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Simple Summary: Several advantages of molecular imaging, namely, positron emission tomography
(PET), have been already described in different settings of glioma management. Particularly, the use
of amino acidic radiotracers for PET imaging has gained favor for their added value in diagnosis,
grading, guidance, and response to treatment and in order to rule out recurrences. Despite the
meaning of the biologically active volume of the tumor, a PET-integrated resection of adult-type
diffuse high-grade gliomas is not routinely performed, but it can represent a further perspective for
neurosurgeons. A systematic review of the literature has been performed to investigate this topic
with a precise focus on the neurosurgeon’s point of view presented, examining the reasons of its
limited use in surgical practice and possible applications.

Abstract: Amino acid PET imaging has been used for a few years in the clinical and surgical man-
agement of gliomas with satisfactory results in diagnosis and grading for surgical and radiotherapy
planning and to differentiate recurrences. Biological tumor volume (BTV) provides more meaningful
information than standard MR imaging alone and often exceeds the boundary of the contrast-
enhanced nodule seen in MRI. Since a gross total resection reflects the resection of the contrast-
enhanced nodule and the majority of recurrences are at a tumor’s margins, an integration of PET
imaging during resection could increase PFS and OS. A systematic review of the literature searching
for “PET” [All fields] AND “glioma” [All fields] AND “resection” [All fields] was performed in
order to investigate the diffusion of integration of PET imaging in surgical practice. Integration in a
neuronavigation system and intraoperative use of PET imaging in the primary diagnosis of adult
high-grade gliomas were among the criteria for article selection. Only one study has satisfied the
inclusion criteria, and a few more (13) have declared to use multimodal imaging techniques with
the integration of PET imaging to intentionally perform a biopsy of the PET uptake area. Despite
few pieces of evidence, targeting a biologically active area in addition to other tools, which can help
intraoperatively the neurosurgeon to increase the amount of resected tumor, has the potential to
provide incremental and complementary information in the management of brain gliomas. Since
supramaximal resection based on the extent of MRI FLAIR hyperintensity resulted in an advantage
in terms of PFS and OS, PET-based biological tumor volume, avoiding new neurological deficits,
deserves further investigation.

Keywords: glioma; glioblastoma; PET-integrated resection; amino acid PET imaging; supramaxi-
mal resection
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1. Introduction

Among adult-type high-grade gliomas, glioblastoma (GBM) IDH wildtype is the
most common malignant brain tumor in neuro-oncology practice [1,2]. Maximal safe
resection is the first-line treatment, followed by concomitant chemoradiotherapy (Stupp
protocol [3]). Different studies have demonstrated the importance of the extent of resection
(EOR) in terms of progression-free survival (PFS) and overall survival (OS) [4]. Generally,
the extent of resection in newly diagnosed GBM aims to reach the contrast-enhanced
borders of the lesion, which is defined in contrast-enhanced magnetic resonance imaging
(ceMRI) [5]. Although there is no unique definition of gross total resection (GTR) [6],
most studies report a complete removal of tumor at postoperative MRI stating contrast-
enhanced tumor as a benchmark for GTR. This goal is affordable, taking advantage of
different tools, such as fluorophores (i.e., sodium fluorescein and 5-aminolevulinic acid
(5-ALA), which are the most used and validated) [7,8] or intraoperative imaging (i.e.,
neuronavigation system, intraoperative MRI (iMRI), intraoperative ultrasound (iOUS), and
contrast-enhanced ultrasound (CE-US)) [9–14]. More recently, supratotal or supramaximal
resection (SupTR) has proven to increase PFS and OS [15–18]. It is defined as complete
removal of signal abnormalities beyond the contrast-enhanced borders of the tumor, and
its rationale is in the assumption that glioma cells are infiltrative a priori [19,20]. Indeed,
the majority of relapses are at a tumor’s margins [21,22]. Further signal abnormalities
beyond the contrast-enhancing nodule include the T2-weighted hyperintensity seen at
fluid-attenuated inversion recovery (FLAIR) MRI sequence [23] or the biologically active
areas marked in positron emission tomography (PET). Few comparisons between MRI and
different PET-based imaging techniques have revealed the presence of an active tumor
beyond contrast-enhanced borders, and sometimes active regions could be even placed
outside the T2/FLAIR hyperintensity [24]. Amino acid PET (AA-PET) imaging has emerged
as a reliable imaging technique, in terms of diagnosis, histopathological correlation, surgical
planning, and prognosis [25]. With increasing specificity and sensitivity compared with 18F-
fluorodeoxyglucose (18F-FDG) and other conventional imaging, radiolabeled amino acid
(i.e., [methyl-11C]-L-methionine (Met), O-(2-[18F]fluoroethyl)-L-tyrosine (FET), 18F-fluoro-
L-dihydroxy-phenylalanine (FDOPA)) PET can depict the metabolic activity of gliomas,
highlighting areas with a different radiotracer uptake—and theoretically with a different
malignant potential—regardless of the blood–brain barrier impairment, adding further
information on tumor extension [26,27].

