent literature has demonstrated the ineffectiveness of cleaning naturally 335 

contaminated crates before using them to transport broilers and reduce Campylobacter infections 336 

(A. Ridley et al., 2011). Further, transportation stress alters excretion rates of Campylobacter in 337 

the fecal material of broilers (Whyte et al., 2001). 338 

3.3 Slaughter, dressing, and processing 339 

Colonization of Campylobacter in broilers during rearing and transportation steps 340 

contributes to the contamination of this bacteria in the slaughterhouse causing cross-341 

contamination. During the slaughter process, the transmission of  Campylobacter-infected flocks 342 

to non-infected (Shange et al., 2019; Umar et al., 2016) is mainly due to the leaking of 343 

contaminated feces from visceral rupture to the chickens (García-Sánchez et al., 2019; Hermans 344 

et al., 2011). In the European Union (EU), it was observed that batches of broilers whose 345 

intestines were colonized with Campylobacter yielded carcasses with high numbers of 346 

Campylobacter (EFSA, Panel on Biological Hazards, 2011). However, Campylobacter counts on 347 

carcasses varied among slaughterhouses. These differences found on the levels of 348 

Campylobacter loads among slaughterhouses might be related to the different hygiene practices 349 

used between countries. Interestingly, Campylobacter strains in chickens are not necessarily the 350 

same as those isolated from processed carcasses, which suggests that cross-contamination occurs 351 

during processing (Slader et al., 2002).  352 

This cross-contamination can occur during the entire slaughter, dressing, and processing 353 

including the chilling room, plucking, evisceration and portioning areas, or via machinery, work 354 

surfaces, process water and air (Allen et al., 2003; Arnold and Silvers, 2000; Corry and Atabay, 355 

2003; Haas et al., 2005; Hue et al., 2010; Johnsen et al., 2007). Overall, based on the most recent 356 

studies considered in this review, the highest prevalence of Campylobacter spp. was detected on 357 
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the defeathering, evisceration, operation tables, worker’s gloves, shackles, and conveyor belt 358 

equipment, while the lowest prevalence of Campylobacter spp. was detected on the sink, floor 359 

and chopping boards and knife swabs during slaughter, dressing, and processing as shown in 360 

Table 3 (García-Sánchez et al., 2017; Khan et al., 2018; Tang et al., 2020; Zhang et al., 2018). In 361 

agreement with data from the primary production, where the surfaces and equipment in the 362 

facility are the main sources for Campylobacter, a high prevalence of this bacteria in broiler 363 

samples and carcasses has been also reported during the slaughter, dressing and processing 364 

(Table 3) (Carrillo et al., 2014; Casagrande Proietti et al., 2018; García-Sánchez, Melero, Diez, 365 

Jaime, & Rovira, 2018; Ingresa-Capaccioni et al., 2016; Khan et al., 2018; Korsak, Maćkiw, 366 

Rożynek, & Żyłowska, 2015; Perez-Arnedo & Gonzalez-Fandos, 2019; Williams & Oyarzabal, 367 

2012; Zhang et al., 2018).  368 

The variation of the prevalence of Campylobacter spp. during the different processes’ 369 

steps can also be explained due to technical aspects of Campylobacter detection (sampling 370 

procedures, storage, DNA extraction, selection of targeting region, and PCR primers and the 371 

sequencing platforms used). Culture-based isolation approaches is considered as a standard 372 

method for the detection and enumeration of the different Campylobacter spp. of products 373 

intended for human consumption, animal feeding, environmental samples in the area of food and 374 

feed production, and samples from the primary production stage (ISO, 2017). However, the 375 

limitations of this technique rely on the difficulties to isolate Campylobacter from samples with 376 

heavy contamination and the rapid loss in cultivability of isolates. To overcome the challenges in 377 

traditional phenotype-based methods for the identification of Campylobacter, different DNA-378 

based approaches have become widely used due to the speed, and reproducibility to confirm 379 

