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Abstract

Elisa Mariella

Computational methods to investigate the genetic determinants of
intermediate molecular phenotypes

In this thesis, after a broad introduction to the scientific background of my re-
search, I will present two computational methods for the detection of molecular
quantitative trait loci (QTLs). In both projects we exploited the GEUVADIS
dataset that includes whole-genome sequencing (WGS) and RNA sequencing
(RNA-seq) data from 373 European (EUR) individuals. Notably, these studies
have been motivated by the idea that the investigation of the genetic deter-
minants of intermediate molecular phenotypes, such as gene expression and
transcript structure, is a possible way to uncover the mechanisms that underlie
genotype-phenotype associations that are identified by genome wide association
studies (GWAS).

In the first study, we propose a new strategy to analyse the effects of regula-
tory variants on gene expression, leveraging on the idea that all genetic variants
within a regulatory region can contribute to a global perturbation of transcrip-
tion factor (TF) binding and thus determine an alteration to the expression of
target genes. Unlike the standard expression QTL (eQTL) mapping analysis,
our approach takes advantage of the current knowledge of the regulatory code
and it naturally incorporates the effect of multiple variants within regulatory
regions. In particular, we show that it is able to reveal eQTLs that are not
identified when studying the correlation between gene expression and individ-
ual variants. In addition, it can help formulating hypotheses on the mechanism
behind eQTLs by indicating the TFs whose binding perturbation mostly con-
tribute to the gene expression variation.

In the second study, we move from gene expression to transcript structure,
focusing on alternative polyadenylation. We indeed present a new computa-
tional strategy to discover genetic variants that specifically affect the relative
expression of alternative 3′ untranslated region (UTR) isoforms and we analyse
possible mechanisms of action of these variants. Notably, our results point to
an important role for genetically determined alternative polyadenylation in af-
fecting predisposition to complex diseases, thus suggesting new ways to extract
functional information from GWAS data.
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Chapter 1

Cracking our genetic code

Nearly two centuries ago, in this room, on this floor, Thomas Jefferson
and a trusted aide spread out a magnificent map, a map Jefferson
had long prayed he would get to see in his lifetime. The aide was
Meriwether Lewis and the map was the product of his courageous
expedition across the American frontier all the way to the Pacific.
It was a map that defined the contours and forever expanded the
frontiers of our continent and our imagination. Today the world is
joining us here in the East Room to behold the map of even greater
significance. We are here to celebrate the completion of the first
survey of the entire human genome. Without a doubt, this is the
most important, most wondrous map ever produced by human kind.

Former USA President William F. "Bill" Clinton, 26 June 2000

In the first chapter of this thesis, I would like to provide the reader with
a broad overview of the scientific background of my research. During the last
years, I have mainly dealt with the development of computational methods
to investigate the genetic determinants of intermediate molecular phenotypes,
namely gene expression and alternative polyadenylation, that can provide a
mechanistic link between human genetic variants and complex human diseases.
Nowadays, thanks to the extraordinary technological advancement that has been
fuelled by the Human Genome Project, around $1,000 is enough to sequence
the whole genome of an individual. Consequently, we have at our disposal an
unheard-of quantity of genetic data that give us an unrivalled opportunity to
understand the genetic causes of human diseases. I believe that a deep under-
standing of the results of the current post-genomic era needs the awareness of
the events that have brought us from a gene-centric vision, that has character-
ized the initial phases of molecular biology, to the disclosure of many secrets of
our genetic code in just approximately three decades. In particular, we must
remember that systematic analyses of human genetic variants would not be pos-
sible without a reference sequence of our genome and a good knowledge of the
activity of its building blocks. Therefore, I will start telling the story of the se-
quencing and exploration of the human genome and then I will gradually move
to my research topics, talking about the core mechanisms of gene regulation and
then the efforts that have been done to identify and characterize human genetic
variants.
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Figure 1.1 – The organization of the human genome can be described at three differ-
ent scales. At a small scale, the DNA assumes its characteristic double helix structure
and wraps around histone proteins generating the nucleosomes. The complex result-
ing from the interaction of chromosomal proteins, like histones, with the DNA is
called chromatin and it can have different levels of compaction. At an intermediate
scale, the chromatin is organized into topologically associating domains (TADs) that
are characterized by an elevated frequency of local interactions. In addition, other
intra- and interchromosomal interactions mediate the formation of epigenomic com-
partments. The A compartment includes active genomic regions that are positioned
near the nuclear body, instead inactive genomic regions preferentially localize in the
B compartment near the nuclear envelope. Finally, the existence of chromosome ter-
ritories can be appreciated at a large scale: although chromosomes in the nucleus
are frequently depicted like spaghetti in a bowl, in reality each chromosome always
occupies its own discrete region. Figure adapted from [1].

1.1 The Human Genome
The information required to build any living being are stored in the DNA, or
deoxyribonucleic acid, that is formed by two complementary and antiparallel
strands that wrap around to form its iconic double helix structure (Figure 1.1).
Each DNA strand can be described as a long chain of nucleotides held together
by the formation of covalent bonds and every nucleotide is composed by a char-
acteristic nitrogenous base (adenine [A], thymine [T], guanine [G] and cytosine
[C]), a 5-carbon sugar (deoxyribose) and a phosphate group. On the contrary,
the two strands are connected by the formation of hydrogen bonds between
complementary base pairs (i.e. A pairs with T and C with G). The set of all
the genetic material present inside the nucleus of an eukaryotic cell is called
genome. In the case of our species, the genome is packed into twenty-three
pairs of homologous chromosomes and its length exceeds 3 billion nucleotides.

The discovery of nucleic acids dates back to 1869, when the chemist Friedrich
Miescher extracted a previously uncharacterized substance, that he originally
called “nuclein”, from the nucleus of leucocytes [2]. Some years later, its chemical
composition was determined by Albrecht Kossel who found that it is a relatively
simple molecule containing only four different types of bases. This result had
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long fuelled the idea that it could not be the carrier of genetic information,
function that was usually attributed to proteins due to their more complex
structure. The definitive proof that DNA is the hereditary molecule eventually
came in 1944, thanks to the brilliant experiments conducted by Oswald Avery,
Colin MacLeod and Maclyn McCarty. Another milestone in the history of DNA
was laid in 1953 when James Watson and Francis Crick, working with crystallo-
graphic data produced by Rosalind Franklin and Maurice Wilkins, uncovered its
characteristic double helix structure. At that time, probably no one imagined
that after only fifty years we would know the complete nucleotide sequence of
the human genome.

Sequencing the human genome has surely been one the most ambitious and
exciting scientific projects of the twentieth century. The idea was born indica-
tively in May 1985 when Robert Sinsheimer hosted a meeting at the University
of California, Santa Cruz, to discuss the feasibility of sequencing the human
genome. However, the project started only a few years later, after an excit-
ing period of discussion and technological advancement [3]. The essay that
the Italian scientist Renato Dulbecco published on Science in 1986 is partic-
ularly effective in giving us back the atmosphere of those years [4]. At that
time, significant results were obtained in cancer research using model systems
of limited complexity. In particular, experiments with oncogenic viruses had
allowed the identification of the first oncogenes providing an overview of the
initial cancer events. On the other hand, the process of cancer progression, that
is intimately linked with the onset of heterogeneity and the accumulation of ge-
netic abnormalities, was much less understood. Dulbecco decisively promoted
the sequencing of the human genome, describing it as an essential step to push
forward our comprehension of cancer mechanisms. Nevertheless, he anticipated
that the knowledge of our genome would probably have a much larger impact
on our comprehension of human physiology and pathology, well beyond cancer
research. Furthermore, he pointed out that it would have to be a national ef-
fort because "its significance would be comparable to that of the effort that led
to the conquest of space, and it should be carried out with the same spirit".
He went even further writing that "even more appealing would be make it an
international undertaking, because the sequence of the human DNA is the real-
ity of our species, and everything that happens in the world depends on those
sequences".

The publicly funded Human Genome Project (HGP) officially started on
October 1990 with the aim of completing the sequencing of the human genome
within 15 years and it was initially directed by James Watson. Although the
U.S. Department of Energy (DOE) and National Institutes of Health (NIH)
have been the two major founding agencies, numerous groups worldwide were
quickly involved leading to the birth of the International Human Genome Se-
quencing Consortium that included researchers from the United States, the
United Kingdom, France, Germany, Japan and China (for further information,
see https://www.genome.gov/human-genome-project). Therefore, in addi-
tion to the undeniable contribution to scientific progress, the HGP has also had
the merit of forever changing the way of doing research in biomedicine, inau-
gurating a long season of large international projects. Furthermore, it has laid
a solid foundation for genomic data sharing. In 1996, during a meeting held
in Bermuda, representatives of the major sequencing centres established the
rules by which to ensure the rapid and public diffusion of the DNA sequence

https://www.genome.gov/human-genome-project
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data [5]. The most important point was the commitment to release any data
within twenty-four hours, providing for their uploading to a public database.
Getting to this decision was not easy because it was in contrast with both ex-
isting laws in some of the involved countries and the common practice in the
scientific community to make experimental data publicly available only after
publication. Although the primary intent was to allow an efficient collaboration
between the different groups involved in the project, the "Bermuda Principles"
have been considered as a significant precedent in favour of open science and
have become a reference point for the subsequent regulations regarding the shar-
ing of biological data.

Starting from 1998, a parallel project was conducted by a private company,
Celera Genomics, headed by the visionary Craig Venter. In disagreement with
some choices made by the public consortium, Craig Venter wanted to make the
sequencing of the human genome faster and less expensive, intending to complete
its whole sequence within just three years. The entry into the scene of a private
competitor undoubtedly gave impetus to the HGP which eventually succeeded
in completing a first draft of the human genome in advance of the initial plans.
The Britain’s Wellcome Trust played a crucial role in this phase, significantly
increasing the funding of the project and assuming the task of completing a
third of the sequencing.

On June 2000 the production of rough drafts of the human genome was
jointly announced by the USA President Bill Clinton and the Britain’s Prime
Minister Tony Blair, with the participation of both Francis Collins, the for-
mer HIH director who succeeded James Watson as head of the Human Genome
Project, and Craig Venter. This announcement took place several months ear-
lier than the release of peer-reviewed papers describing the results obtained by
the two projects. Indeed, an extensive analysis of the first HGP results appeared
on Nature on 15 February 2001 [6] and during the same week Science published
an article reporting the results obtained by Celera Genomics [7]. The second
paper was accompanied by a fiery debate as a result of the refusal by the pri-
vate company to place its data in a publicly accessible dataset, in clear contrast
with both the ideal of sharing that animated the public effort and the historical
Science policy [8]. After months of negotiations, Celera Genomics and Science
signed an agreement according to which Celera could maintain the data on its
own website but undertook to guarantee free access to academic and non-profit
researchers, albeit with some limitations. The contrast ended definitively in
2005, when Celera Genomics agreed to upload its data to a public database [9].
This decision stems from the realization that profiting from the commercializa-
tion of genomic data was made very difficult by the large amount of publicly
available data. From that moment, Celera Genomics officially abandoned ge-
nomics to devote itself to the development of new drugs, a transition that had
already begun a few years earlier and that coincided with the abandonment of
Craig Venter in 2002 [10].

From a technical point of view, the sequencing of the human genome has been
enabled by the DNA sequencing method that was developed by Frederik Sanger
in 1977 [11]. This technology was based on the incorporation of radiolabelled
chain-terminating dideoxynucleotides (ddNTPs) during in vitro DNA replica-
tion; the ddNTPs are chemical analogues of the deoxynucleotides (dNTPs) that
normally constitute DNA molecules, but they lack the 3′-OH group and there-
fore cannot bind the phosphate group of another nucleotide. It follows that the
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addition of ddNTPs at low concentration during a DNA chain extension reaction
determines the generation of DNA fragments of any possible length, correspond-
ing to the incorporation of ddNTPs in different position of the sequence. Four
parallel reactions were required, one for each of the possible bases; then, the
resulting fragments were separated by electrophoresis and finally the sequences
were read through the analysis of autoradiography images. Although in the
original implementation the Sanger sequencing was essentially a manual proce-
dure, in the following years a series of improvements allowed the construction
of automated DNA sequencing machines. The most important innovations were
the replacement of radiolabelled ddNTPs with fluorescently-labeled ddNTPs,
that allow all reactions to take place in the same vessel, and the introduction of
capillary based electrophoresis. Furthermore, several other technical advance-
ments have been critical for the genomics revolution [11]. For example, the
polymerase chain reaction (PCR), that can be described as "molecular photo-
copying system" and was invented by Kary Mulles in 1985, and recombinant
DNA technologies resulted to be essential, because they allowed to reach the
high DNA concentration that was required for sequencing.

An important limitation of DNA sequencing machines has long been the pos-
sibility to read only relatively short sequences. For that reason, the sequencing
of entire genomes required the adoption of shotgun strategies [12]. Basically,
the extracted DNA molecules are randomly fragmented in order to obtain pieces
of enough small size, then each fragment is sequenced and finally overlapping
sequences are assembled by computer programs. In the case of the hierarchi-
cal shotgun strategy, the genome is initially decomposed into a tiling path of
overlapping bacterial artificial chromosomes (BACs); then, the sequence of each
BAC is determined by shotgun sequencing and finally the sequences of adjacent
and overlapping clones are merged. Despite the not negligible amount of prelim-
inary work that it requires, the hierarchical shotgun strategy was chosen by the
HGP because it ensures a quite secure path to obtain an accurate genome se-
quence, since the assembly, that is the most critical phase, is done locally and it
is anchored to the genome. On the contrary, Celera Genomics decided to apply
to the human genome the alternative whole-genome shotgun strategy that they
previously used to produce a draft sequence for the Drosophila genome [13].
The whole-genome shotgun strategy entails performing shotgun sequencing di-
rectly on the entire genome and then relying on very sophisticated computer
programs to assemble the obtained sequences without leveraging any physical
map. Although this procedure is intrinsically faster than hierarchical shotgun,
the assembly process is greatly complicated and the risk of long-range miassem-
bly increases. It is noteworthy that for the human genome Celera Genomics
did not publish any assembly obtained using only its own data, but performed
only two joint assemblies that incorporated the data that were generated by the
public consortium. For this reason, three HGP leaders questioned whether the
private group led by Craig Venter really demonstrated the possibility of applying
the whole-genome shotgun method to the complex genome of mammals [12].