The purpose of the current review is to investigate the role of amino acid PET specif-
ically in improving the extent of the resection of high-grade gliomas and accordingly
increasing PFS and OS.

2. Materials and Methods

A literature review was conducted in the PubMed database investigating the use of
PET imaging as a guidance in glioma surgery using the PubMed database and PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations.
In order to include as many relevant articles as possible, there were no restrictions on the
date of publication. The search terms used were “PET” AND “glioma” AND “resection”,
including all fields. The literature was systematically reviewed by two independent review-
ers (RDM and AP). All disagreements were resolved by further discussion with the senior
author (FC).

The selection process was characterized by the following inclusion criteria: (1) avail-
ability of the manuscript in English or an English translation, (2) primary clinical studies
investigating the use of PET imaging to guide intraoperatively high-grade glioma resection,
and (3) a population >18 years old. All articles reviewed were also subject to the following
exclusion criteria: (1) case reports, (2) reviews and preclinical studies, (3) biopsies, (4)
preoperative characteristics resembling low-grade glioma (LGG) and/or histological confir-
mation of LGG, (5) studies involving pediatric patients, and (6) nonuse of PET imaging
data in the neuronavigation system as guidance for surgical resection.
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The systematic review followed the recommendations of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA). The protocol has not been
registered.

3. Results

The PubMed search yielded 276 results after confirming the absence of duplicates.
Out of the 276 unique papers, full-text analysis was performed for 143 articles. In

most cases, PET imaging was used for assessing the extent of resection. In 15 articles, PET
imaging was integrated in surgical planning, but only one article met both inclusion and
exclusion criteria [28] (Figure 1: PRISMA Flowchart).
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Indeed, a study conducted by Inoue et al. [28] considered only adults affected by
newly diagnosed high-grade glioma (WHO 2021 grade 4) that underwent surgical resection
with the integration and fusion of Met-PET imaging during surgery. They demonstrated the
presence of glioma stem cells beyond the border of the MRI enhancing nodule. Furthermore,
an important part of the biologically active tumor, highlighted with the PET imaging
technique, was located outside the borders defined by gadolinium. Specifically, an analysis
of a different tumor-to-contralateral normal brain tissue ratio (TNR), from 1.2 to >2.0, found
that the threshold at 1.4 was always beyond the borders of the MRI contrast-enhanced
nodule, but, at the same time, in nine cases out of 10, was smaller than the area with FLAIR
hyperintensity. A pathological investigation of tumor pieces obtained by these different
areas confirmed the biological significance in terms of proliferative index (ki-67 of 23.6%,
range of 5.8–68.3% vs. 39.3%, range of 14.9–68.0%, which was the one tissue obtained by
the highest contrast-enhanced and highest SUV-PET-positive areas).
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Conversely, the auxiliary use of PET imaging and its integration in the neuronavigation
system as a tool to localize the bioptic area and to define the borders in primary diagnosed
glioma was described in 15 articles (Table 1) [29–43].

Table 1. List of references where PET imaging was integrated in the neuronavigation system and
high-uptake areas were preferentially selected for biopsy.

Authors, Year No. of
Pts

No. of
Recurrence Study Type PET

Radiotracer PET Use Glioma Grade
(WHO 2021)