Campylobacter identification (Johannessen et al., 2020). Nevertheless, besides the great 380 
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advances made in establishing a less time-consuming sampling protocol and more amenable to 381 

couple with DNA-base methods, currently, there is no standard procedure for a fast screening of 382 

Campylobacter at the retail level. One also notes that pathogenesis or virulence factors that 383 

certain Campylobacter sequence types may have is an important feature to consider for 384 

predicting future Campylobacter outbreaks and accurate identification in the context of risk 385 

assessment. 386 

 387 

4. CONTROL STRATEGIES 388 

A direct relationship between the reduction of Campylobacter’s load at the different broiler 389 

production stages and the reduction of public health risk has been linked to an effective control 390 

strategy. Reducing the numbers of Campylobacter on the carcasses by one log10-unit, would 391 

reduce the public health risk by between 50 and 90%, and, reducing counts by more than two 392 

log10-units would reduce the public health risk by more than 90% (European Food Safety 393 

Authority Panel on Biological Hazards, 2011). To reduce Campylobacter loads, the EU has 394 

recently developed the Commission Regulation (EU) 2017/1495, which sets microbiological 395 

limits regarding Campylobacter spp. in carcasses of broilers (European Commission, 2017). In 396 

recent years several Campylobacter control strategies have been developed; most of them 397 

focused on the reduction of Campylobacter colonization at the farm level which consequently 398 

decreased Campylobacter loads into the slaughterhouse, resulting in a low concentration or 399 

absence of the pathogen on the final product (Wagenaar et al., 2006).  400 

The main strategies to control Campylobacter spp. colonization at the farm level is based 401 

on the reduction of environmental exposure (biosecurity and hygienic measures), the increase of 402 



19 

broiler resistance to colonization (competitive exclusion, vaccination, application of pre-and pro-403 

biotics, organic acids, or phytocompounds etc.), the use of alternative antimicrobials 404 

(bacteriophage therapy and bacteriocin treatment), and/or selection of specific breeding to 405 

increase the resistance of broiler chickens to colonization (European Food Safety Authority 406 

Panel on Biological Hazards, 2011; Umar et al., 2016). Besides, the BIOHAZ sets sanitation 407 

practices during thinning to prevent Campylobacter from entering broiler houses at primary 408 

production, and the application and monitor system of the decontamination of carcasses (using 409 

chemical or physical treatments) are recommended (EFSA, Panel on Biological Hazards, 2011).  410 

At the transportation stage the improvement of hygienic measures by removing feed and 411 

litter, cleaning and disinfecting transport crates, are the main strategies studied (Meunier et al., 412 

2016). However, besides the importance of the transportation step, at the moment the BIOHAZ 413 

has not published any recommendation to prevent and/or reduce the contamination of 414 

Campylobacter during this processing step. At slaughter, dressing, and processing the most 415 

common and effective strategies used to reduce Campylobacter loads is the application of 416 

specific food safety protocols and strict hygienic practices (HACCP), separating Campylobacter-417 

infected flocks from non-infected, physical treatments (scalding, chilling) and chemical 418 

decontamination of carcasses using chlorine compounds or chlorine-based antimicrobials 419 

(Osimani et al., 2017; Silva et al., 2011). One of the disadvantages of using physical treatments 420 

is that it contributes to the change of organoleptic properties of the food products, which would 421 

make them less desirable to the consumers. In addition, physical decontamination is allowed in 422 

the United States but not in the EU.  423 

In the EU, bacteriophages or bacteriocins in the feed are used to reduce the load of 424 

Campylobacter in the GI tract of broilers before slaughtering, a reduction of the slaughter age of 425 
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broilers, implementation and improvement of the sanitation practices during slaughter (including 426 

the design of adequate equipment with the prevention of fecal leakage), and training food 427 

handlers with better hygienic practices to prevent or reduce the Campylobacter colonization in 428 

the slaughter, dressing and processing steps are recommendations made by the EFSA to promote 429 

good processing practices (EFSA, Panel on Biological Hazards, 2011). 430 

 431 

5. THE APPLICATION OF BACTERIOPHAGES TO COMBAT 432 

CAMPYLOBACTER IN BROILER PRODUCTION 433 

Despite the extensive efforts from the broiler industry, food safety authorities, and 434 

academia, there is no effective, reliable, and practical intervention control strategy able to reduce 435 

the prevalence of Campylobacter from the farm-to-fork process. As the incidence of antibiotic-436 

resistant Campylobacter strains is increasing, the development of novel non-antibiotic anti-437 