At the beginning of the new millennium, the genome sequence was known
only for a handful of other species [14]. Haemophilus influenzae was the first
free-living organism to have its genome completely sequenced in 1995 and the
genome sequence was subsequently obtained for about thirty other species of
bacteria. The genome of Saccharomyces cerevisiae was published in 1996 and
it was the first eukaryotic genome sequence to be released. Instead, the first



Chapter 1. Cracking our genetic code 6

genome of a multicellular organism to be sequenced was that of the worm
Caenorhabditis elegans in 1998, followed by the publication of the Drosophila
melanogaster genome in 2000. Finally, the genome of Arabidopsis thaliana, that
is commonly used as a model in plant biology, was completed in 2000. Sequenc-
ing the human genome was much more challenging for two main reasons: it is
much larger than all the previously sequenced genomes and it contains a high
number of repetitive sequences. It follows that the draft sequence of the hu-
man genome that was published in 2001 was highly imperfect: it covered only
about 90% of the euchromatic genome, was interrupted by about 25000 gaps
and contained many errors in the nucleotide sequence [14]. Therefore, there was
an urgent need to provide a high-quality reference sequence that could really
become a solid foundation for biomedicine and in 2004 the HGP consortium pub-
lished an improved sequence that covered >99% of euchromatic human genome
with a very high accuracy [15].

The Human Genome Project, that was declared concluded in 2003, provided
the blueprint of our species and for this reason it has often been celebrated
as a point of arrival. However, today we know that it was rather a starting
point. Indeed, it soon became clear the mere availability of the sequence of the
human genome was not enough: to make a great leap forward in our under-
standing of human physiology and pathology we needed to understand how to
interpret it. The road ahead has turned out to be no less complex and fasci-
nating. In this regard, it is important to point out that at the beginning of
the twenty-first century our knowledge of the content of the human genome
was dramatically limited [14]. First, the total number of genes, the major-
ity of which were assumed to be protein-coding, was unknown and usually it
was largely overestimated. The HGP paper suggested a total of 30,000-40,000
protein-coding genes, while the current estimates point to a much smaller value
(about 21,000 protein-coding genes). Second, it was thought that the regions
of the genome that code for proteins were much more abundant than regula-
tory regions. However, the decades that followed the publication of the first
draft of human genome have totally overturned this idea, revealing that most
of the active sequences in the human genome do not encode for proteins. The
current collection of non-coding elements includes several untranscribed regions
involved in the gene expression modulation (i.e. promoters and enhancers) and
increasing numbers of non-coding transcripts with regulatory functions. Finally,
the idea that a substantial portion of the genome was simply garbage was still
widely accepted.

The c-value (i.e. constant or characteristic value) is the amount of DNA
that is present within the haploid genome of a species and it is reasonable to
expect that the c-value correlates with the degree of complexity of an organ-
ism. Although comparing prokaryotes (archaea and bacteria) with eukaryotes
this assumption seems to be correct, among eukaryotes the situation immedi-
ately appears much more complicated [16]. Indeed, the eukaryotic organisms
can vary widely in the quantity of DNA in their genomes and this is true even
for closely related species, suggesting that the genome dimension can change
much more rapidly than genes and regulatory sequences during evolutionary
timescales (Figure 1.2). In 1971 C.A. Thomas Jr referred to this situation
as the "c-value paradox" and it led to the idea that genomes can contain a
substantial excess of DNA with respect to coding genes and their regulatory
regions. In addition, given the high mutation rate that was observed in hu-
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Figure 1.2 – The genome size (i.e. the number of nucleotide pairs per haploid genome)
greatly varies across organisms, even between closely related species. Notably, al-
though, as expected, a significant increase is observed moving from prokaryotes (archea
and bacteria) to eukaryotes, among eukaryotes the genome size does not correlate with
the organism complexity, a situation that is known as "the c-value paradox".

man, it was believed that, if the human genome were entirely functional, the
mutational load (i.e. the number of deleterious mutations that are accumulated
per generation) would be too much elevated. In 1972 Susumu Ohno formal-
ized a persuasive explanation for both the c-value paradox and the mutational
load issue: all genomes contain a certain amount of DNA that does not provide
any adaptive advantage to the organism, or whose contribute is very modest,
and he attributed to it the provocative name of "junk DNA". According to
this hypothesis, only a small fraction of eukaryotic genomes is functional, while
the large majority is undergoing neutral evolution. At that time, a convincing
model was still missing to explain how the amount of junk DNA can change
rapidly during evolution and later works identified the activity of transposons,
“selfish” DNA elements that are able to replicate and increase their number at
the expense of the host organism, as a likely mechanism. Transposon derived
elements occupy a substantial part of the genome of many eukaryotes (for ex-
ample, it has been estimated that around 45% of the human genome derives
from transposable elements), however most of them were active in an evolu-
tionary past and subsequently became partial or defective elements because of
neutral mutational drift. Evolution has often drawn on this material to create
something new, for example the expansion of transposable elements has been re-
lated to the appearance of new regulatory elements recognized by DNA-binding
proteins [17].

Scientists who have worked towards the characterization of the non-coding
genome have mainly relied on two possible approaches [14]. First, comparing
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the human genome with that of other species we can identify the sequences that
have been conserved during evolution and that therefore are supposed to be
functional. Comparative genomics analyses were made possible by the release
of several vertebrate genomes, starting from the publication of a high-quality
draft sequence for the mouse genome in December 2002 [18]. In addition, impor-
tant information can be obtained through the investigation of the epigenome.
The DNA is not naked in the nucleus, but it interacts with different types of
chromosomal proteins. In particular, it wraps around complexes made by eight
histone proteins (histone octamer), thus assuming the characteristic "beads on a
string" structure whose fundamental units are called nucleosomes (Figure 1.1).
More in general, the complex resulting from the union of DNA and chromo-
somal proteins is called chromatin: it can reach different levels of compactness
depending on the cell cycle phase and the regulatory needs of the cell. Basically,
it is possible to distinguish two types of chromatin: the euchromatin, that con-
tains active genomics regions, and the more compact heterochromatin, where
there are the silenced regions. Both DNA and histones are subjected to several
reversible modifications that do not involve changes in the DNA sequence (i.e.
DNA methylation and methylation or acetylation of lysine residues within hi-
stone proteins) and these “epigenetic” modifications are essential to define the
identity and the activity of each domain in the genome.

Few months after the conclusion of the Human Genome Project, the National
Human Genome Research Institute (NHGRI) established the international EN-
Cyclopedia of DNA Elements (ENCODE) consortium with the purpose of car-
rying out a new ambitious project that would aim to identify all the functional
elements in the human genome [19]. Since different definitions are possible, it
is important to stress out that, according to the ENCODE consortium, oper-
ationally a functional element is "a discrete genome segment that encodes a
defined product (for example, protein or non-coding RNA) or displays a re-
producible biochemical signature (for example, protein binding, or a specific
chromatin structure)" [20].

During the pilot phase, that began in September 2003, the existing tech-
nologies were rigorously compared to select those that would allow to obtain an
economically effective and high-throughput exploration of the whole genome.
The attention was focused on a carefully selected group of regions covering a
total of approximately 30 Mb, corresponding to around 1% of the genome, and
a limited number of cell lines [21]. Each group of the consortium was required
to analyse the entire set of ENCODE targets, thus ensuring that the results ob-
tained by different groups or with different approaches were comparable. The
concurrent technology development phase was instead devoted to the develop-
ment of new laboratory and computational methods for the identification of
functional elements, addressing the shortcomings that emerged during the pilot
phase. Finally, in the production phase all the acquired knowledge was exploited
to attack the remaining 99% of the genome.

The whole-genome analysis officially started in 2007 and involved more than
400 researchers coming from 32 laboratories around the world. Scientists of the
ENCODE consortium applied 24 different technologies to characterize 147 dif-
ferent cell lines (corresponding to 1648 datasets) and finally, in September 2012,
30 papers simultaneously appeared on Nature, Genome Research and Genome
Biology [20]. These initial results had the undeniable value of providing an out-
standing first overview of multiple aspects of the genome, including transcribed
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regions, open chromatin regions, DNA methylation, histone modifications and
transcription factor binding. However, the most important outcome of the EN-
CODE project was the public sharing of this dizzying amount of biological data
in order to feed future discoveries.

Among many important observations, one is particularly remarkable: a re-
producible biochemical function was associated to around 80% of the genome,
including the broad expanse of non-coding sequences. The publicity of the EN-
CODE project has often distorted this result, attributing to it the credit for
having dealt a mortal blow to the old myth of the "junk DNA”. The same
ENCODE leaders frequently promoted this interpretation in press releases and
interviews, attempting to popularize the result and the whole project in a more
seductive way [22]. However, the fact that a region of the genome is active and
characterized by a reproducible biochemical function and therefore is supposed
to be active is not sufficient to assume that it is functional (i.e. being under
selective pressure). There are indeed several possible explanations for repro-
ducible biochemical activities that not necessarily experience selective pressure,
including pseudogenes, mobile elements and biological noise. Straightforwardly,
it is not an issue that the ENCODE experiments have directly addressed [16,22].
This speculation finds a further confirmation in the discrepancy between bio-
chemical and evolutionary estimates of the abundance of functional elements
in the human genome. Comparative genomics studies have indeed found that
a strong evolutionary constraint applies only to the 5-15% of the mammalian
genome and it is reasonable to argue that some of these "biochemically active
but selectively neutral" elements are probably non-functional [23]. The question
of how much of the human genome is functional still remains open.

On the other hand, the ENCODE results probably underestimate the to-
tal amount of biochemically active genome regions, because their collection is
intrinsically limited by the biochemical assays that have been performed and
the cell types that have been analysed. More in general, this type of analysis
only takes cell snapshots, failing to catch the dynamic nature of gene regula-
tion. In the last years, several other efforts have been done to further improve
the characterization of the human genome generating an increasing number of
large biological datasets. For example, the NIH Roadmap Epigenomics Mapping
Consortium, continuing on the road that had been undertaken by ENCODE,
in 2015 released 111 human reference epigenomes from primary cell lines and
tissues that are representative of all major lineages in the human body [24].

In summary, the decades between the end of the twentieth and the begin-
ning of the twenty-first century have been greatly characterized by huge efforts
to obtain a gold-standard sequence of the human genome and the subsequent
commitment to uncover its secrets. It is noteworthy that throughout this pe-
riod the human genome has usually been considered as a one-dimensional entity,
whereas numerous recent studies have contributed to reveal that it adopts a com-
plex three-dimensional (3D) conformation within the nucleus (Figure 1.1) [25].
According to the current knowledge, the 3D structure of the human genome
can be described in a hierarchical way. Starting from the highest level, during
anaphase chromosomes are confined into specific regions of the nucleus, called
“chromosome territories”. Despite this clear separation, there are two interchro-
mosomal contact hubs: regions of active (euchromatic) chromatin preferentially
cluster around nuclear speckles, instead regions of inactive (heterochromatic)
chromatin are usually located near the nucleolus. From a technical point of
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view, chromosome territories can be visualized thanks to powerful microscopy
techniques. More recently, the development of chromosome conformation cap-
ture technologies, that systematically quantify the interaction between genomic
regions, has allowed to investigate the internal organization of chromosomes.
First, within each chromosome active and inactive regions segregate into two
epigenomic compartments that differ also in the localization within the nucleus.
The A compartment predominately includes euchromatic regions that occupy
the most inner part of the nucleus, instead the heterochromatic segments local-
izes into the B compartment near the nucleolus and the nuclear lamina. At an
even lower level, the chromatin seems to be fragmented into topologically as-
sociating domains (TADs), self-interacting genomic regions that are separated
by low-contact regions called "TAD boundaries". Finally, chromatin loops can
be detected within TADs and they correspond to the dynamic interactions oc-
curing between regulatory regions. To date we have only begun to shed light
on the molecular mechanisms that mediate the formation of the different com-
partments or domains and on their functional meaning. Hence, in conclusion,
achieving a good comprehension of the principles governing the 3D folding of
the human genome is probably one the most important challenge that genomics
will have to face in the coming years.

1.2 Overview of gene regulation mechanisms
One of the most fascinating aspect of biology is the generation of multiple cell
types starting from the same genome sequence. The "epigenetic landscape",
that was proposed by Conrad Waddington in 1957, is a well known metaphor of
cell differentiation [26]. Differentiating cells are compared with marbles rolling
down an hill: following the landscape shape, each cell pursues a slightly different
trajectory and at the end it arrives to a distinct point at the hill base, corre-
sponding to a particular differentiated cell state. Notably, rolling down the hill
the cell genome experiences an important epigenetic remodelling that definitely
reduces its expression potential towards increasingly specialized functions. This
process is allowed by complex and intricate mechanisms that modulate the gene
expression, establishing when and where each gene must be expressed. As I dis-
cussed in the previous section, in eukaryotes the genome size does not correlate
well with the organism complexity and a similar observation applies to cod-
ing sequences (number of protein-coding genes), that is essentially unchanged
across Metazoa [27]. On the contrary, the proportion of non-coding sequences
increases exponentially with the rise of organism complexity, suggesting that
living beings have become increasingly more complex through the adoption of
progressively more sophisticated strategies to control the gene expression [27].
The mechanisms of gene expression regulation are the topic of this section and,
after a general overview, I will focus on two aspects that have been crucial for my
doctoral work: the computational investigation of transcription factor binding
and alternative polyadenylation.

According to the central dogma of molecular biology, that was proposed by
Francis Crick in 1958, the flux of biological information goes from DNA to RNA
and finally to proteins [28]. This implicates that the gene expression involves
two key stages: during transcription, the DNA sequence of the gene is copied
into an RNA molecule (the messenger RNA or mRNA) that is subsequently
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Histone modification Functional meaning

H3K4me1 enrichment at enhancers

H3K4me3 enrichment at promoters

H3K36me3 enrichment within gene bodies that are actively transcribed

H3K27ac enrichment at active enhancers

H3K9ac enrichment at active promoters

H3K27me3 associated with temporarily repressed regions

H3K9me3 associated with permanently silenced heterochromatic regions

Table 1.1 – Description of some commonly studied epigenetic marks.

used for the protein synthesis (translation). Although a great number of more
recent evidence has induced a profound revision of this simple model, it can still
be considered as a reference for the purpose of this introduction.

Despite the existence of different levels of gene expression regulation, the
most important part of this control happens at the transcriptional level (Fig-
ure 1.3). In the genome each gene is preceded by a regulatory region (pro-
moter) that signals the starting point for transcription and to which the RNA
polymerase (i.e. the enzyme responsible for mRNA synthesis) and the general
transcription factors bind. In addition, each gene is associated with several
proximal and distal regulatory regions whose combinatorial activity allows a
precise expression control. They contain many regulatory motifs that are rec-
ognized by transcription factors (TFs), that is DNA binding proteins that can
increase (activators) or decrease (repressors) the likelihood that the transcrip-
tion of a particular gene occurs. Distal regulatory regions that are recognized by
activator proteins are also called enhancers and they can contact the promoter
region thanks to chromatin looping. Furthermore, each genomic region that
is involved in transcription is characterized by a distinct pattern of epigenetic
modifications that also reflect its active or inactive state; notably, histone acety-
lation is associated with an open chromatin structure that allows TF binding,
thus promoting the transcription activation (Table 1.1).