Pirotte et al., 2004
[29] 32 0 Retrospective Both 18F-FDG

and Met

Comparison of distribution,
extent, and relative

contributions of 18F-FDG
and Met

2–4

Pauleit et al., 2005
[44] 28 0 Prospective FET

FET-PET combined with
MRI imaging to improve

distinction between cellular
glioma tissue and unspecific

peritumoral brain tissue

1–4

Stockhammer
et al., 2007 [30] 25 4 Retrospective FDG Prediction of LOH 1p/19q in

grade II gliomas 2, 3

Stockhammer
et al., 2008 * [31] 22 9 Prospective FET

Histological evaluation of
surgically collected tissue in

FET-PET-positive areas of
non-contrast-enhancing

lesions

2, 3

Weber et al., 2010
[32] 61 1 0 Retrospective FLT and FDG

Multiparametric evaluation
and functional imaging

comparison
2–4

Kunz et al.,
2010 [33] 55 0 Prospective FET

Correlation between
dynamic PET parameters

and histopathological
characteristics, metabolic
and molecular signatures

2–4

Floeth et al., 2011
* [34] 30 2 4 Prospective FET

Correlation between
FET-PET uptake and
intraoperative 5-ALA

fluorescence

2, 3

Ewelt et al., 2011 *
[35] 30 2 NA Prospective FET

Relationship between
FET-PET uptake,

contrast-enhanced areas at
MRI, and 5-ALA

fluorescence intraoperatively

2, 3

Arita et al., 2012 *
[36] 11 NA Prospective Met

Correlation between
Met-PET uptake and
intraoperative 5-ALA

fluorescence

2–4

Pafundi et al.,
2013 [37] 10 2 Prospective 18FDOPA

Histopathological
differences between CE-MRI

areas and 18FDOPA areas
and correlation of

pathological characteristics
with PET uptake and use in

RT planning

2–4
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Table 1. Cont.

Authors, Year No. of
Pts

No. of
Recurrence Study Type PET

Radiotracer PET Use Glioma Grade
(WHO 2021)

Beppu et al., 2015
* [38] 13 0 Prospective FRP170

Comparison of FRP170-PET
uptake areas with

histological findings
4

Karlberg et al.,
2019 * [39] 11 3 Prospective F-FACBC

Diagnostic value of
18F-FACBC PET/MRI in
distinguishing between

low-grade and high-grade
gliomas and its use in

guiding surgical resection

2–4

Fernandez et al.,
2019 *
[40]

13 0 Prospective FLT

Assessment of the added
value of PET imaging
integration to MRI in

detecting tumoral tissue and
correlation of PET uptake to

tumor proliferation and
grading

4

Ponisio et al.,
2020
[41]

10 4 Prospective 18FDOPA

A better assessment of tumor
volume and surgical margins

and correlation of
18FDOPA-PET/MRI
imaging with grade,
histopathology, and
molecular markers

2–4

Verburg et al.,
2020 * [42] 20 0 Prospective FET

Assessment of best imaging
studies’ (both FET-PET

imaging and different MRI
sequences) combination to
detect glioma infiltration in

enhancing and
nonenhancing glioma

2–4

Wakabayashi
et al., 2021 *

[43]
45 0

Multicenter,
nonrandom-

ized,
open-label
phase III

clinical trial

18F-
fluciclovine

Assessment of diagnostic
accuracy of 18F-fluciclovine
and useful in determining

the extent of resection

2–4

* They provided information on methods to decrease the influence of brain shift in the area that was planned for
biopsy. 1 Preoperative PET imaging was performed in only 20 patients. 2 Both papers presented the same series
of patients; 18F-RP170: 1-(2-hydroxy-1-[hydroxymethyl]ethoxy)methy l-2-nitroimidazole (RP170); 18F-FACBC:
anti-1-amino-3-[18F]fluorocyclobutane-1-carboxylic acid; FETNIM: fluoroerythronitroimidazole; 18F-fluciclovine:
anti-1-amino-3-[18F]fluorocyclobutane carboxylic acid or anti-[18F]FACBC.

Sample size, patient demographics (i.e., sex and age), extent of resection, overall
survival, and progression-free survival were the information retrieved from the selected
article (Table 2). An eligible article was excluded due to the inclusion of children in their
study population [45].
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Table 2. List of references where AA-PET imaging integrated surgery for GBM was demonstrated to
improve PFS and/or OS.

Authors,
Year

No. of All
Pts with

HGG/No.
of Primary

HGG

Sex
(All Pts)

Age
(Mean;
Range)

PET
Radio-
tracers

PET Re-
section

(y/n)
EOR

EOR Im-
provement

(y/n)

PFS (Mean
and

Range)

OS
(Mean and

Range)
Limits

Pirotte
et al., 2009

1 [45]
66/31 23♀; 43♂ 6–70

FDG (n.
9), Met
(n. 22)

y

10/31
PET-STR

21/31
PET-
GTR

y NA
NA

32.8
(NA)