Campylobacter treatments is becoming critical (Johnson et al., 2017). Treatment strategies that 438 

have shown highly promising results for Campylobacter control in broiler chickens are currently 439 

under development. Among them, the use of specific bacteriophages (phages) as biocontrol 440 

agents is considered one of the most promising strategies to reduce the prevalence of 441 

Campylobacter in the broiler production chain (Atterbury et al., 2003; Carvalho et al., 2010; El-442 

Shibiny et al., 2009; Fischer et al., 2013; Hammerl et al., 2014). Bacteriophages are viruses that 443 

specifically infect and kill bacteria, widely distributed in the environment from the human GI 444 

tract to the deep ocean, and often naturally present in animals such as, broilers (Dion et al., 2020; 445 

Nafarrate et al., 2021). The interest in using phages as a safety strategy in food production relies 446 

on its selectivity towards the pathogen of concern, it is harmless to humans, animals, and plants, 447 

and does not affect the existing commensal microbiota or alter food properties. 448 



21 

Campylobacter-specific phage cocktail (phiCcolBB12, phiCcolBB35, and phiCcolBB37) has 449 

been applied at pre-slaughter and post-slaughter stages to reduce bacterial loads (Carvalho et al., 450 

2012). In detail, the application of Campylobacter-specific bacteriophages in the broiler 451 

production chain has been tested in several studies, focusing on the administration of 452 

bacteriophages into the drinking water during the rearing cycle of broilers (Loc Carrillo et al., 453 

2005; El-Shibiny et al., 2009; Fischer et al., 2013; Hammerl et al., 2014; Kittler et al., 2013; 454 

Richards, Connerton, & Connerton, 2019) or using phages on raw and processed meat or raw 455 

liver (Atterbury et al., 2003; Firlieyanti et al., 2016; Goode et al., 2003).  456 

During the rearing cycle of broilers, the reduction rates in the cecal content achieved by the 457 

addition of single bacteriophages or bacteriophage cocktails (phage NCTC 12673, 12674, and 458 

12678) showed promising potential reducing bacterial loads between 2.5 to 3.2 log CFU/g 459 

(Fischer et al., 2013; Kittler et al., 2013). In addition, it was demonstrated that no adverse effects 460 

on the broiler microbiota occur after administering a phage cocktail (CP20 and CP30A) in 461 

contrast to administering broad-spectrum antibiotic treatments, which can yield dysbiosis in the 462 

gut microbiota (Richards et al., 2019). Overall, the results from most of the studies in broilers 463 

conclude that bacteriophages (NCTC 12672, 12673, 12674, 12678, 12669, 12671, 12684, CP8, 464 

CP34, CP81, Cj6, phiCcolIBB35, phiCcolIBB37, and phiCcolIBB12) can effectively reduce 465 

Campylobacter levels if they are administered 24-48 h prior to slaughter (Ushanov et al., 2020). 466 

Besides the use of bacteriophages in the primary production, a mean reduction of 467 

approximately one log CFU/g of Campylobacter on broiler products was obtained using single 468 

bacteriophages (NCTC 12674 and 12673) during meat processing (Atterbury et al., 2003; Goode 469 

et al., 2003). In this case, different authors suggest the application of bacteriophages 470 

(phiCcolIBB35, phiCcolIBB37, and phiCcolIBB12) at high titers to achieve successful 471 



22 

reductions in Campylobacter counts (Carvalho et al., 2012). In addition, bacteriophages (CP8 472 

and CP30) have also shown successful dispersal of Campylobacter biofilms and a reduction of 473 

viable cells ranging from one to three log CFU/cm2 (Siringan et al., 2011), indicating an 474 

additional potential field for phage application to target biofilms in meat processing facilities.  475 