In eukaryotes, transcription and translation takes place in two different cellu-
lar compartments, respectively the nucleus and the cytoplasm. Therefore, each
mRNA molecule must be transported from the nucleus to the cytoplasm in or-
der that the synthesis of the encoded protein may occur. This transfer requires
that newly synthesized mRNA molecules (primary mRNA, or pre-mRNA) un-
dergoes some modifications that, at least in part, occurs simultaneously with
transcription (mRNA maturation). In order of time, the RNA capping is the
first one: a 7-methylguanosine cap, whose primary function is protecting the
nascent transcript from degradation, is added to the 5′ end of the pre-mRNA
while it is still being synthesized. In addition, the sequence of eukaryotic genes is
characterized by the alternation of coding sequences (exons) and non-coding re-
gions (introns). During co-transcriptional RNA splicing the introns are removed
and the adjacent exons are joined to generate the mature mRNA. Finally, the
last modification is the cleavage and polyadenylation of the transcript: when
the RNA polymerase exceeds the transcription end point, the nascent molecule
is cut and a poly(A) tail is added to the its 3′ end. In the cytoplasm, both
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Figure 1.3 – Several genetic and epigenetic mechanisms contribute to gene expres-
sion regulation. First, cell type-specific active and inactive genomic regions are char-
acterised by the presence of distinct patterns of histone modifications. In addition, a
precise control is achieved thanks to the combinatorial activity of several proximal and
distal regulatory regions that contains many sequence motifs that are recognized by
transcription factors (TFs). Furthermore, insulator elements, that are usually recog-
nized by CTCF, prevent both spurious interactions between promoters and enhancers
(enhancer-blocking activity) and the spread of inactive chromatin (barrier activity).
Figure adapted from [29].

the 5′-cap and the 3′-tail are recognized by ribosomes: it is an important step
in controlling the mRNA quality before starting its translation. Furthermore,
both splicing and polyadenylation process can lead to the generation of multi-
ple alternative isoforms for the same gene in a cell type-specific manner, thus
greatly contributing, together with the usage of alternative transcription start
sites, to transcriptome diversity.

1.2.1 Computational investigation of TF binding
Given their primary role in the orchestration of cell type-specific gene expression
profiles, knowing the position of TF binding sites (TFBS) in the genome is vi-
tally important for a good comprehension of biological systems. From an exper-
imental point of view, this knowledge is commonly achieved through chromatin
immunoprecipitation followed by sequencing (ChIP-seq) experiments. After the
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cross-linking of bound proteins to the DNA and the chromatin shearing, bead-
attached antibodies are used to immunoprecipitate the DNA-protein complexes
that includes the target protein. The recovered DNA is subsequently sequenced
and the derived sequences are aligned to the genome, thus obtaining a map
of all the binding sites of the target protein. Notably, the same technology
may be exploited to characterize the epigenome, using antibodies that specif-
ically recognize different epigenetic marks. On the other hand, several bioin-
formatic tools are available to predict TFBS. This task is not straightforward
because the sequences that underlie TFBS are usually short and highly degen-
erate. This results in the common usage of positional weight matrices (PWMs)
to provide a quantitative description of the TF preferences in a probabilistic
framework [30,31].

Basically, any DNA binding motif may be represented by a matrix in which
each row corresponds to one of the four nucleotides and whose number of
columns is equal to the motif length. Starting from a collection of sequences
that are recognized by the investigated TF, a simple position frequency matrix
(PFM) can be obtained reporting the number of occurrences of each nucleotide
in each position. Then, these counts may be divided by the total number of
analysed sequences, obtaining a position probability matrix (PPM). Finally,
the PWM is generated transforming the PPM elements into log-likelihood val-
ues using a background model:

wr,i = log2

P (r, i)

P (b, r)
(1.1)

where wr,i is the PWM value for the nucleotide r in the position i, P (r, i) is the
probability that the nucleotide r is present in the position i and P (b, r) is the
frequency of the nucleotide r in the background. The simplest background model
assumes that all nucleotides appear with the same probability in the reference
sequences, but more sophisticated models may be obtained depending on the
situation; for example, non-coding sequences of the genome may be considered in
case of TF binding motifs. PWMs are often graphically represented as sequence
logos that consist of a stack of letters for each position, where the size of each
letter is proportional to its frequency and the total height at each position
indicates its information content, that measures how far it is from an uniform
distribution (Figure 1.4).

In addition, PWMs may be easily used to associate a score to any sequence
that has the same length of the motif. This score reflects the degree of similarity
between the analysed sequence and the PWM, or, from a more physical point
of view, the binding energy of the sequence. The highest score among those ob-
tained for the two DNA strands is usually taken into account, consistently with
the idea that TFs usually recognize both strands and the absence of evidence
supporting the idea that the binding orientation is relevant for their regulatory
activity:

S(w, r) = log max

( l∏
j=1

P (wj , rj)

P (b, rj)
,

l∏
j=1

P (wl−j+1, r
′
j)

P (b, r′j)

)
(1.2)

where S(w, r) is the score of the sequence r for the PWM w, l is the length
of sequence, rj is the nucleotide at the position j of the sequence r on the
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Figure 1.4 – Sequence logo describing the regulatory motif that is recognized by the
IRF5 (Interferon Regulatory Factor 5) transcription factor. At each position the size
of each letter is proportional to the frequency of the corresponding nucleotide and
the total height indicates the information content in bits. Retrieved from JASPAR
2018 [32].

plus strand, r′j is the nucleotide in the same position but on the other strand,
P (wj , rj) is the probability to observe the given nucleotide at the position j
of the PWM w and P (b, rj) is the background probability to observe the same
nucleotide. Then, in order to establish if the analysed sequence matches the
examined PWM, its score is usually compared with an arbitrary threshold: if
Smax(w) is the maximum possible score for the PWM w, only sequences scoring
better than C × Smax(w), with 0 < C < 1, are considered as putative binding
sites. In the case of sequences that are longer than the motif, all the possible
sub-sequences may be evaluated sliding the PWM over the sequence with 1-bp
increments.

However, this approach is unsatisfactory for at least two reasons. First, it
requires the introduction of an arbitrary parameter (i.e. the cutoff that is used
to select the binding sites). In addition, the TF-DNA interaction has been
described as a thermodynamic process in which also the transient binding to
low-affinity sequences plays an important role [33], thus making the distinction
between bound and unbound DNA sequences artificial. A better solution is to
consider the total binding affinity (TBA) of the whole DNA sequence, catching
the contribution of both high- and low-affinity sites [34–36]. The TBA arw of a
PWM w for a sequence r is given by:

arw = log

L−l∑
i=1

max

( l∏
j=1

P (wj , ri+j−1)

P (b, ri+j−1)
,

l∏
j=1

P (wl−j+1, r
′
i+j−1)

P (b, r′i+j−1)

)
(1.3)

where L is the sequence length and l is the PWM length.
In order to compare the performance of TBA-based approaches with that

of strategies that rely on the identification of discrete binding sites, a cutoff-
dependent occupancy can be computed similarly to the TBA, but limiting the
sum to sites scoring better than C × Smax:

trwc = log

L−l∑
i=1

max

( l∏
j=1

P (wj , ri+j−1)

P (b, ri+j−1)
,

l∏
j=1

P (wl−j+1, r
′
i+j−1)

P (b, r′i+j−1)

)
× φ(C,w, r, i)

(1.4)
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where

φ(C,w, r, i) =

{
1 if S(w, r, i) > C × Smax(w)
0 otherwise (1.5)

The TBA concept was originally introduced by works that were focused
on transcription regulation in yeast and derives from a statistical mechanical
modeling of TF-DNA interactions [34,35]. Subsequent applications include the
study of the evolution of regulatory regions in mammals, where the TBA has
the advantage of naturally taking into account the widespread phenomenon of
binding site turnover (i.e. during evolution the position of a functional binding
site can change without determining a difference in the affinity of the whole
sequence for the TF) [36]. In addition, a more recent paper showed that TBA
performs better than occupancy in the prediction of both in vivo binding of
human TFs to regulatory regions and gene expression levels in different human
cell types [37]. In the second chapter of this thesis I will show that the TBA
can also be successfully exploited to study the genetic-driven variation of gene
expression levels across individuals.

Despite their widespread usage, PWMs have some drawbacks [31]. For ex-
ample, each motif position is considered independent from the other ones, thus
ignoring additional constraints that may arise from interactions between nu-
cleotides. Therefore, alternative representations of DNA binding motifs have
been proposed, such as hidden Markov models (HMM) in which each node
(state) corresponds to a different motif position; notably, HMM can also take
into account the presence of a variable space within the motif, thus allowing
the representation of more complex binding scenarios like TF dimers. However,
all the computational methods that rely on existing models to predict TFBS
are currently limited by a serious lack of information: several hundreds of TFs
are indeed still uncharacterised. This trouble is overcome by more advanced
machine learning methods that do not depend on motif collections. They are
commonly trained on datasets including both known regulatory sequences and
random sequences and leverage on k-mer vocabularies (i.e. all possible DNA
sequences of length k) to infer the sequence features that are relevant for TF-
DNA interaction. This makes them more flexible than other models, allowing
in particular to catch also distinguishing properties of the sequences that sur-
round the binding sites. In addition, machine learning methods can integrate
multilayered information to further enhance the modelling of TF-DNA inter-
action through a better description of the local chromatin landscape. On the
other hand, the resulting models are more specific than others in terms of cell
type, differentiation stage, or species, because, unlike TF binding preferences,
the regulatory activity is variable and context dependent. Moreover, their inter-
pretation is usually difficult and this inherent "black box" nature may dampen
their broad application.

1.2.2 Alternative polyadenylation
As I mentioned above, before being transported from the nucleus to the cyto-
plasm all the pre-mRNAs must undergo some crucial modifications, including
the endonucleolytic cleavage and the addition of a poly(A) tail at the 3′ end.
In addition, it is particularly noteworthy that most human genes have multi-
ple poly(A) sites that may be used in a condition-specific manner, therefore
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alternative polyadenylation (APA) extensively contributes to the transcriptome
diversification through the generation of alternative mature transcripts. In the
first part of this section, I will provide an overview of our current knowledge
of this molecular process, mainly referring to a recently published review [38],
and then I will move to the computational methods that can be applied to the
detection of APA events.

The polyadenylation process is mainly operated by a core protein complex
that is composed by four subcomplexes: cleavage and polyadenylation factor
(CPSF), cleavage stimulation factor (CSTF), cleavage factor I (CFI) and CFII.
In addition, the poly(A) polymerase (PAP) is responsible for the synthesis of the
poly(A) tail whose length is controlled by poly(A) binding protein 1 (PABPN1).
At the sequence level, the polyadenylation signal (PAS), that is located ∼21
nucleotides upstream with respect to the poly(A) site, is the most important
element for the definition of 3′ end processing. The hexamers AAUAAA and
AUUAAA are the canonical PAS, but several close variants, that are recognized
with a lower efficiency by the polyadenylation machinery, have been identified
in mammals. However, also other sequence motifs are bound by the core factors
and contribute to the regulation of poly(A) site usage: for example, a G/U-
rich region is usually present immediately downstream of the poly(A) site and
the UGUA motif is commonly found upstream of the PAS. Notably, all these
regulatory motifs are enriched at a specific distance with respect to the cleavage
site and this is particularly evident for distal poly(A) sites, suggesting that they
usually are stronger than the proximal ones. This speculation is also supported
by the observation that canonical PAS motifs are preferentially observed at
poly(A) sites that are distal to the coding sequence compared to sites that are
near the 3′ UTR beginning. This pattern is probably the result of selection,
because, if the proximal sites were optimal, the "first come first served" rule
would be slavishly followed and thus the processing would never occur at distal
sites.

Different types of 3′ UTR isoforms can be generated by alternative cleavage
and polyadenylation (Figure 1.5) [38]. In the simplest and most common situa-
tion, tandem poly(A) sites are located within the same terminal exon and their
differential usage is associated with the generation of mature transcripts that
have the same coding sequence and 3′ UTRs of different length. In addition,
other types of APA events are associated with the coding sequence variation.
When the processing occurs at intronic poly(A) sites that are located immedi-
ately downstream of an annotated exon, it results in the appearance of compos-
ite terminal exons. For example, an event of this type allows the switch from
membrane-bound to secreted IgM following the B cell activation during immune
adaptive response [39]. Moreover, an alternative splicing event that uncovers
an alternative poly(A) site within an exon that is normally skipped leads to the
generation of a shorter isoform with a cassette terminal exon.

The variable length of 3′ UTRs can have relevant functional consequences
because they are major docking platforms for factors involved in all the different
layers of post-transcriptional regulation, including mRNA stability, localization
and translation rate. The 3′ UTR shortening can lead to the loss of miRNA
binding sites, thus potentially making short isoforms more stable than the cor-
responding long isoforms. For example, this mechanism has been implicated
in oncogene activation in cancer cells [40]. However, other results question the
idea that long isoforms are generally characterized by a higher decay rate than
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Figure 1.5 – APA leads to the generation of different types of alternative 3′ UTR
isoforms. The simplest and most common modality regards tandem poly(A) sites that
are located within the same terminal exon (TE), thus determining the production of
isoforms that have the same coding sequence and different 3′ UTRs. Notably, short and
long 3′ UTRs differ in the content of cis-regulatory elements (RE) that are recognized
by trans-acting factors that can have pervasive effects on both the transcript and
the encoded protein. Nevertheless, APA events can give rise to alternative protein
products, through the alteration of the coding sequence. Figure adapted from [38].

the short ones. In particular, 3′ UTR shortening can actually potentiate repres-
sion mediated by miRNA binding sites that are located in the centre of long
isoforms, because the miRNA-mediated repression is supposed to be stronger
when miRNA binding sites are located near 3′ UTR boundaries [41]. Moreover,
despite the known role of miRNAs in translation repression, during T cell ac-
tivation, a process that is greatly associated with the preferential expression of
short isoforms, changes in expression ratio between short and long isoforms are
not reflected into consistent variation of protein levels [42]. On other hand, reg-
ulatory elements in 3′ UTRs can also influence the localization of the encoded
protein (3′ UTR-dependent protein localization) and therefore APA can redirect
proteins into different subcellular compartments [43]. For example, within the
3′ UTR of the transmembrane protein CD47 there are uracil-rich elements that
are recognized by heterogeneous ribonucleoprotein C (hnRNPC) in the nucleus.
The hnRNPC binding prevents the processing at a distal poly(A) site, thus
leading to the generation of the short isoform. The long isoform is produced
in the absence of hnRNPC and it is characterized by the presence of adenine
and uracil-rich elements (AU-rich elements, or AREs) that are recognized by
embryonic lethal abnormal vision-like protein 1 (ELAVL1). This interaction is
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sufficient to induce the assembly of a protein complex that mediates the CD47
translocation from the endoplasmic reticulum to the plasma membrane.