3 children were
included in the study;

although the difference
in overall survival was
statistically significant,
32.6 or 32.4, compared

with 17.6 months
(χ2 = 20.231 (df, 1);
p = 0.0001; median
survival: R = 5.714;
hazard ratio, 0.532),

they did not report the
OS for each group
considered in the

comparison

Inoue et al.,
2021 [28] 10 3♀; 7♂ 66.4 y

(38–79) Met y

8/10 CE-
GTR 1

2/10
CE-STR

NA 17.5 mos
(2.1–65)

26.4 mos
(6–65)

Ort et al.,
2021;
[46]

30/16 11♀; 19♂ 59.9 y
(53–63 FET NA

12/20
PET-
GTR
8/20

PET-STR

y NA
NA

15.1
13.6

Impossible to
extrapolate the use of

PET imaging

1 GTR was considered 100% resection of tumor volume, while a subtotal resection was considered between 95%
and 100%; HGG, high-grade glioma; EOR, extent of resection; PFS, progression-free survival; OS, overall survival,
Met, [methyl-11C]-L-methionine; CE-GTR, contrast-enhanced gross total resection; CE-STR, contrast-enhanced
subtotal resection.

4. Discussion

The results show a paucity of studies in which PET imaging was integrated in the
surgical planning and used to guide resection beyond the contrast-enhanced borders of
conventional MRI. Furthermore, a great discrepancy and heterogeneity among available
articles was observed, both in the design and in the aim of the studies.

In the diagnostic setting, different reports have mainly correlated PET tracer uptake in
glioma tissue with its biological characteristics, namely, cell density [47–50]. This correlation
has been demonstrated to be stronger than that seen intraoperatively with 5-ALA [36,51].

The most used radiolabeled amino acid PET imaging shares the same mechanism
to enter inside tumor cells: L-amino acid transporters (LAT) are broadly expressed in
tumor tissue but not in normal brain tissue, increasing the tumor-to-background contrast
compared with 2-deoxy-2-[18F] fluoro-D-glucose (FDG)-PET, which presents a high physi-
ological brain uptake [52]. Specifically, LAT1 is the main transporter type for Met, FET, and
FDOPA [53–55]. Once inside glioma cells, the metabolic pathway differs for each one of
them, opening on different possibilities of clinical investigations and applications [56].

In addition to the specific molecule used as radiopharmaceutical, the radiolabeling
process and the involved radioisotope are different and have an impact on image acquisition
and availability. In fact, 11C amino acids show a short half-life (only 20 min) compared
with 18F radiolabeled amino acids (110 min), needing an on-site cyclotron [56] and limiting
their use to a few centers. The introduction of 18F radiolabeled amino acids in brain
tumors—especially in glioma—busted an increasing interest in these radiotracers with
some advantages compared with Met-PET imaging [56]. Indeed, a rapid research on
PubMed for “FET-PET AND Glioma” returned nearly 200 articles in the period between
2015 and 2020. Although with less impact compared with FET-PET, 18F-DOPA PET has
gained interest in adult and pediatric glioma research in the last decade [57–63].

All amino acids have shown to offer additional information to conventional imaging, but
only few studies have compared them directly [64–66]. Beyond its role in diagnosis [44,67] and



Cancers 2023, 15, 90 7 of 14

eventually in grading [52,63,68–71], AA-PET imaging can offer information on a tumor’s
extension in a more specific and sensitive way than structural MRI with gadolinium and
FLAIR sequence as well [24]. Furthermore, this additional information could result in
paramount importance for surgical planning when a significant part of the tumor lacks the
contrast enhancement [72–74].

Indeed, the calculation of biological tumor volume (BTV) could detect more mean-
ingful areas (in terms of pathological diagnosis) when a biopsy is planned or when MRI
information is not sufficient for safe resection, either because the MRI borders reach elo-
quent brain regions or because it might correspond to scar tissue in case of glioma recur-
rence [36,75]. Furthermore, the integration of AA-PET imaging for surgical planning or for
biopsy is recommended by the current guidelines [26,27].

In detail, AA-PET imaging has been demonstrated to more accurately identify in-
filtrating regions of tumor extending beyond the MRI contrast-enhancing lesion, delin-
eating significantly larger tumor volumes, and to better define tumor boundaries within
nonspecific regions of MRI T2/FLAIR signal abnormality (infiltrative disease vs. vasogenic
edema) [76]. Additionally, it provides further insights regarding tumor heterogeneity,
biological activity, or aggressiveness of the disease [77].

Most of the studies that have analyzed the integration of PET imaging in the operating
room focused on the histopathological validation of PET findings. Conversely, a pioneering
work by Pirotte et al. demonstrated an advantage of PET-guided resection for grade 3 and
4 gliomas [45]: a statistically significant difference of 14.9 months benefited those patients
without postoperative PET tracer uptake.