From an epidemiological point of view, the bacteriophage treatment in the production chain 476 

can contribute to a drastic reduction of the infection risk for the consumer. According to the 477 

model prediction, phage therapy could lead to a reduction of Campylobacter in the fecal matter 478 

and on the surface of broiler chicken meat (one log each), resulting on a 90% risk reduction for 479 

consumer infection (Havelaar et al., 2007). Clinical data suggest the tolerability and/or 480 

effectiveness of phage therapy to reduce antibiotic-resistant infections in humans, but also phage 481 

resistance (El Haddad et al., 2019; Zhvania et al., 2017). Bacteria can promote phage attack 482 

mainly through spontaneous chromosomal mutations governed by Darwinian dynamics, leading 483 

to the emergence of phage resistance and consequently treatment failure (Luong et al., 2020). 484 

Identifying new phages with different binding sites to improve efficacy may aid in the prevention 485 

of problems related to phage resistance (Wright et al., 2019).  486 

More research is needed to find routes of administration, phage selection, the order of phage 487 

exposure frequency of administration, dosage, phage resistance, pharmacokinetic and 488 

pharmacodynamic properties of the phages, and improve bacteriophage efficacy against 489 

Campylobacter and broiler meat safety. It is worth noting that bacteriophages should not be 490 

considered as a substitute for the control strategies developed so far, but rather seen as a 491 

complementary strategy. Successful control of Campylobacter could probably be achieved by 492 

implementing strict biosecurity and hygiene measures in combination with bacteriophage 493 

treatments.  494 
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 495 

6. CONCLUSION 496 

The high occurrence of Campylobacter along the broiler production chain is a serious threat 497 

to public health. This review revealed that abiotic factors have the potential to contribute to 498 

cross-contamination of Campylobacter. Furthermore, the transfer of contaminated content of the 499 

bird intestine, or persisting biofilm on equipment/surfaces represents likely the source of cross-500 

contamination during the broiler production. Effective Campylobacter control measures along 501 

the whole broiler production chain are, therefore, needed to improve broiler meat safety, 502 

resulting in a reduction of the incidence of human campylobacteriosis. The use of 503 

Campylobacter-specific bacteriophages at different points from farm-to-fork (in livestock, 504 

slaughter, and/or processing facilities) has been proposed as an additional strategy of a 505 

multistage bio-security measure to assure safer chicken products for the consumer. The use of 506 

multi-omics approaches can help us to increase our understanding of the ability of this foodborne 507 

pathogen to persist through the water and the food chain, its environmental niche, and how it 508 

interacts with bacteriophages. Progress in this field will help us to better understand how to 509 

assess the environmental conditions and nutritional requirements to reduce the risk of 510 

Campylobacter contamination in the broiler production chain.  511 
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Table legend 961 

Table 1. Prevalence of Campylobacter spp, Campylobacter jejuni and Campylobacter coli 962 

from different sample types at different sampling points during the broiler primary production 963 

using culture-based methods for the detection of Campylobacter expresses as percentage or log 964 

CFU/g  965 

Table 2. Prevalence of Campylobacter spp, Campylobacter jejuni and Campylobacter coli 966 

from fecal samples and different equipment used to transport broilers during the pre-and post- 967 

transportation of broilers to the slaughterhouse using culture-based methods for the detection of 968 

Campylobacter expresses as percentage 969 

Table 3. Prevalence of Campylobacter spp, Campylobacter jejuni and Campylobacter coli 970 

from different sample types during slaughter, dressing and processing using different types of 971 

polymerase chain reaction for the detection of Campylobacter expresses as percentage 972 

  973 
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Figure legend  974 

Figure 1. Key steps identified and used to assess the prevalence of Campylobacter in the 975 

broiler production chain. The location of studies investigating the effect of bacteriophage is 976 

indicated with a bacteriophage icon. Color in blue is the prevalence of Campylobacter spp. and 977 

color in yellow is the prevalence of Campylobacter jejuni, both expressed as percentage. 978 
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Table 1  979 