Many analyses regarding APA have focused on the comparison of the expres-
sion of alternative 3′ isoforms in different cell types or conditions. These studies
have allowed a significant advancement of our knowledge of this molecular pro-
cess, highlighting in particular that the APA regulation is strongly tissue-specific
and uncovering intriguing context-specific trends towards the preferential ex-
pression of short or long isoforms. For example, genes that are expressed in
testis, ovary and stem cells preferentially express isoforms with short 3′ UTRs.
Neurons seem to have an even more peculiar patter: recent evidence suggest
that isoforms with long 3′ UTRs are enriched within the soma and instead iso-
forms with short 3′ UTRs preferentially localize within neurites [44]. Further-
more, cell proliferation is associated with the preferential expression of short
isoforms, whereas the higher expression of long isoforms can be appreciated
during cell differentiation [45] and the induction of pluripotency in somatic cells
consistently determine a switch towards the expression of transcripts with short
3′ UTRs [46]. In addition, 3′ UTR shortening is observed following both immune
cell and neuronal activation [47,48].

Several mechanisms have been proposed to explain the regulation of poly(A)
site choice. The first opportunity for modulation is offered by the expression
levels of 3′ end processing factors. For example, their global upregulation, driven
by the E2F transcription factor, may be responsible for the generation of short
3′ UTR isoforms in proliferating cells [49] and the increased CSTF2 concen-
tration after B cell activation leads to the preferential usage of an alternative
proximal poly(A) site within the IgM transcript, hence allowing the protein se-
cretion [39]. Furthermore, several factors that have been originally implicated
into other steps of RNA processing can take part into APA regulation and many
of the involved RNA binding proteins (RBPs) have effects that depend on the
location of their binding sites with respect to cleavage sites, thus making our
comprehension of the molecular details even more tricky. From this perspective,
the interplay between splicing and polyadenylation is particularly noteworthy.
The U1 snRNP is usually more abundant than other splicing factors and this is
probably due to its double life, indeed it also protects long transcripts with long
introns for premature cleavage and polyadenylation (telescripting) [50]. This
mechanism may contribute to definition of promoter directionality (i.e. in each
locus transcripts are predominantly generated from just one of the two strands),
because antisense transcripts that lack U1 binding sites are rapidly terminated
and degraded. Moreover, U1 levels are supposed to underlie the pattern of 3′
end processing that is observed following neuronal activation [48]. In that cel-
lular context, as a consequence of the considerable increase of transcriptional
activity, the U1 concentration is no longer enough to protect nascent transcripts
from premature cleavage and polyadenylation, thus determining the emergence
of short isoforms.

Given its interaction with virtually all aspects of post-transcriptional regu-
lation, it is not surprising that APA perturbation plays a primary role in human
diseases [38]. The dysregulation can derive from both the loss or gain of indi-
vidual poly(A) sites and global changes in poly(A) site usage. Mutations within
PAS motifs that lead to an abnormal 3′ end processing have been identified
in several pathological conditions, including neonatal diabetes, α-thalassaemia
and β-thalasseamia, systemic lupus erithematosus (SLE) and other hematologi-
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cal disorders. In addition, a single-nucleotide polymorphism (SNP) that breaks
a canonical PAS within TP53 has been associated with an higher susceptibil-
ity for different cancer types [51]. Another SNP increases the risk of SLE as a
consequence of the enhanced expression of IRF5 that derives from the appear-
ance of a new canonical PAS in a proximal position of the transcript and the
subsequent production of a shorter and more stable isoform [52]. Furthermore,
global changes in poly(A) sites usage have been reported in almost all cancer
types where the cleavage at proximal position is generally preferred, consistently
with the known association between proliferation and 3′ UTR shortening [40].
Finally, intronic polyadenylation is common in cancer and can lead to the gener-
ation of truncated proteins that lack tumor suppressor activity or gain oncogenic
properties [53].

From a computational point of view, a central task, preliminary to virtu-
ally all APA investigations, is the quantification of alternative 3′ UTR isoforms.
Various strategies have been implemented to this end, from custom pipelines
for microarray data analysis [54], to the development of next-generation se-
quencing technologies specifically targeted to the 3′ end of transcripts, such as
the serial analysis of gene expression (SAGE) [45] and sequencing of APA sites
(SAPAs) [55], allowing also the identification of previously unannotated APA
sites. More recently, tools able to capture APA events from standard RNA se-
quencing (RNA-seq) data have been developed. In general, these approaches can
be divided into two categories: those that exploit previous annotation of poly(A)
sites [56,57], such the ones provided by PolyA_DB2 [58] and APASdb [59], and
those that instead try to infer their location from the data [60]. Although the
latter approach potentially allows analyzing also previously unannotated sites,
the former leads to higher sensitivity [56,57]. Undoubtedly, approaches based on
standard RNA-seq are not as powerful and accurate as technologies that specif-
ically sequence the 3′ ends. However, they allow studying this phenomenon in
an incomparably larger number of samples and conditions.

Few years ago, I contributed to the development of a bioinformatic software
(Roar) that is able to catch APA events from standard RNA-seq data (Fig-
ure 1.6) [37]. It requires a collection of alternative poly(A) sites and RNA-seq
data for the two conditions that must be compared. In the original work, melted
gene structures were obtained collapsing all the transcripts assigned to the same
gene and then, using an external annotation of poly(A) sites, for each gene we
define two segments of interest: the PRE segment, extending from the beginning
of the last exon to the proximal poly(A) site, and the POST segment, from the
proximal poly(A) site to the end of the gene. The PRE fragment is assumed to
be contained into both the long and the short isoform, while the POST segment
should be contained exclusively into the long isoform. The RNA-seq reads that
fall respectively over the PRE and the POST segment are then counted, so as
to obtain for each gene, in each of the two considered conditions, the expression
ratio (m/M) between the short and the long isoform:

m/Ma,i =
lPOSTa

×#rPREa,i

lPREa ×#rPOSTa,i

− 1 (1.6)

wherem/Ma,i is them/M of the gene a in the condition i, lPREa and lPOSTa are
respectively the length of the PRE and POST segment of the gene a, #rPREa,i

and #rPOSTa,i
are respectively the number of reads mapped on the PRE and
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the POST segment of the gene a in the condition i. Therefore, when m/M > 1
it suggests that in the examined condition the short isoform is more expressed,
instead the production of the long isoform is supposed to be preferred in the
opposite case (m/M < 1). In addition, the ratio of the two m/M values is
obtained to compare the two different conditions: this parameter is called "ratio
of a ratio" (roar) and represents the tendency of the first condition to express
relatively higher levels of the short isoform (when roar > 1) or higher levels of the
long one (when roar < 1). Finally, in order to provide a statistical evaluation of
this difference, a Fisher test is performed for each gene, comparing the imbalance
between the PRE and POST read counts in the two conditions.

I would like to emphasize that this description of Roar’s algorithm refers
to the simplest situation in which only one proximal poly(A) site is considered
for each gene, comparing its usage with the transcript end. Although several
genes have a higher number of annotated poly(A) sites, even genes with many
reported polyadenylation sites predominantly use only two of them. Therefore,
this strategy is usually enough to get much of the signals and thus uncover if
alternative polyadenylation is relevant in the context of interest. Nevertheless,
the possibility to take into account all the annotated poly(A) sites of a gene
may be useful for more in depth analyses and indeed Roar also implements a
computationally efficient strategy to evaluate the expression of all the possible
alternative 3’UTR isoforms of a gene (Figure 1.6).

Although it was originally designed to detect APA events comparing two al-
ternative conditions, this approach can be also exploited to study the variation of
the relative expression of alternative 3′ UTR isoforms across individuals, treat-
ing them/M values as a quantitative measure of alternative polyadenylation. In
the third chapter of this thesis, I will present an efficient computational strategy
to pinpoint genetic variants that specifically affect this quantitative molecular
phenotype, focusing on alternative isoforms that are generated through the dif-
ferential usage of tandem poly(A) sites.

1.3 Characterization of human genetic variation
Virtually all phenotypic differences that we can observe between two individ-
uals derive, at least partially, from more or less extensive germline variations
in the sequence of their genome. Genetic variants can impact both coding and
non-coding sequences, and they are commonly classified into four main cate-
gories [61]. Single nucleotide variants (SNVs) are point mutations that strike
single positions of the genome and can consist in any nucleotide substitution.
SNVs that are detectable at an appreciable frequency within a population (>1%)
are also called single nucleotide polymorphisms (SNPs). Instead, an indel is the
insertion or deletion of a short stretch of DNA (<50 bp) in the genome se-
quence. Globally, SNVs and indels represent the higher proportion of genetic
variants that may be detected in any human genome. In addition, structural
variants (SVs) involve much wider regions of the genome and include copy num-
ber variations (CNVs), chromosomal rearrangements, and mobile element in-
sertions (MEIs). Moreover, tandem repeat variations, such as short tandem
repeats (STRs), can be extremely abundant, but so far they have received little
attention.

Shortly after the end of the race to obtain the first draft sequence of the
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Figure 1.6 – This figure provides an overview of the algorithm that is implemented
by Roar to detect APA events through the comparison of two different conditions for
which standard RNA-seq data are available. (A) Melted gene structures are obtained
collapsing all the transcripts assigned to the same gene. (B) Then, for each gene
two segments of interest are defined (the PRE and POST segments), exploiting an
external annotation of poly(A) sites. The RNA-seq reads falling over these regions are
subsequently counted to compute a m/M value for each gene in each condition. At the
end, another parameter (roar) is obtained to catch the alternative 3′ UTR isoforms
whose relative expression is different among the two examined conditions. (C) In
the simplified version of the algorithm, only one proximal poly(A) site is taken into
account for each gene, comparing its usage with the transcript end. However, Roar also
implements a computationally efficient strategy to examine all the annotated poly(A)
sites of a gene. Figure adapted from [37].

human genome, serious efforts began to be devoted to the characterization of
the genetic diversity both within and between human populations. Although
the collection of human genetic variants started much earlier, with the creation
of rudimentary genetic maps that in 1980s were used to uncover several genetic
variants that cause Mendelian diseases, this process has made substantial pro-
gresses in the first decades of the new millennium. Initially, the development
of genotyping arrays, that allow to interrogate millions of genomic positions si-
multaneously and at a relatively low cost, and the discovery of the haplotype
structure of the human genome have been crucial [14]. In eukaryotes, during ga-
metogenesis, an exchange of genetic material between homologous chromosomes
(crossing-over) combines with the independent assortment of chromosomes to
further increase the genetic variability within the population. Notably, the
frequency of recombination between two genomic loci is inversely proportional
to their distance. Therefore, in the case of nearby genomic loci, their alleles
are transmitted together much more frequently than expected if they were in-
dependent and the association was random: this concept is known as linkage
disequilibrium (LD). For that reason, nearby genetic variants are tightly linked
together into DNA sequences that are almost always transmitted identical from
one generation to another (haplotypes), suggesting that a relatively low num-
ber of genetic variants may be sufficient to catch ∼90% genetic variance that is
present within any population. This principle has been the foundation of the
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International Haplotype Map (HapMap) Project that was launched on October
2002 with the aim to provide a public resource to speed the discovery of the ge-
netic basis of complex human diseases. In the first phases of the project (Phase
I and Phase II) they analysed samples from 269 individuals who came from four
geographically diverse population: Yoruba in Ibadan (Nigeria), Japanese in
Tokyo (Japan), Han Chinese in Beijing (China) and the CEPH (Utah residents
with ancestry from Northern and Western Europe). Globally, they genotyped
over 3.1 million SNPs, with a frequency of about one SNP per kilobase [62]; in
addition, a subsequent release (HapMap 3) included 1.6 million SNPs that were
genotyped for 1184 samples from 11 populations [63].

A further leap forward has been allowed by the advent of high-throughput
next-generation sequencing (NGS) technologies that significantly reduced the
time required for DNA sequencing and resulted in a progressive and awesome
drop in costs (Figure 1.7) [64]. NGS technologies have introduced some key
features, including multiplexing (i.e. DNA templates that derive from multi-
ple libraries, that were obtained from different samples, can be subjected to a
common sequencing reaction), different strategies for in vitro amplification and
the adoption of sequence-by-synthesis (SBS) approaches, in which a biochemi-
cal reaction is associated with imaging of the surface on which DNA templates
are immobilized. The first NGS instrument was marketed in 2005 and the
first years were characterized by the competition between multiple companies.
Nonetheless, starting from 2012 the Illumina’s platforms have progressively be-
came dominant. Consequently, although different strategies have been devel-
oped for SBS, the polymerase-mediated incorporation of fluorescently labelled
deoxynucleotides (dNTPs) is the only one currently available. It relies on the
usage of reversible chain-terminators and a suitable enginereed polymerase that
should allow only one dNTP to be incorporated during each cycle. However,
the efficiency of this process is far from optimal, thus significantly limiting the
length of the sequenced molecules that are much shorter than those obtained
by Sanger sequencing.

Thanks to the availability of NGS technologies it has been possible to un-
dertake ambitious re-sequencing projects in human populations, that have given
rise to incredible large collection of human genetic variants. The 1000 Genomes
Project has been the first initiative to sequence the whole-genome of thousands
of individuals [65, 66]. The project, that was active from 2008 to 2015, was
launched aiming to identify most genetic variants with a frequency of at least
1%. Whereas the first datasets that have been released were mainly focused on
people with an European ancestry, in the conclusive phase they analysed 2,504
genomes from individuals that came from 26 world-wide populations, thus cov-
ering five continental regions: East Asia (EAS), South Asia (SAS), Europe
(EUR), Africa (AFR) and Americas (AMR). This resource provides an unique
opportunity to deepen our knowledge of recent human evolution. Furthermore,
the inclusion of data from individuals with different ancestries is really valu-
able in medicine, even in the big cosmopolitan cities where clinicians frequently
come into contact with people from many ethnic backgrounds. Notably, the last
dataset includes also recently admixed populations that derive from the union of
previously unrelated populations. The African American populations are maybe
the most known example: their genetic heritage results from the combination of
components that derive from African, European and Native American popula-
tions. These data may be also useful to investigate the genetic variation within
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Figure 1.7 – For many years the NHGRI has monitored the costs associated with
DNA sequencing at the centers that it supports and this graph shows the cost per
human-sized genome from February 2001 to February 2019. In addition, it reports hy-
pothetical data reflecting the famous Moore’s law, according to which the "computer
power" should double about every two years, while halving the costs. Taking into
account that computer hardware industries that keep up with Moore’s law are consid-
ered to have excellent performance, the gap between real and hypothetical data that
starts from 2008 is really impressive: it represents the time at which Sanger sequenc-
ing gave way to NGS technologies. Data from "Wetterstrand KA. DNA Sequencing
Costs: Data from the NHGRI Genome Sequencing Program (GSP)". Available at:
www.genome.gov/sequencingcostsdata. Accessed 08/08/2019.

populations for whom to date only few genomes are available, like the Native
Americans. In addition, while in the earlier phases only bi-allelic events were
examined, in the third and final phase the 1000 Genomes Project investigated
a broader spectrum of human genetic variants, identifying more than 88 million
variants that include multi-allelic SNPs, indels and structural variants. Their
results suggest that a typical genome contains 4.1-5 million sites in which it dif-
fers from the reference sequence and, although they mainly consist of SNPs and
indels, the number of structural variants is not negligible (∼2100-2500 structural
variants are present in each genome). Furthermore, they observed that the total
number of genetic variants is variable between different populations: the highest
genetic variability is observed among African individuals, consistently with the
"Out of Africa" theory (i.e. anatomically modern humans originated in Africa
and they subsequently migrated towards other world regions about 100,000 years
ago). On the other hand, individuals from recently admixed population show
a great variability in the number of genetic variants, that, coherently with the
previous observation, is roughly proportional to the degree of recent African
origin in their genomes. Finally, the analysis of genetic variant sharing among
populations can provide useful insights for the reconstruction of their recent

www.genome.gov/sequencingcostsdata
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Figure 1.8 – The 1000 Genomes Project has produced the most comprehensive view
of global human variation, through the sequencing of whole genomes in 2,504 indi-
viduals that came from 26 world-wide populations. In the figure the area of each
pie is proportional to the number of genetic variants that were identified in the cor-
responding population and each of them is subdivided into four slices referring to
different categories of genetic variants (private to population, private to continent,
shared across continents and shared across all continents). Dashed lines denotes pop-
ulations that were sampled outside their ancestral continental region (for example,
the CEU are Utah residents with Northern and Western European ancestry). Figure
adapted from [65].

history: common genetic variants are usually shared across continents, while
rare variants are normally detectable only within closely related populations
and 86% of the identified variants are present only in a single population.