Although a thoroughly demonstrated association between PET tracer uptake (Met-
PET) and viable glial cells has been identified in the core of the tumor, the same correlation
has not always preserved at the tumor border and especially at tumor-infiltrated areas.
Other techniques have been proposed to increase the reliability of PET imaging in MRI
nonenhanced areas (beyond the contrast-enhanced nodule) [78–80].

Inoue et al. [28] focused on the tumor-to-contralateral normal brain tissue ratio (TNR)
to evaluate the metabolic activity of GBM. Using Met-PET, they demonstrated the presence
of glioma stem-like cells at TNR 1.4 of the tracer uptake, beyond the contrast-enhanced
borders of standard MRI. Specifically, dividing GBMs in three subtypes (A, B, and C
types) on the basis of radiological features, they found a better progression-free survival
and overall survival for those subtypes where the difference between PET-based borders’
evaluation (TNR of 1.4) and contrast-enhanced T1-weighted MRI imaging was low. Indeed,
a GTR of contrast-enhanced borders as in the latter GBM subtype (namely, B subtype)
was an indirect expression of meaningful PET radiotracer uptake area resection. Since
most glioma recurrences occur at borders of the resected cavity, hypothesizing an origin of
tumor recurrence from glioma stem-like cells, the surgical goal should seek these margins
according to PET uptake when safe. However, the same limits should be used in the
radiation treatment planning, as already proposed [81,82].

Nevertheless, the authors stressed the difficulty of safely performing a resection of
this PET uptake area (characterized by TNR of 1.4), especially when the tumor arises
near eloquent areas: the contemporary use of additional tools, such as intraoperative
fluorophores and neuromonitoring, which enhances the information of a real-time image-
guided navigation system, where both PET and MRI fusion images were used (i.e., echo-
linked navigation and fence-post technique), allowed for obtaining a better outcome. From
unpublished series, the median OS for patients where Met-PET imaging was integrated
in the navigation system was of 21.6 months compared with 15.2 months where the same
tools were used but without metabolic information. A similar improvement on survival
was already reported for other series (which comprehended both children and adults and
WHO grades III and IV), where PET imaging was integrated in surgical planning [45,83].
Even in the absence of an integrated PET imaging surgical procedure, a small postoperative
BTV, more than GTR of the contrast-enhanced nodule, was associated with better rates of
PFS and OS, without an increase in new neurological deficits [25].
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A similar result was confirmed in a recent retrospective study where 30 patients
with primary and recurrent WHO grade 3 and 4 gliomas were recruited [46] (this report
was excluded due to the absence of a statement on the integration of PET imaging during
resection). Patients with a primary diagnosed glioblastoma were 16 (overall 20). Performing
an image analysis of preoperative MRI and FET-PET data, they found a BTV GTR in 20
patients, obtaining a statistically significant improvement in OS compared with the patients
with PET residuals (19.3 vs. 13.7 months, p = 0.007), which remained significant in the
group with a primary diagnosis of glioma (17.3 vs. 13.7 months, p = 0.048) and even for
glioblastoma (15.1 vs. 13.6 months, p = 0.048).

Interestingly, Hirono et al. (this report was excluded for the same reason as above)
analyzed retrospectively the survival benefit that should have been conferred by resecting
additional tissue beyond contrast-enhanced borders that appeared to show Met-PET uptake.
A resection beyond contrast-enhanced borders seen at standard MRI was considered a
supratotal resection (SupTR). Among 30 patients with primary diagnosis of glioblastoma,
they obtained 23 GTRs and 7 SupTRs. Twelve patients underwent awake craniotomy with
cortical and subcortical direct electrical stimulation (DES), and remarkably, all SupTRs were
registered in this group.

Although most studies have been conducted with Met-PET, other reports have shown
that 18F radiolabeled amino acids (i.e., FET-PET and 18F-DOPA-PET) provided similar
information in glioma patients [66,81]. Among Met, FET, and DOPA PET tracers, similar
results in terms of accuracy have been reported regarding the ability to detect tumor
boundary [66,84,85]. When compared with Met and FET, the main potential drawback
of DOPA is its specific uptake in the striatum that may affect the ability to assess the
involvement of the putamen and caudate nucleus [85,86]. On the other hand, DOPA uptake
within the striatum gives the opportunity to further stratify tumoral uptake ratios through
comparison with both the normal background levels and the striatum [87].