FACTORS DESCRIPTION SAMPLE CAMPYLOBACTER  C. JEJUNI  C. COLI REFERENCE 

Broiler age 

  

    
  

 

14 d Cloacal  5.00  % 100.00 %  (Ingresa-Capaccioni et al., 2016) 

42 d Cloacal 62.00 % 67.00 %  (Ingresa-Capaccioni et al., 2016) 

14  Cloacal  0.00 % 
 

  (Perez-Arnedo and Gonzalez-Fandos, 2019) 

42 d Cloacal 0.00 – 100.00 %   (Perez-Arnedo and Gonzalez-Fandos, 2019) 

31 d Cloacal 39.30 % 46.00 % 26.00 % (Tang et al., 2020) 

37 d Cloacal 60.00 % 74.00 % 38.00 % (Tang et al., 2020) 

7 d (control housing) Fecal 5.30 % 5.30 %  (Tangkham et al., 2016) 

42 d (control housing) Fecal 26.00 % 26.00 %  (Tangkham et al., 2016) 

21 d (control housing) Fecal 83.30 % 18.70 %  (Tangkham et al., 2016) 

7 d (open housing) Fecal 0.00 % 0.00 %  (Tangkham et al., 2016) 

21 d (open housing) Fecal 93.30 % 70.70 %  (Tangkham et al., 2016) 

42 d (open housing) Fecal 37.30 % 00 -  37.30 %  (Tangkham et al., 2016) 

Water   
   

  
 

Environmentally control   0.00 -  66.70 % 0.00 -  16.70 %  (Tangkham et al., 2016) 

Open  0.00 -  83.30 % 0.00 -  83.30 %  (Tangkham et al., 2016) 

Water of 31 d age  0.00 %   (Tang et al., 2020) 

Water of 37 d age  0.00 %   (Tang et al., 2020) 

Feed   
   

  (Tangkham et al., 2016) 

Environmentally control  0.00 -  83.30 % 0.00 -  33.30 %  (Tangkham et al., 2016) 

Open  0.00 -  33.30 % 0.00 -  33.30 %  (Tangkham et al., 2016) 
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Feed of 31 d age  0.00 %   (Tang et al., 2020) 

Feed of 37 d age  0.00 %   (Tang et al., 2020) 

Litter       

Covering shoe 
 

20.00 %     (Schroeder et al., 2014) 

Air Gelatin sample 
 

15.00 %     (Schroeder et al., 2014) 

Air filter samples  0.00 - 10.00 %   (Johannessen et al., 2020) 

Workers Workers’ boots swabs  0.00 - 60.00 %   (Johannessen et al., 2020) 

Infrastructure of the farm       

  
 

0.00 -  12.50 %     (Bang et al., 2002) 

Floor 31 d age  0.00 %   (Tang et al., 2020) 

Floor 37 d age  0.00 %   (Tang et al., 2020) 

Bedding 31 d age  10.00 %   (Tang et al., 2020) 

Bedding 37 d age  10.00 % 1.00 %  (Tang et al., 2020) 

Sole 31 d age  4.70 % 1.00 %  (Tang et al., 2020) 

Sole 37 d age  10.50 % 2.00 %  (Tang et al., 2020) 

Net 31 d age  0.00 %   (Tang et al., 2020) 

Net 37 d age  0.00 %   (Tang et al., 2020) 

Stool 31 d age  0.00 %   (Tang et al., 2020) 

Stool 37 d age  6.70 % 1.00 %  (Tang et al., 2020) 

Management        

First thinning Cecal 27.00 - 100.00 %     (Koolman et al., 2014) 

Second thinning Cecal 90.00 - 100.00 %     (Koolman et al., 2014) 

Drinking water + allicin Cecal   5.38 log CFU/g   (Robyn et al., 2013) 

Feed 
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  Cecal   4.2 - 7.5 log CFU/g   (Gharib Naseri et al., 2012) 

  Fecal   6.3 - 7.2 log CFU/g   (Gharib Naseri et al., 2012) 

Drink water + probiotics 
   

  
 