The 1000 Genomes Project has produced one of the most comprehensive
view of global human genetic variation. At the same time, other sequencing
efforts have been devoted to the characterization of the genetic structure of
specific populations. For example, Chiang et al. [67] analyzed whole-genome se-
quencing (WGS) data from 3,514 modern individuals that came from different
regions of Sardinia, a large Italian island in the Mediterranean Sea. Different
types of data, including genetic, cultural, linguistic and archaeological findings,
indicate that, as a consequence of its prolonged isolation, Sardinia has experi-
enced a major differentiation from the mainland. In particular, ancient DNA
studies have suggested that the ancestral composition of its population is much
different from that of other European populationsa. Although Chiang et al.
confirmed the known prevalence of early Neolithic ancestry across all Sardinia
populations, they also revealed an intriguing within-island variation. The ma-
jor genetic differentiation was observed between individuals that came from the
Ogliastra province, that is included within the mountainous Gennargentu region
and that experienced the greatest isolation, and those that live in rest of the is-
land. While an enrichment of Neolithic farmer and pre-Neolithic hunter-gatherer

aThe genetic structure of modern European populations is usually modelled referring to
three ancestral populations: the pre-Neolithic hunter-gatherers, the Neolithic farmers that
arrived in Europe from Near East and Anatolia, and finally the steppe pastoralists that
expanded into Europe during the Bronze Age. Notably, the highest genetic similarity to
ancient Neolithic farmers was observed for Sardinia population, suggesting that the island
was mainly colonized by early Neolithic farmers, with minor contributions from pre-Neolithic
groups, and it subsequently remained largely isolated.
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ancestries was revealed in the Gennargentu region, higher levels of Bronze Age
steppe pastoralist ancestry were observed elsewhere. In addition, comparing
Sardinia with mainland populations, they detected a remarkable genetic simi-
larity with Basque people, especially for individuals from the more historically
isolated regions. On the other hand, some mainland components may be rele-
vant for the ancestry of individuals living outside Ogliastra: their data suggest
past admixture events with both Eurasian and Sub-Saharan African popula-
tions. Globally, a greater knowledge of Sardinia genetic history may be useful
to better understand the high prevalence of some hematological and immuno-
logical diseases, like multiple sclerosis, type 1 diabetes and β-thalassaemia, in
the island; in addition, its unique history suggests that Sardinia may keep some
genetic variants that have been lost in the mainland European populations.

Although few recent works have evaluated the impact of rare and structural
variants (e.g., [68,69]), current technologies have mainly limited population stud-
ies of genome-wide human genetic variation to common SNVs and indels [61].
Thanks to the progressive lowering of costs, this limitation will be probably over-
come in the coming years and WGS will definitely become the standard tech-
nology for genetic investigations. However, it is important to remember that
also whole exome sequencing (WES) has been extensively exploited for both
population genetics studies and the diagnosis of genetic diseases [70]. WES is
a targeted sequencing technique in which the DNA sequencing step is preceded
by the capture of all the exons that are present within a genome (i.e., the ex-
ome). The genome coverage is significantly lower in WES data than WGS data
(∼1-2% of the genome); therefore, WES can combine a much higher sequenc-
ing depth (100x is a common depth for WES, while 30x is frequent for WGS)
with a greatly reduced per-genome cost. Notably, the elevated depth of WES
data provides an unrivalled opportunity to catch also the rare and low-frequency
variants that are usually missed by current whole-genome investigation.

The Exome Aggregation Consortium (ExAC) has done an admirable effort
to aggregate and harmonize existing collections of WES data [71]. The ExAC
data set, that was publicly released in 2016, resulted from the collection and
joint analysis of high-quality exome sequencing data from 60,706 individuals
of different geographic ancestry, exceeding by nearly an order of magnitude
any previously available exome-wide variant database (e.g., the NHLBI Exome
Sequencing Project (ESP) database, that has been available since 2012, includes
∼7000 exomes [72]). This effort has been subsequently extended to genome
sequencing data, giving rise to the Genome Aggregation Database (gnomAD)
[73]. The v2 release of the gnomAD browser aggregates 125,748 exomes and
15,708 genomes from unrelated individuals, but it has been recently expanded
with the addition of an impressive number of new genomes (the v3 release
includes 71,702 genomes).

As I will extensively discuss in the next sections, in the last decades genetic
information has been broadly related with multiple human phenotypes, includ-
ing several pathological conditions. In this regard, today we are witnessing a new
revolution that coincides with the spread of biobank projects. While previous
population genetics projects, like HapMap and 1000 Genomes, only collected ge-
netic information for few hundreds or thousands individuals, current initiatives
are getting both genetic and biomedical data for an incredibly higher number
of individuals, potentially for entire populations of relatively small dimension.
For example, the UK Biobank has obtained genome-wide genetic data, pheno-
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typic information and biological samples, that may be used to perform different
kind of genetic, proteomic and metabolomic essays, for ∼500,000 volunteers
across the United Kingdom [74]. At the recruitment participants were sub-
jected to a wide variety of physical measures and they answered to questions
about socio-demographics and lifestyle factors. The study also includes the pos-
sibility of follow-up analyses because participants provided consent to linkage
to electronic health records; moreover, repeated assessments have been done in
subsets of the cohort. The initial recruitment lasted from 2006 to 2010, but
over time other initiatives have been undertaken, thus further increasing the
number of evaluated parameters: for example, objective measures of physical
activity have been obtained for 100,000 participants and a multi-modal imaging
assessment, that at the end will reach the same number of individuals, is still
ongoing. The UK Biobank has generously released the whole dataset and the
resulting research findings as an open access resource that may be exploited by
academic and private researchers from around the world in the public health
interest. Moreover, many other nations, including Estonia, Japan, Canada and
Finland, have launched biobank projects: the huge amount of data that will be
generated by these initiatives provides a unique chance to change our way of
approaching health care, making precision medicine a viable goal in the coming
years. While for a long time the one-size-fits-all solution has been the dom-
inant approach in medicine, future healthcare will have to be customized for
specific subgroups of patients that will be defined taking into account genetic
characteristics, lifestyle and environment.

1.4 The genetic landscape of human diseases
Understanding the relationship between genetic variation and human diseases
has always been one of the major interest in biomedicine. In the last decades
of the previous century, several genes that cause Mendelian diseases (i.e. mono-
genic illnesses that are caused by the alteration of a single gene and whose
pattern of inheritance follows Mendel’s laws) were uncovered thanks to linkage
analyses followed by positional cloning [75]. Linkage analyses require the avail-
ability of entire families in which the disease of interest is present and consists
of looking for DNA markers that tend to be inherited together with the disease;
the frequency with which this occurs is considered an estimate of the distance
between the marker and the gene responsible for the disease. This allows to ob-
tain an approximate information about the position of the searched gene in the
genome, but it is not sufficient to locate it with precision. Chromosome walking
is a method of positional cloning and consists in moving along a chromosome
by identifying overlapping DNA fragments until the destination is reached, for
example the beginning of a gene that may be implicated in a Mendelian disease.
Given the short length of the DNA fragments that were used, this procedure
could be implemented in a reasonable time only after the identification of two
flanking markers that were supposed to be at a low distance from the searched
gene. In this regard, the chromosome jumping technique has been a substantial
improvement because it allows to move faster avoiding to be stopped by un-
clonable DNA sequences. While "walking" or "jumping" along chromosomes,
the gene start site may be identified for example through the comparison of the
reconstructed sequences with those of other organisms, under the assumption
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that coding sequences should be conserved. However, additional work was usu-
ally necessary to clone the entire gene and the definitive confirmation of having
found the right one resulted from the identification of mutations in patients.

In 1989 this strategy allowed to identify alterations of the cystic fibrosis
transmembrane conductance regulator (CFTR) gene as the cause of cystic fi-
brosis, an autosomal recessive disease that affects approximately 70,000 individ-
uals worldwide [75–77]. The protein that is encoded by CFTR is an epithelial
ion channel that regulates the chloride transit through the plasma membrane.
CFTR mutations result into abnormal salt and water regulation, with conse-
quent problems especially in lungs, pancreas and sweat glands. Pulmonary
infections are the most serious challenge for the clinical management of cystic
fibrosis and death usually follows the arise of antibiotics resistance. Few years
after the discovery of CFTR, a major success was obtained also for the Hunt-
ington’s disease (HD), a rare and adult-onset neurodegenerative disease that is
characterized by an autosomal dominant pattern of inheritance [78]. Although
HD was the first disease to be mapped to a human chromosome in 1983, the
HD gene was eventually identified ten years later: it is also known as huntingtin
(HTT ) and it is characterized by the presence of some repetitions of the CAG
nucleotide triplet. The number of repetitions has an elevated prognostic value:
while in healthy individuals there are 6-35 repeats, the presence of 40 or more
repetitions is associated with the certain development of the disease and inter-
mediate values confer a higher risk. Furthermore, the number of repetitions
is negatively correlated with the age of onset and pathogenic repeats largely
expand during gametogenesis, especially in the case of male transmission, thus
giving rise to a progressive anticipation of the disease onset from one generation
to the next. In the protein, whose cellular function is still not known with cer-
tainty, CAG repeats are translated into a long sequence of glutamine residues.
Notably, these polyglutamine (polyQ) tracks can self-aggregate forming toxic
compounds that are structurally similar to the amyloid deposits that are re-
vealed in other neurodegenerative diseases, like Alzheimer’s and Parkinson’s
disease.

Subsequent studies have uncovered that different mutations within CFTR
are present in patients and this genetic knowledge has began to be exploited
to provide better treatments. While traditional therapies have mainly focused
on the secondary consequences of the disease, in the most recent years targeted
therapies, that aim to restore the normal protein functionality, are available [77].
Ivacaftor has been the first drug of this kind to be approved and it works in-
creasing the opening probability of the channel at the cell surface. Nevertheless,
it is efficacious only in 5% patients in which, despite a defective regulation, the
protein at least reaches the plasma membrane. On the contrary, it is ineffective
in 85% patients that have the most common mutation because it is associated
with the production of a misfolded protein that is normally degraded in the
cytoplasm before reaching the cell surface; in addition, when it occasionally
escapes from the proteasome degradation and reaches the membrane, its regu-
lation is anomalous. Therefore, the combination of lumacaftor, that enhances
the intracellular processing and delivery of the protein, and ivacaftor may be an
optimal therapeutic option for these patients. However, although the existence
of successful examples, an improved knowledge of the genetic basis of human
diseases hardly translates into the development of new drugs and, for example,
despite the efforts that have been done to clarify its molecular mechanisms, un-
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fortunately we are still far away from the development of effective therapies to
halt or slow the HD progression [78].

Genetic variants that are associated with human diseases can be placed
on a two-dimensional space taking into account their allele frequency and the
strength of their effect (Figure 1.9) [79]. As discussed above, family-based link-
age studies allow the identification of rare alleles that cause Mendelian diseases
(high effect size). On the opposite side, there are genome-wide association stud-
ies (GWAS) that look for genotype-phenotype associations testing thousands
or millions genetic variants in large human cohorts [80]. GWAS are commonly
performed to investigate the genetic determinants of common human diseases
(e.g., asthma, diabetes, hypertension, schizophrenia and cancer) and several
complex traits, such as body mass index (BMI) and height. Unlike Mendelian
diseases, common diseases are influenced by several genetic or environmental
factors and for that reason are also called "complex diseases" or "polygenic
diseases". GWAS often rely on the comparison of two groups of individuals:
cases, that are affected by a particular disease, and matched controls; basically,
if a single genetic variant is much more frequent in cases than controls, we can
say that there is an association between that variant and the investigated dis-
ease. Notably, according to the "common disease, common variant" hypothesis,
the inheritance of common diseases is mainly attributable to genetic variants
that have an appreciable frequency within human populations (MAF, i.e. mi-
nor allele frequency, >1-5%) and that individually have weak genetic effects.
Nevertheless, few cases are known of high-effect common variants influencing
common diseases: for example, the analysis of the genetic causes of age-related
macular degeneration (AMD) has pointed to a relatively low number of genetic
variants with large effects. The relative lack of high-frequency and high-effect
variants may derive from natural selection forces that, during human evolu-
tion, have acted towards the elimination of variants that substantially reduce
the reproductive fitness. Furthermore, also low-frequency variants could con-
tribute to the inheritance of common diseases with substantial effect sizes: so far
their discovery has been hindered by insufficiently large sample sizes, but future
studies could shed light on their contribution. On the contrary, rare variants of
small effect are very hard to identify with both GWAS and the classical linkage
analyses, thus requiring ad-hoc approaches that, for example, can evaluate the
"mutational load" of different genes.