Another matter of research has been a possible link between AA-PET radiotracers and
intraoperative fluorescent dyes. Indeed, a relationship between FET uptake and 5-ALA
fluorescence has been demonstrated [88], and despite few described cases, FET uptake
appeared to be more sensitive compared with intraoperative 5-ALA [34]. However, the
absence of intraoperative fluorescence was related to low FET-PET uptake. The more
fluorescing tissues was removed during surgery, the lower PET uptake was registered at
postoperative imaging, with significant improvement in survival [25].

Despite the results on the usefulness of PET data and their integration in the surgical
planning, the introduction of PET imaging in the routine surgical practice has still not been
achieved.

Focusing on EOR, different tools, used as single or in combination, have been inves-
tigated and promoted in the last decades: fluorophores detected by specific microscope
filters [7,89–95], iMRI [10,11], iUS [12], CE-US [13], fibertracking [96,97], neuronavigation
systems [98], and intraoperative neuromonitoring [99].

Each one of these tools, with its own advantages and disadvantages, seeks to increase
EOR while preserving neurological functions.

Leaving out the restrictions of a clinical facility to produce radiolabeled amino acids, a
possible limitation in the diffusion of PET imaging as an integrated tool in surgical planning
could be searched in the intrinsic disadvantage of the neuronavigation system. Despite the
widespread diffusion of the latter tool, glioma resection cannot rely exclusively on images.
Indeed, neuronavigation is burdened by few limits and errors, such as the brain shift after
craniotomy or after dural opening or yet during tumor resection, decreasing the accuracy
of space coordinates registered before skin incision [100].

A few authors who have investigated the role of PET imaging in glioma have per-
formed bioptic samples before starting resection, immediately after dural opening in
order to keep brain shift at a minimum [31,34,35]. In other cases, a Nelaton catheter was
introduced under navigation guidance and anchored to the area that was planned for
biopsy [36]. A few others have performed a biopsy before opening the dura [38,40] or
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before craniotomy [42], and there have been reports of nonlinear registration of intraopera-
tive 3D ultrasound with preoperative FLAIR sequence using a specific algorithm, such as
RaPTOR [39].

Live imaging, such as iMRI and/or iUS, can mitigate the problem, but it does not
provide the same class of information supplied by PET imaging. Fluorescence-guided
surgery can address immediately the neoplastic tissue inside the boundary or even beyond
the standard MRI contrast-enhanced borders. Indeed, 5-ALA could aid the surgeon in
reaching a supratotal resection, highlighting the glial cells outside the necrotic core of the
tumor, while possibly increasing the risk of postoperative neurological deficit [15,101].
Despite this fact, 5-ALA carries a few limitations: in addition to economic issues, patient
preparation, and possible side effects, the type of information that 5-ALA provides is
different from those offered by radiolabeled amino acids [34,102].

Since the majority of studies have investigated the pathologic “meaning” of the AA-
PET-positive tissue obtained with biopsy, only a few have analyzed the impact of perform-
ing a resection with the integration of AA-PET imaging: although PET-positive areas are
often beyond the border of a contrast-enhanced nodule, no increase in neurological deficit
has been reported.

Despite being mentioned in the “only biopsy” group, the multicenter clinical trial
by Wakabayashi et al. [43] interestingly reported a modification of the extent of resection
considered in the surgical planning of the use of 18-fluciclovine-PET in 47.2% of cases,
increasing by 47.8% the resection of high-grade glioma.

Aiming for the resection of AA-PET-positive areas and BTV could be a good compro-
mise between “FLAIRectomy” and classical GTR. However, as the functional result of the
patient is the surgeon’s real aim, it is clear that an image-based resection has its well-known
limitations [103–105].

5. Conclusions

Although an established role was achieved in different fields of glioma management,
few data are currently available on PET-guided surgery in high-grade gliomas of the adult.
However, with the emergence of the supramaximal resection concept and the lack of
reliable radiologic methods to define the microscopic extent of the tumor, a preoperative
PET role may assume greater relevance. In combination with other tools, such as MRI,
neuronavigation, and fluorophores, great expectations could be reserved in supporting
an EOR beyond macroscopically pathologic margins and in tumor border delineation,
achieving a more safe and complete resection and an increasingly optimal oncologic–
functional balance.

However, beyond the technical aspects pushing in this direction, there is a need for
prospective studies evaluating the impact on overall survival and progression-free survival,
confirming the validity of PET integration to multimodal neuroimaging in high-grade
glioma surgery.
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