  Cecal   4.1 - 6.6 log CFU/g   (Gharib Naseri et al., 2012) 

  Fecal   5.4 - 6.4 log CFU/g   (Gharib Naseri et al., 2012) 

Feed + plant derivate 
   

  
 

  Cecal   4.2 - 6.3 log CFU/g   (Gharib Naseri et al., 2012) 

  Fecal   5.5 - 6.5 log CFU/g   (Gharib Naseri et al., 2012) 

Feed + organic acids 
 

  
 

  
 

  Cecal   4.0 - 6.2 log CFU/g   (Gharib Naseri et al., 2012) 

  Fecal   4.1 - 5.6 log CFU/g   (Gharib Naseri et al., 2012) 

Feed + bacteriocin Fecal   ND   (Stern et al., 2006) 

Feed + bacteriophages Fecal     5.00 log CFU/g (Carvalho et al., 2010) 

Abbreviations: C. jejuni; Campylobacter jejuni, C. coli; Campylobacter coli, ND; Not determined 980 

  981 



51 

Table 2 982 

 

FACTORS 

 

DESCRIPTION 

PREVALENCE (%)   

REFERENCE CAMPYLOBACTER C. JEJUNI C. COLI  

Equipment 
  

    

Cage  36.80 ND  (Willis et al., 2002) 

Floor 
 

65.40 ND  (Willis et al., 2002) 

Pre-transportation cage  6.20 - 30.00  ND  (Stern et al., 2001) 

Post-transportation cage 42.50 - 85.00  ND  (Stern et al., 2001) 

Fecal 
  

    

Pre-transportation 57.10 - 80.00  ND  (Whyte et al., 2001) 

Post-transportation 60.00 - 80.00  ND  (Whyte et al., 2001) 

Abbreviations: C. jejuni; Campylobacter jejuni, C. coli; Campylobacter coli, ND; Not determined 983 

  984 
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Table 3  985 

 
PRODUCTION  
STAGE 

 
FACTORS 

 
DESCRIPTION 

PREVALENCE (%)   
REFERENCE 

CAMPYLOBACTER C. JEJUNI C. COLI AMPLIFICATION 
GENE 

Slaughter Environment 
  

Dirty defeathering swabs 60.00 80.00 20.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Clean defeathering swabs 54.50 90.00 10.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Dehairing swabs     31.80   3.00  4.00 16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

    
  

Dirty evisceration swabs 78.00 100.00 0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Clean evisceration swabs 56.40 100.00 0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Evisceration 31.80 1.00 7.00 16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

          

Dirty sink swabs 100.00 100.00 0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Clean sink swabs 20.00 50.00 50.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

    
  

Dirty floor swabs 22.70 100.00 0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Clean floor swabs 30.00 83..30 16.70 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

          

Operation table swabs 
 

10.00 - 80.00 0.00 - 100.00 16S rRNA, mapA, 
ceuEC 

(Zhang et al., 2018) 

 Partition 9.10  1.00  1.00  16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

Workers’ gloves swabs 
 

20.00 - 60.00 40.00 - 80.00 16S rRNA, mapA, 
ceuEC 

(Zhang et al., 2018) 
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Cooling 36.40 5.00 5.00 16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

          

Broiler slaughterhouse Cloacal swabs 
 

0.00 - 63.00 0.00 - 13.60 16S rRNA, mapA, 
ceuEC 

(Zhang et al., 2018) 

Carcass after plucking   0.00 - 73.30 0.00 - 85.70 16S rRNA, mapA, 
ceuEC 

(Zhang et al., 2018) 

Carcass after evisceration 
 

0.00 - 80.00 0.00 - 80.00 16S rRNA, mapA, 
ceuEC 

(Zhang et al., 2018) 

Carcass after washing   0.00 - 76.70 0.00 - 95.20 16S rRNA, mapA, 
ceuEC 

(Zhang et al., 2018) 

Carcass after chilling   0.00 - 87.50 0.00 - 100.00 16S rRNA, mapA, 
ceuEC 

(Zhang et al., 2018) 

      