Since the first GWAS was performed in 2005 for AMD, tens of thousands
associations have been uncovered, thus revolutionizing our capacity to under-
stand the genetic basis of human diseases and confirming that polygenic ef-
fects are relevant for any common disease. Notably, this has been frequently
interpreted as the accumulation of weak effects on key genes and regulatory
pathways; this hypothesis has been mainly endorsed by the observation that
disease-associated variants are primarily enriched within genomic regions that
are active in the important cell types, or near genes that are expressed in the
relevant cellular context. However, in a recent perspective, Boyle et al. [81]
reported several discording considerations, starting from the observation that
putative causal genetic variants, among which they also included variants that
did not reach genome-wide significance but whose directional effect may be
replicated in independent cohorts, are extensively widespread in the genome
(for example, according to their estimate, every 100-kb window contributes to
height variation). They suggested an alternative model for complex traits that
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Figure 1.9 – The genetic landscape of human diseases is composed by genetic variants
that span along a wide spectrum of allele frequencies and effect sizes. Therefore, its
exploration has required the implementation of different approaches, including family-
based linkage studies and GWAS. The diagonal dotted lines demarcate the variant
categories to which most interest has been dedicated. Figure adapted from [79].

points to the involvement of all genes that are expressed in relevant tissues in
determining disease risk. According to their "omnigenic model", each complex
trait is directly affected by a low number of "core genes", whose biological role
can be easily understood and whose perturbation is supposed having strong ef-
fects. In addition, all the other expressed genes (peripheral genes) are likely to
have smaller but not negligible effects, as a consequence of the high connectiv-
ity of gene regulatory networks. Above all, since peripheral genes are usually
much more abundant than core genes, the cumulative effect of genetic variants
that weakly hit peripheral genes may exceed the contribution of variants that
directly affect core genes.

Furthermore, the authors of a recent review suggested that "GWAS findings
published to date represent only the tip of the iceberg" [80]: until now GWAS
have been mainly performed within European populations, taking into account
easy-to-measure phenotypes and assuming an autosomal additive model. First,
given that GWAS discoveries are primarily limited by the sample size, taking
into account larger groups of individuals will probably result in the pinpointing
of additional loci. In this regard, it is important to note that, according to
empirical evidence, for each trait the discovery of associations accelerates above
a distinct sample size threshold and for many phenotypes the identification of
risk loci has not reached a plateau yet. Furthermore, future GWAS cohorts
will not only have to include an even greater number of individuals, but also
to consider different ethnic groups and populations. Moreover, new discoveries
may derive from the analysis of more sophisticated phenotypes. For example,
gene-environment interactions seem to play a major role in determining sev-
eral complex diseases and different gene subsets may be involved in response to



Chapter 1. Cracking our genetic code 30

specific environmental exposures. In addition, further information may be ob-
tained through longitudinal studies that examine the variation of quantitative
phenotypes over time. Finally, to bring out the currently submerged part of
the iceberg, alternative inheritance models should be taken into account. No-
tably, the genetic architecture of many complex diseases includes epistasis (i.e.
statistical interaction between different genome loci in affecting a phenotypic
trait) as a pivotal component. Although epistatic effects have so far proved elu-
sive in humans, future studies could be able to uncover them thanks to greater
statistical and computational power.

GWAS have received several criticisms and the enthusiasm for new discov-
eries has been accompanied by a certain scepticism [80]. One of the major issue
regards the difficulty to translate GWAS results into an improvement in bio-
logical knowledge. First, as a consequence of linkage disequilibrium, multiple
genetic variants in the same locus commonly give a significant association, thus
complicating the discernment of causal genetic variants from bystander associa-
tions. Second, the pinpointed genetic variants may be rarely interpreted mech-
anistically without further investigations, in particular because GWAS findings
are strongly enriched within non-coding genome regions. Even the identifica-
tion of the causal gene is usually not trivial because it is seldom the one closest
to the GWAS result. A striking example of this complexity involves the FTO
gene [31, 80]. Its name derives from the appearance of fused toes in mouse
after the gene deletion, however it has been renamed as "fat mass and obesity-
associated gene" and has been deeply investigated for a role in energy home-
ostasis after the discovery of genetic variants associated with obesity within its
first and second introns. More recent studies have shed light on the misun-
derstanding, showing that the pinpointed genetic variants are located inside a
regulatory region that controls the expression of the TF-coding genes IRX3 and
IRX5, while it does not impact the FTO expression. More precisely, one vari-
ants destroys a TFBS recognized by ARID5B, thus determining the increased
expression of both IRX3 and IRX5. This molecular perturbation enhances the
formation of white fat cells and maybe be responsible for the excessive fat ac-
cumulation that was observed in both children and adults.

1.5 Genomics of molecular traits
Quantitative trait locus (QTL) mapping analysis is an approach to relate genetic
variants with the inter-individual variation of any quantitative trait. Notably,
this strategy has been exploited to investigate the genetic determinants of a
wide variety of molecular traits that may be measured trough genomics and
proteomics assays, including gene expression and transcript structure [82], his-
tone modifications [83], DNA methylation [84], chromatin accessibility [85] and
protein abundance [86]. Since the effect of genetic variants on human diseases
probably goes through the perturbation of quantitative molecular phenotypes,
the functional interpretation of GWAS findings can be greatly facilitated by the
integration of molecular QTLs, genomic annotations and other molecular data.
For example, an integrative genomics approach has recently allowed to iden-
tify the regulatory circuits that underlie the effect of genetic variants on BMI
and other obesity-related metabolic traits [87]. In another study, the quantifi-
cation of the effect of genetic variants on all the major stages of gene regula-
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Figure 1.10 – Three main pathways mediate the impact of common genetic variants
on complex traits: direct effects on gene expression, direct effects on splicing and
effects that pass through chromatin modifications. Figure adapted from [88].

tion, from chromatin to proteins, allowed to devise an interesting model of the
regulatory mechanisms through which common variants affect complex traits
(Figure 1.10) [88]. According to the authors, genetic variants usually have inde-
pendent effects on gene expression and pre-mRNA splicing and those affecting
splicing have effects of similar or even larger magnitude on complex traits than
those affecting gene expression. Furthermore, the effect of genetic variants on
gene expression is usually mediated by chromatin modifications, although direct
effects are also possible. On the contrary, in the case of splicing direct effects
are supposed to be predominant, but genetic variants can affect splicing also by
altering chromatin-level traits. More in general, this study, along with many
others [89], suggests that genetic variants affecting gene expression or tran-
script structure are equally important in determining the genetic predisposition
to complex human diseases. Therefore, in the last part of this introduction I
will elucidate some important concepts about the investigation of the genetic
determinants of both these molecular phenotypes.

1.5.1 Gene expression
Genomic loci that include genetic variants affecting gene expression levels are
called expression QTLs (eQTLs). More precisely, cis-eQTLs are associated with
the variation of the expression levels of nearby genes, whereas trans-eQTLs
affect genes that are further away in the genome. While the alteration of local
regulatory elements is the most likely mechanism of action for cis-eQTLs, trans
associations may derive from the qualitative or quantitative perturbation of
regulatory proteins. In the last years, the majority of studies has focused on
cis-eQTL mapping, because trans-eQTLs are supposed having much smaller
effects that are difficult to catch at the current sample sizes. The identification
of cis-eQTLs requires the availability of both genotypic and gene expression
data for a high number of individuals and it is usually performed through linear
regression (Figure 1.11). First, for each target gene, a cis-window is commonly
defined as the region spanning 1 Mb from both its transcription start site (TSS)
and transcription end site (TES). Then, the fitting of several independent linear
models is exploited to evaluate the association between each cis-variant and the
gene expression level:
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Figure 1.11 – cis-eQTL mapping analysis seeks for associations between genetic vari-
ants and gene expression levels. First, for each target gene, a cis-window is commonly
defined as the region spanning 1 Mb from both TSS and TES. Then, the fitting of
several independent linear models is exploited to evaluate the association between
each cis-variant and the gene expression level. In these models genotypes are com-
monly represented using digits that reflects the copy number of the alternative allele
in each individual; therefore, 0 means homozygous for the reference allele, 2 means
homozygous for the alternative allele and finally 1 is used for heterozygotes. The same
statistical approach allows to identify genetic variants that affect transcript structure
instead of gene expression, when a quantitative measure of alternative transcript iso-
forms is available.

y ≈ β0 + β1 × x+ cov (1.7)

where y is a gene expression trait, β0 is the model intercept, x is the inde-
pendent variable, corresponding to the genotype of each individual for a single
genetic variant, and β1 is its regression coefficient. Several covariates, that in
equation 1.7 are generically indicated as cov, are commonly included in these
models, in order to take into account confounding sources of inter-individual
gene expression variation. Notably, a correction for the population structure is
usually done to avoid both false negatives and spurious associations that may
derive from the belonging of individuals to different human populations. This
correction usually consists in including the first principal components obtained
from genotypic data in the models, since several examples have shown that a
principal component analysis can generate a summary of genotypic information
that greatly catches geographical differences among individuals [90].

In the context of this thesis, it is particularly noteworthy that the same
statistical approach allows identifying genetic variants that affect transcript
structure instead of gene expression, when a quantitative measure of alter-
native isoforms is available. Furthermore, eQTL mapping analysis has been
largely complemented by the study of allele-specific expression (ASE), that is
the quantification of expression differences between the two haplotypes of an in-
dividual, that may distinguished thanks to the presence of heterozygous coding
sites; an allelic imbalance in measured expression levels can derive from multiple
genetic and epigenetic effects, including the presence of cis-regulatory variants,
nonsense-mediated decay triggered by variants causing a premature stop codon
and imprinting [91].
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The GEUVADIS (Genetic EUropean VAriation in DISease) consortium laid
a milestone in this field, because, for the first time, they integrated RNA-seq
with WGS data to perform a genome-wide mapping of genetic variants affecting
both gene expression (eQTL) and the relative abundance of alternative tran-
scripts from the same gene (transcript ratio QTL, i.e. trQTL). In particular,
they performed RNA-seq experiments on lymphoblastoid cell lines (LCLs) that
were derived from hundreds of individuals whose genome had been sequenced
by the 1000 Genomes Project [82]. The GEUVADIS dataset includes WGS and
RNA-seq data for 462 individuals from five populations: the CEPH (CEU),
Finns (FIN), British (BGR), Toscani (TSI) and Yoruba (YRI). Until few years
ago, the generation of RNA-seq data for such a large number of individuals was
beyond the reach of a single laboratory and, from a technical point of view, one
of the important contributions of this work was to show that the RNA-seq tech-
nology was ready for distributed data production. Transcriptome sequencing
experiments were indeed performed in seven centres and the variation among
laboratories, that is due to technical artifacts, was lower than the variation
among individuals, that instead should reflect their different genetic makeup.
Furthermore, they showed that eQTLs and trQTLs are equally common but
largely independent, suggesting that gene expression and transcript structure
are controlled by different regulatory elements.

As stated above, very large collections of WES data are currently available
(e.g., the ExAC catalogue of human genetic variants [71]). Although in principle
these data may be exploited for the identification of eQTLs and other molecular
QTLs, we must be aware of some critical limitations. In the first place, the
identification of molecular QTLs requires the integration of genetic information
with molecular data, such as gene expression values, that usually are not avail-
able for the large cohorts of exome-sequenced individuals. Furthermore, several
studies have reported that non-coding genetic variants have important effects of
both gene expression and transcript structure (e.g., [92]), as shown also in this
thesis. In this regard, it is noteworthy that over half of the sequences that are
generated by WES fall outside the target exon sequences [93]. The unexpected
sequences may result from the random fragmentation of genomic DNA that
precedes the isolation of target sequences with exon-specific probes. Notably,
they can be exploited for the identification of genetic variants that fall within
coding-exon connected non-coding sequences, such as core promoters [94]. Nev-
ertheless, WES data might cover only a small fraction of the proximal regulatory
regions and do not allow the investigation of the distal ones.

For several years, molecular QTL studies have been restricted to few cell
types that are easily accessible, thus limiting the possibility to take advantage
from them to clarify disease mechanisms at the molecular level. The Genotype-
Tissue Expression (GTEx) program, that was launched in 2010, has given a
prominent contribution in overcoming this limit, collecting post-mortem sam-
ples from many individuals and a wide variety of "normal", non-diseased, tis-
sues [95]. The GTEx project is still ongoing and they plan to collect samples
from approximately 1,000 donors upon the end of the program. For example,
the GTEx v6p release included gene expression data for 449 human donors, 42
distinct tissues (31 solid-organ tissues, 10 brain subregions and whole blood) and
two cell lines derived from blood and skin samples. Genotype information were
available for the same individuals, thus enabling the multi-tissue identification
of both local (cis-eQTLs) and distal (trans-eQTLs) genetic effects on gene ex-



Chapter 1. Cracking our genetic code 34

pression. The pairwise comparison of the results obtained in the different tissues
revealed a substantial concordance with the degree of tissue similarity; notably,
the same conclusion was drawn considering cis- or trans-eQTLs. The most ev-
ident broad pattern consisted in a high correlation of effect sizes among brain
tissues and among non-brain tissues, with a much lower correlation between the
two groups; at a finer scale, within non-brain tissues strong correlations were
observed among closely related tissues, for example skeletal muscle and heart
tissues. A bimodal pattern of tissue sharing was observed for cis-eQTLs: they
were usually shared across most of the analysed tissues or specific to a small
subset of tissues. In addition, those that were discovered in tissues with larger
sample sizes were more likely to be tissue-specific and it could be due to the
difficulty in replicating small effect-size eQTLs in tissues with fewer samples.
On the contrary, a more predominant tissue-specificity was observed for trans-
eQTLs and they consistently showed a greater enrichment within enhancers,
that are supposed to be more involved in tissue specific regulation than promot-
ers. However, this property could also result from their under-powering in the
detection of trans-eQTLs that may derive not only from low sample sizes, but
also from the analysis of bulk tissue samples. It is indeed possible that some reg-
ulatory effects can be revealed only within specific cell types, rather than inside
an entire heterogeneous tissue. Future studies that will take advantage of both
computational (deconvolution methods) and experimental (single-cell RNA-seq
techniques) approaches to study gene expression patterns at the single-cell level
will probably reach a sufficient resolution to catch also more precise effects.
In the meantime, other studies are also contributing to bring out the context-
specificity of eQTL effects. For example, the comparison of the associations
that were detected before and after stimulation of CD14+ human monocytes
with interferon-γ (INFγ) or lipopolysaccharide (LPS) revealed that the func-
tionality of many regulatory variants largely depends on the type and duration
of stimulus [96]. The authors of a recent paper have pushed this concept even
further, analysing the variation of eQTL effects over time [97]. In particular,
they collected RNA-seq at 16 time points during the differentiation of human
induced pluripotent stem cells (iPSCs) into cardiomyocytes, starting from 19
Yoruba HapMap cell lines for which genome sequence data are available. Per-
forming a joint analysis that leverages the whole multi-point data to quantify
the effect of interactions between genotype and differentiation time over gene
expression, they found 550 genes with significant dynamic eQTLs that were clas-
sified as early (the effect size decreases over time), late (the effect size increases
over time), or switch (the effect size exhibits different directions over time).
These effects were consistent with temporal changes of chromatin activity, as
revealed by the enrichment of early and late eQTLs within cell type-specific en-
hancers. Furthermore, they revealed 693 genes with non-linear dynamic eQTLs
that affect only intermediate stages of differentiation; for example, 28 genes
were associated with variants that have the strongest effect in the middle of the
differentiation time course (middle dynamic eQTLs). Many dynamic eQTLs, in
particular those with non-linear associations, reflect transient effects that can-
not be caught analysing stem cells or adult tissues; nevertheless, they may have
phenotypic consequences, as suggested by the examples that are illustrated in
the article.

When an eQTL mapping analysis detects associations between genetic vari-
ants and gene expression levels it does not provide any information about the
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mechanism driving the gene expression variation. Nevertheless, given the promi-
nent role of TF circuits in the orchestration of gene expression profiles, the
perturbation of TF binding is the most straightforward hypothesis and it has
been confirmed by many studies that have shown that eQTLs are significantly
enriched within experimentally determined or computationally predicted TFBS
(e.g., [98,99]). Several computational methodologies have been proposed to eval-
uate the impact of regulatory variants on TF-DNA interaction and, although
they may differ in details, they usually share a common workflow [31]. Ba-
sically, for each investigated variant, the sequence of both the reference and
the alternative allele is extracted, then both sequences are scored according
to a model describing the TF binding preferences (SREF and SALT ) to ob-
tain a differential score (∆S = SREF − SALT ) that reflect the difference in
DNA binding affinity; the greater this difference, the greater the likelihood that
the variant severely impacts in vivo binding. Moreover, valuable information
can be obtained through the direct identification of genetic variants that affect
DNA binding events (binding QTLs, or bQTLs). Different studies have revealed
an extensive inter-individual variation of TF binding through the repetition of
standard ChIP-Seq experiments in genotyped individuals, but unfortunately
they have been strongly limited to small sample sizes, as consequence of both
prohibitive costs and substantial experimental variation across samples (batch
effects). Tehranchi et al. proposed the pooled ChIP-Seq technique as an efficient
and cost-effective alternative [100]. Samples coming from different individuals
can be pooled to perform a single ChIP-Seq experiment for each TF: alleles that
enhance the TF binding will be enriched in the post-ChIP pool with respect to
the pre-ChIP pool, while the frequency will be remain the same for alleles that
do not have an impact on TF binding. This strategy has also the advantage to
fully leverage the information that are present in heterozygotes; on the contrary,
standard ChIP-seq experiments can only evaluate the average signal between the
two alleles and therefore they are not able to catch any association in the ex-
treme situation in which there are only heterozygous individuals. In addition,
the same approach may be exploited to pinpoint genetic variants affecting epige-
netic markers and they indeed considered one histone modification (H3K4me3)
together with five TFs that are critical for immune cell differentiation and func-
tion (JunD, NF-κB, Pou2f1, PU.1 and Stat1), performing the experiments on
LCLs that were obtained for 71 YRI individuals. In particular, they observed
that only a very low proportion of bQTLs (<0.9%) overlap with predicted DNA
motifs for the corresponding TF. This result suggested that also other features of
the local sequence may influence TF binding. Consistently with this hypothesis,
their data show that the GC content, in the region surrounding predicted bind-
ing sites, may be relevant in determining the binding affinity of some TFs. An
alternative explanation is that many bQTLs reflect cooperative binding events,
in which the variation of the binding of recruited TFs would be seen without
the alteration of their corresponding DNA motif. Pairwise comparisons uncov-
ered a significant overlap between bQTLs that were revealed for different TFs,
suggesting that single genetic variants may perturb the binding of multiple TFs.
Although it could also point to the presence of independent causal variants in
the same loci, it is not likely to occur systematically and in addition it was
denied by the detection of a broad directionality agreement (i.e. if bQTLs for
two different TFs overlap, the same allele usually have higher binding for both
TFs). The genetic-driven variation of the binding of multiple TFs may reflect
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Figure 1.12 – Different mechanisms can explain the genetic-driven variation of TF-
DNA interactions. Notably, in an seemingly counter-intuitive way, motif independent
events, that may involve local, proximal and distal variants, are much more frequent
than motif dependent event. See the main text for additional details about the different
cases. Figure adapted from [31].

the alteration of a motif that is recognized by a "pioneer factor", that binds first
to the DNA and then directly or indirectly promotes the binding of other TFs.
For example, they observed several events of this kind for NF-κB and JUND
that are known to act cooperatively. Furthermore, they found that overlap-
ping bQTLs frequently reflect the perturbation of motifs that are recognized by
CTCF, a protein that plays a crucial role in the organization of 3D chromatin
structure. This result suggested that CTCF may be a major pioneer factor,
able to recruit all the other TFs, but it did not provide information about the
mechanism. Although it could result from direct physical interactions between
CTCF and the other TFs, according to the authors an indirect effect is more
likely: CTCF may model nucleosome occupancy and chromosome looping in
such a way to make chromatin more accessible to other factors.

Many other studies have contributed to consolidate the idea that only a mi-
nority of variable TF-DNA binding events derives from the destruction of motifs
that are recognized by the investigated TF, stressing on the contrary the impor-
tance of motif independent events (Figure 1.12) [31]. In presence of an intact
motif for the studied TF, the perturbation of its binding ability may be due to
variants that hit motifs that are recognized by other TFs. Local variants can
impact cooperative binding events that involves physical interaction between
TFs and the presence of overlapping, or closely located, binding sites. On the
other hand, proximal variants may influence collaborative binding events, that
does not require direct protein-protein interactions, but reflects an interdepen-
dence among TFs that, for example, must compete with nucleosomes to access
DNA. Furthermore, the perturbation of TF-DNA binding is not restricted to
the action of nearby genetic variants: the stability of interactions with DNA
and between TFs may be indeed reduced in the presence of distal variants that
alter 3D chromatin structure. Finally, two additional observations accentuate
the complexity of TF-DNA interactions and contribute to further complicate
our interpretations of genetic-driven perturbations. First, only a minority of
motif-disrupting variants effectively causes the alteration of the binding of the
corresponding TF, maybe as a consequence of an extensive buffering that de-
rives from the presence of TFBS clusters in the genome [31]. Second, many
regulatory QTLs do not overlap with eQTLs, consistently with the finding that
changes in TF-DNA binding frequently have no measurable effects on gene ex-
pression [31,101].
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As I said above, standard eQTL mapping analyses correlate single genetic
variants with gene expression levels: this approach is limited with respect to the
complexity of gene expression regulation and it does not leverage our incomplete
but substantial knowledge of the regulatory code. Conversely, we can speculate
that all the genetic variants within a regulatory region contribute to determine
a global perturbation of TF binding that eventually results in the gene expres-
sion variation, consistently with the knowledge that many genes are under the
control of multiple independent eQTLs in their cis-regulatory region [99, 102].
In particular, the binding profile of any regulatory region can be obtained by
computing TBA values for multiple TFs using public collections of PWMs; in
addition, when both WGS and gene expression data are available for many indi-
viduals, the correlation between TBA profiles and gene expression levels can be
evaluated to uncover new eQTLs. The TBA model will be better described in
the second chapter, along with the results that were obtained by its application
to the GEUVADIS dataset.

1.5.2 Transcript structure
Although many efforts have been focused on genetic variants that affect gene
expression levels, recent studies have shown that genetic variants broadly impact
the whole cascade of RNA processing that include both pre-mRNA processing
(splicing and polyadenylation) and mRNA dynamics (translation, stability and
mRNA localization). In addition, numerous examples support the idea that
RNA processing variants can be important drivers of phenotypic variability in
humans [89].

From a computational point of view, multiple approaches have been proposed
to discover human genetic variants that are associated with changes in transcript
structure. In this context, a primary distinction can be made between methods
that focus on distinct molecular events (i.e. alternative splicing or polyadenyla-
tion) and those that instead generically investigate the expression of alternative
isoforms. The results that were reported by the GEUVADIS project fall into the
second category. As described above, they leveraged the integration of RNA-seq
and WGS data to identify also genetic variants affecting the relative abundance
of alternative transcripts from the same gene, using as quantitative phenotype
the ratio between the expression of every transcript isoform and the total gene
expression (transcript ratio). The AStalavista software [103] was subsequently
exploited for the classification of detected events and they observed that 3′ and
5′ end modifications are much more common than exon skipping and intron re-
tention events. Moreover, they found that, besides the expected enrichment at
splice sites, trQTLs were also over-represented within 3′ UTRs and promoters.
Globally, these results indicate that alternative polyadenylation may be largely
affected by genetic variants and suggest that also DNA regulatory elements may
be involved in the regulation of post-transcriptional events, although they are
usually supposed to be mainly regulated at the RNA level. The analysis of
the same dataset with a more sophisticated strategy, that treats the relative
expression of all the alternative isoforms of each gene as a multivariate pheno-
type and implements a distance-based approach to compare within-genotypes
and between-genotypes variance, allowed to catch additional associations and
confirmed the prevalence of 3′ and 5′ end modifications [104].

Taking advantage of the GEUVADIS dataset, other studies have investi-
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gated the effect of genetic variants on specific mechanisms of RNA processing.
For example, the Altrans software was exploited for the discovery of splicing
QTLs (sQTLs), through the identification of genetic variants that are associ-
ated with the variable expression levels of exon junctions [105]. In addition,
the computational analysis of DNA sequences around annotated splice sites and
poly(A) signals allowed the identification of many genetic polymorphisms that
potentially influence splicing or polyadenylation as a consequence of the alter-
ation of the affinity of core RNA elements for regulatory factors [106]. However,
they did not perform any quantitative evaluation of the relationship between
the pinpointed genetic variants and the expression of alternative APA isoforms;
moreover, considering only the PAS motif, they omitted other known regulatory
mechanisms. On the other hand, previous studies found strong associations be-
tween human genetic variants and the expression of alternative 3′ UTR isoforms,
but they were strongly limited in the number of variants and samples [107–109].
For example, a NGS technology that targets 3′ ends (DeepSAGE) was exploited
to catch genetic variants affecting both gene expression and the usage of al-
ternative poly(A) sites [109]. In that particular context, the identification of
APA associated variants relied on searching genes that contained deepSAGE
tags that were regulated in opposite directions by the same SNP. For instance,
this pattern was observed for the LPCAT2 gene where rs12934747 creates a new
canonical polyadenylation signal (AAUAAA) at the beginning of the 3′ UTR,
thus resulting in the reduced expression of the transcript that contains the full
length 3′ UTR. However, the statistical power of this study was seriously com-
promised by the availability of data for less than one hundred individuals. In
summary, a systematic investigation, specifically targeted to APA rather than
generically to transcript structure, based on a large number of samples and vari-
ants, and unbiased in the choice of variants to examine, was lacking. In the third
chapter, I will present a new computational strategy that aims to overcome the
highlighted limitations for the specific purpose of correlating variants with the
relative expression of alternative 3′ UTR isoforms in a large human population.
Notably, it relies on standard RNA-seq data for the quantification of APA iso-
forms and it is statistically analogous to methods commonly implemented in
eQTL mapping analysis.

In conclusion, it is worthwhile to note that QTL mapping analysis is not the
only viable way to investigate the genetic determinants of transcript structure
variation. Deep learning methods have been successfully exploited to generate
predictive models for alternative splicing and polyadenylation. Besides provid-
ing new insights about regulatory mechanisms, these models allow the functional
interpretation of genetic variants, without relying on the availability of popu-
lation data. For example, Xiong et al. [110] implemented a machine-learning
approach to generate tissue-specific computational models of splicing regula-
tion using reference genome sequences and RNA-seq data from healthy human
tissues. These models can be used to score how strongly genetic variants af-
fect RNA splicing and, scoring more than 650,000 intronic and exonic variants,
they observed that disease-annotated SNVs have higher scores than common
variants, including SNPs that have been associated with diseases in GWAS.
Analogously, a deep neural network (APARENT) [111] was trained on isoform
expression data from millions of synthetic APA reporters to learn a comprehen-
sive model of the cis-regulatory APA code and it enabled the identification of
human genetic variants that act through APA dysregulation.
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A functional strategy to
characterize expression
Quantitative Trait Loci

In this chapter I will describe a new strategy to detect genes whose expression
level is influenced by regulatory genetic variants. Using a large dataset of cou-
pled genome and expression data, we correlated the TBA profile of individual
regulatory regions with the expression level of target genes. Unlike the stan-
dard eQTL mapping analysis, our TBA model takes advantage of the current
knowledge of the regulatory code and it naturally incorporates the effect of
multiple variants within regulatory regions. Notably, we found that it allows
the pinpointing of eQTLs that are not identified when studying the correlation
between gene expression and individual variants. In addition, it can help for-
mulating hypotheses on the mechanism behind eQTLs by indicating the TFs
whose binding perturbation mostly contribute to the gene expression variation.

2.1 Results

2.1.1 The TBA model discovers new eQTLs
We computed the TBA profiles of both local and distal regulatory regions associ-
ated with ∼22,000 genes in 344 individuals of European descent whose genomes
were sequenced by the 1000 Genomes consortium [65] and whose gene expres-
sion profiles in lymphoblastoid cell lines were measured by RNA-sequencing in
the GEUVADIS project [82]. Each TBA profile describes the affinity of the reg-
ulatory region for the 640 human PWMs of the HOCOMOCO collection [113].
A TBA profile is, therefore, a summarization of a regulatory region in terms
of its overall propensity to bind transcription factors, taking simultaneously
into account the effect on binding affinity of variants located along the whole
sequence.

To each gene, we associated a proximal regulatory region, defined as the re-
gion spanning from 1500 bps upstream to 500 bps downstream of the TSS (suit-

The content of this chapter was published as Ref. [112]
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ably merged in the case of multiple TSSs, see Methods); and, when available,
distal regulatory regions associated with the gene by the PreSTIGE tool [114],
which is based on the correlation between cell-type specificity of epigenetic mod-
ifications and gene expression. The median length of the regulatory regions con-
sidered was 3,296 for proximal and 1,752 for distal. Note that each gene can be
associated by PreSTIGE to more than one distal region, and conversely some
distal regions are associated with multiple genes.

We then used principal component regression to detect correlations between
variation in TBA and gene expression in individuals. Specifically, for each gene,
we fitted a model for each associated regulatory region where the independent
variables are the top Principal Components of TBA values for each TF that
explain (at least) 95% of the original variance and the dependent variable is
gene expression as measured by RNA-sequencing (Figure 2.1 and Supplementary
Figure A.1). We reasoned that this approach could discover eQTLs not easily
revealed by the analysis of correlations between expression and individual SNPs
for two main reasons: first, we are able to take into account the combined
effect of several variants lying in the same regulatory region; and second, we
exploit our knowledge of the regulatory code by weighting variants based on
their predicted effect on TF binding.