Carcass entrance (41 - 44 days age) 41.40 38.00 22.00 16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

Carcass after dehairing 12.90 3.00 23.00 16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

Carcass after evisceration 53.40 37.00 69.00 16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

Carcass after cooling 14.80 12.00 16.00 16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

Carcass after partition 13.60 8.00 18.00 16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

    
  

Dressing Environment Dirty shackles swabs 41.80 100.00 0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Clean shackles swabs 38.00 94.70 5.30 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

          

Dirty conveyor belt swabs 87.90 96.60 3.40 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Clean conveyor belt swabs 3.30 100.00 0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

    
  

Dirty sink swabs 0.00 0.00   0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Clean sink swabs 0.00 0.00 0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 
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Dirty floor swabs 9.10 100.00 0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

Clean floor swabs 10.00 100.00 0.00 hipO-F, hipoO-R, 
hipO-P, ceuE-F, ceuE-
R, ceuE-R, ceuE-PA 

(García-Sánchez et 
al., 2017) 

    
  

Broiler 
  

Carcass processing plant 91.00     Not mentionedB (Perez-Arnedo and 
Gonzalez-Fandos, 
2019) 

Skin on thighs 43.50 
  

glyA, hipOC (Casagrande 
Proietti et al., 2018) 

Skin off breast 44.40     glyA, hipOC (Casagrande 
Proietti et al., 2018) 

Legs 54.30 
  

Not mentionedB (Perez-Arnedo and 
Gonzalez-Fandos, 
2019) 

Breast 46.00     Not mentionedB (Perez-Arnedo and 
Gonzalez-Fandos, 
2019) 

Wings 87.00 
  

Not mentionedB (Perez-Arnedo and 
Gonzalez-Fandos, 
2019) 

          

Processing Environment Chopping board and knives swabs 
 

14.00 
 

hipOB (Khan et al., 2018) 

       

Partition   13.60 8.00 18.00 16S rRNA, mapA, 
ceuEC 

(Tang et al., 2020) 

            

Broiler parts Skin on thighs 51.20 
  

glyA, hipOC (Casagrande 
Proietti et al., 2018) 

Skin off breast 2.70     glyA, hipOC (Casagrande 
Proietti et al., 2018) 

Unpacked thighs 51.60 
  

23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 

Unpacked breast 51.60     23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 

Unpacked minced 21.90 
  

23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 

Unpacked marinated 56.30     23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 

Mean unpacked 45.30 
  

23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 

Packed thighs 56.30     23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 

Packed breast 45.30 
  

23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 
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Packed minced 14.00     23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 

Packed marinated 18.70 
  

23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 

Mean packed 33.60     23S rRNA, glyA, hipO, 
sapB2C 

(García-Sánchez et 
al., 2018) 

Raw broiler meat   36.00   hipO B (Khan et al., 2018) 

Broiler intestine 
 

24.00 
 

hipO B (Khan et al., 2018) 

Feathers   8.00   hipO B (Khan et al., 2018) 

Gizzard 59.75 
  

23S rRNA, mapA, 
ceuE, hipOB  

(Korsak et al., 
2015) 

Heart 49.66     23S rRNA, mapA, 
ceuE, hipOB 

(Korsak et al., 
2015) 

Livers 44.08 
  

23S rRNA, mapA, 
ceuE, hipOB 

(Korsak et al., 
2015) 

Fillet 61.00     23S rRNA, mapA, 
ceuE, hipOB 

(Korsak et al., 
2015) 

Breast  39.00 
  

glyA, hipO, askC (Williams and 
Oyarzabal, 2012) 

Tenderloins 26.00     glyA, hipO, askC (Williams and 
Oyarzabal, 2012) 

Thighs 53.00 - 90.00 94.50  5.50  glyA, hipO, askAC (García-Sánchez et 
al., 2017; Williams 
and Oyarzabal, 2012) 

Abbreviations: C. jejuni; Campylobacter jejuni, C. coli; Campylobacter coli, A Real-Time Polymerase Chain Reaction (PCR), BPCR, CMultiplex PCR986 
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