The number of genes for which a statistically significant correlation was
found between TBA and gene expression is slightly higher than the number
of genes for which at least one eQTL was found in [82] by univariate eQTL
(uni-eQTL) analysis (Table 2.1). Importantly, while the overlap between the
significant genes in the two methods is sizable (2,238), there are 1,543 genes
showing significant correlation with TBA but no individually significant vari-
ants. These regions are, therefore, eQTLs that can be revealed only by taking
into account the combined effect of multiple variants on the affinity for TFs of
the cis-regulatory region. Conversely, for 980 genes one or more eQTLs were
found in Ref. [82] but not with the TBA model: in 759 cases, all the significant
SNPs lie outside the regulatory regions analysed by the TBA model. However,
for the remaining 221 genes there is at least one individual SNP correlated with
gene expression whose effect is not captured by the TBA model. This could
be explained by the fact that even if the HOCOMOCO collection of TFs is
very large it may be not exhaustive. However, using a much smaller collec-
tion of PWMs (the JASPAR Core Vertebrate Collection [115]), containing only
205 PWMs, resulted in a modest reduction in the number of significant models
(3,208 vs 3,421 – this analysis was performed on proximal regulatory regions
only). To understand why the loss in predictive power is so limited when the
number of JASPAR PWMs is less than half compared to HOCOMOCO, we
looked at the distribution of the number of principal components needed to
explain 95% of the variance among subjects: the mean number of PCs needed
decreases from 4.24 to 3.55 moving from HOCOMOCO to JASPAR (Supple-
mentary Figure A.2). Therefore, while in theory the TBA spaces defined by
the two PWM databases have very different dimensionality, the TBA profiles
of actual regulatory sequences lie in spaces of much smaller dimensionality, and
these are not very different between the two databases. Alternatively, signifi-
cant eQTLs that are not captured by the TBA model could affect expression
by mechanisms other than a change in affinity for a TF (e.g., a variant could
affect gene expression through altering DNA methylation [116]).

An alternative way to test whether differences in TBA correlate with differ-
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Figure 2.1 – Schematic representation of the proposed method. Using a dataset,
like the Geuvadis one, where both WGS and expression data are available for the
same set of individuals, for each TBA model, we obtain the individual sequences of
a single regulatory region starting from the reference sequence and the individual
genomic variants calls. Then, we compute TBA values for 640 HOCOMOCO PWMs
on the whole sequences, without looking for individual binding sites. Finally, we seek
correlations between individual variation in the TBA profile of the regulatory region
and in the expression level of the target gene—for simplicity, we represented univariate
regression with the TBA of a single TF as the independent variable while in reality
we fit a multivariate model using principal component regression.

uni-eQTL model TBA model
Local RR Distal RR

Median number of variants 10,243 19 10

Median sequence length 2,000,000 3,296 1,752

Number of significant genes 3,259 3,781

Table 2.1 – Comparison of TBA and uni-eQTL models. For the uni-eQTL models, the
sequence length was always the same and we reported the median number of variants
that were considered for each gene. On the other hand, many TBA models may have
been fitted for each gene, independently for each associated local or distal regulatory
region (RR).
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Figure 2.2 – Individuals with allele-specific gene expression (ASE) tend to have
greater TBA differences between the maternal and paternal regulatory region. (A)
Schematic representation of the analysis. (B) The number of genes for which the
median distance between maternal and paternal TBA profiles is higher in individuals
with ASE compared to individuals without ASE (blue line) is greater than expected
by chance (red line). The histogram represents the distribution of such number in
1000 simulations in which the ASE/non-ASE status of individuals was independently
randomized for each gene.

ences in gene expression relies on allele-specific expression (ASE). We expect to
find larger differences in the TBA profiles of the maternal and paternal regu-
latory regions in subjects displaying ASE than in other subjects. To test this
hypothesis, we considered the ASE data reported in Ref. [82]: for 2,740 genes
for which robust ASE data were available (selected as described in the Methods)
we computed, for all heterozygous subjects, the Euclidean distance between the
TBA profiles of the paternal and maternal regulatory regions. We then sepa-
rately computed the median distance for subjects with and without evidence
of ASE. For 2,204 genes, such medians were different in the two groups, and
for 1,205 the median distance in the ASE group was greater than the non-ASE
group (binomial P=5.1×10−6 ). The significance of the result is also confirmed
by a permutation-based approach: we repeated the analysis on 1,000 permuted
datasets obtained by randomizing the individuals with ASE, obtaining an em-
pirical P<0.001. Therefore, differences in TBA profiles between maternal and
paternal alleles in heterozygous individuals predict differential expression of the
two alleles. The analysis pipeline and the result are summarized in Figure 2.2.

2.1.2 Knowledge of the regulatory code contributes to the
TBA model

As discussed, two factors could in principle explain why the TBA model is able
to identify some associations that are not uni-eQTLs: first, the TBA model
can take into account the combined effect of more than one variant in a reg-
ulatory region; and second, it uses knowledge of PWMs to give more weight
to variants likely to change the affinity of the sequence for TFs. However, the
results shown above do not reveal whether both factors actually contribute to
the model results.

To clarify this point, we built a third type of model, called the multivariate
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Figure 2.3 – Overlap between the genes with a significant uni-eQTL, multi-eQTL
and TBA model.

eQTL (multi-eQTL) model, which, like the uni-eQTL model, uses the genotype
as its independent variables, but, like the TBA model, considers together all the
variants in a principal component regression. Having 399 genes significant only
for the TBA model and not for the other two shows that the performance of the
TBA model is not simply due to the simultaneous inclusion of several variants
in a regulatory region, but also to the weight given to them based on their effect
on affinity for TFs (Figure 2.3).

2.1.3 The TBA model detects TF-target interactions that
depend on genetic variation

Once the TBA model has revealed an association between regulatory variants
and gene expression, it can be further exploited to identify the TFs whose affin-
ity for a specific regulatory region correlates with gene expression and, thus,
hypothesize a mechanistic basis for the variation in gene expression. To iden-
tify the specific TFs whose TBA correlates with expression, for each gene with
at least one significant TBA model, further linear models were fitted indepen-
dently for each PWM on each linked regulatory region whose TBA model is
significant. In these models, the regressors include the TBA of a specific PWM
and the same covariates used in the PC regression, but for simplicity we refer
to them as “univariate TBA models”. By selecting models in which the PWM
coefficient is significantly different from 0, we thus obtained, for each gene on
each linked regulatory region, a list of putative TFs whose binding variation
affects the gene expression in a sequence-dependent way, which we refer to as
the “eQTL-predicted regulators” of the gene.

Thus, we obtained, for each significant regulatory region, the list of TFs
predicted by the TBA model to affect the expression of target genes. We expect
the binding of these TFs to depend on genetic variants found in the regulatory
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regions. To validate this claim, we used a recent systematic evaluation of binding
QTLs (bQTLs) in lymphoblastoid cells carried out for 5 TFs (JUND, NF-κB,
PU.1, POU2F1 and STAT1) [100]. Specifically, we fitted, for each of the five
TFs, a logistic model in which the independent variable is the presence of a
bQTL in a regulatory regions, and the regressors are the length of the region
and the significance of the appropriate PWM in the univariate TBA model. A
significant coefficient for the latter regressor would imply that the TBA model
is able to predict bQTLs, thus supporting its mechanistic interpretation.

For all five TFs, the coefficient of the TBA term is positive, as expected,
and for two of them (NF-κB and STAT1) it is statistically significant (resp.
P=1.9 × 10−4 and 3.4 × 10−3). These results suggest that the TBA model is
potentially able to provide information about the mechanism by which genetic
variants influence expression. Variation in the motif sequence is not the only
driver of variation in TF binding [31], and this could explain why our model
is unable to predict bQTLs in a significant way for all the 5 TFs. Another
possible reason is the difference between populations used as sources for the
lymphoblastoid cell lines (Yoruba for bQTLs and EUR for the GEUVADIS
samples used in our models). Finally, some of the TFs studied in [100], such
as PU.1 and JUND, are pioneer transcription factors whose binding is required
for the subsequent binding of signal-dependent transcription factors which in
turn drive expression (e.g. [117]). As discussed below, our linear regression in
its present form is not ideally suitable to deal with such interactions.

2.1.4 The TBA model allows the mechanistic interpreta-
tion of GWAS hits

Our approach can therefore be useful to generate mechanistic hypotheses to
explain the association between regulatory variants and disease. While this
would be ideally done on transcriptomics datasets including diseased individuals
and healthy controls, some interesting examples could be obtained exploiting the
vast number of GWAS results already available. Using the GRASP catalog [118]
of GWAS hits and linkage disequilibrium data for CEU individuals we asked how
many GWAS hits correspond to a variant found in our significant regulatory
regions: out of 48,211 variants 7,231 were the same or in LD with variants
included in our significant TBA models. This 15% overlap is in line with recent
results from eQTL analyses [82] and is significant (p-value 0.0003, randomization
test).

The authors of [100] showed that bQTLs are more enriched in GWAS hits
than eQTLs, but also pointed out that this raises a problem, since it is not clear
how a variant can affect a phenotype by altering the binding of a TF without
being an eQTL. We reasoned that our new approach for the detection of eQTLs
could provide a partial solution to this problem, by revealing eQTLs that are
not detectable by standard analysis. To verify this, we considered the bQTLs
that are in LD with a GWAS hit (GWAS-bQTLs) and asked whether they were
enriched in regulatory regions corresponding to significant TBA models. We
fitted a logistic model in which the presence of a GWAS-bQTL in a regulatory
region was predicted by three regressors: the length of the region, the presence
of a putatively causal eQTL found by ordinary eQTL analysis in [82], and the
significance of the region in the TBA model. All three predictors were signif-
icantly and positively correlated with GWAS-bQTLs (Figure 2.4), implying in
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Figure 2.4 – The probability that a regulatory region contains a GWAS-bQTL is
increased, independently, by the significance of the corresponding TBA model, by the
presence of a putatively causal eQTL, and by the length of the region. The figure
shows the odds ratios for each predictor in a multi-variate logistic regression and their
95% confidence intervals.

particular that the TBA model is a predictor of GWAS-bQTL independent of
the other two (P = 3.0×10−8 for the significance of the TBA model in the multi-
variate model). Specifically, we found 144 regulatory regions containing bQTLs
that are in LD with GWAS hits, but whose association with gene expression
variation was unknown. Some individual examples are discussed below.

The TBA model shows a correlation between the expression of C-type lectin-
like 1 (CLECL1 ) and the TBA profile of its local regulatory region, in which
SNPs associated with type 1 diabetes [119] are found that are also bQTLs for
NF-κB and JUND. Both these TFs are identified as relevant to CLECL1 expres-
sion by our model, which also suggest a role for CREB1, a TF already known
to have a relevant role in autoimmune diseases and glucose metabolism [120].
In addition, the TBA model evidenced that regulatory variants within 12 distal
regulatory regions are significantly associated with the variation of CLECL1
expression; one of these enhancers contains another bQTL for JUND: it was as-
sociated with type 1 diabetes, but its association with gene expression variation
was previously unknown.

The ability of the TBA model to make light on distal regulatory mecha-
nisms that can contribute to the development of pathologies is also demon-
strated by another example. The TBA model reveals a distal regulatory element
whose TBA profile is strongly correlated with the expression of two genes (BLK
and FAM167A): it includes a SNP that was detected as bQTL for several TFs
(JUND, NF-κB, STAT1 and PU.1) and that was associated with both systemic
lupus erythematosus (SLE) [121] and Kawasaki disease [122], but its effect of
gene expression was not previously reported. BLK (B lymphoid tyrosine ki-
nase) is a protein coding gene that encodes for a nonreceptor tyrosine-kinase
that plays a role in B-cell receptor signaling and B-cell development; its putative
involvement in the etiology of both SLE and Kawasaki disease is confirmed also
by other studies [123,124]. FAM167A is a much less characterized protein cod-
ing gene. The importance of three out of four TFs (JUND, NF-κB and STAT1)
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for the expression of both genes was correctly predicted by the univariate TBA
models on these distal regulatory elements.

Finally, PTPRO is a protein phosphatase that has been linked via three
intronic SNPs to learning and memory in a cohort of patients with mental
disorders (schizophrenia spectrum disorder and bipolar disorder) and normal
controls [125] and that is highly expressed in mouse neural system during de-
velopment [126]. Our results show correlation between PTPRO expression and
the TBA profile of its local regulatory region where no individual SNPs were de-
tected by uni-eQTL models; in addition, the univariate model includes POU2F1
among the significant TFs, in agreement with the bQTL evidence, thus suggest-
ing a mechanistic link between SNPs, PTPRO expression and possibly neu-
rocognitive functions.

2.2 Discussion
Variation in gene expression is a common effect of genetic variation, and GWAS
studies suggest that often higher-level phenotypes are mediated by variants af-
fecting gene regulation. The aim of eQTL studies is to determine how genetic
variation influences gene expression, by seeking statistically significant correla-
tions between genotypes and mRNA levels.

GWAS and eQTL studies are commonly carried out performing single-variant
tests. Although an unbiased analysis of genetic variants is worthwhile and these
methods turned out to be extremely powerful, they also have some important
limitations. First, they do not leverage the current knowledge of the regula-
tory code. Second, they do not provide any suggestion for the mechanistic
interpretation of the results. In addition, they do not explicitly model the
allelic heterogeneity that concerns both gene expression [99, 102] and complex
traits [127]. Shifting from SNP-based associations to SNP aggregation methods,
that evaluate biologically informed aggregates of SNPs, can allow to overcome
these issues. Gene-based approaches are particularly attractive, because, since
genes are the primary functional unit of the genome, the result interpretation is
more straightforward. In addition, gene-based strategies allow to substantially
reduce the multiple testing burden, thus intrinsically enjoying greater statisti-
cal power, and they may also guarantee a higher grade of replication among
different populations. In the last years, several statistical methods have been
proposed to aggregate the results of SNP-based GWAS into gene-based mea-
sures of associations (e.g., GATES [128], VEGAS [129] and COMBAT [130]).
Furthermore, in Gamazon et al. [131] the cumulative effect of regulatory SNPs is
aggregated into a predicted expression value that is then used to identify genes
whose dysregulation is involved in common diseases.

Here, we focused on eQTL mapping and we proposed a different SNP aggre-
gation method that explicitly takes into account the predicted effect of variants
on the binding of transcription factors, by evaluating the changes in TBA pro-
files induced by the variants found within regulatory regions. The TBA-based
method can be applied to both local and distal regulatory elements and it is
able to reveal hundreds of eQTLs that were not identified by single-SNP eQTL
analysis, providing in this way new testable hypotheses about the mechanism
leading from genetic variation to complex phenotypes.

Previous attempts to exploit TF sequence specificity in functionally inter-
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preting GWAS hits [132–134] focused on ranking single SNPs using their pre-
dicted effect on binding. Our approach instead is able to consider cooperative
effects of several SNPs together, and models TF binding without resorting to
a cutoff on the PWM score, thus identifying associations not found by other
methods. Using TBA to measure the effect of SNPs allows us to consider their
role both on high scoring subsequences and on other DNA portions less sim-
ilar to the perfect match but relevant in determining functional binding [37];
it would be interesting to expand this approach to more recent models of TF
binding preferences that also account for interdependencies between nucleotides
inside matches [31].

The main limit of our approach lies in our limited knowledge of the regulatory
code. Indeed, the transcription factors whose binding preference we can describe
as a PWM are probably a relatively small fraction of those coded by the hu-
man genome. Moreover, there is certainly genetic variation that influences gene
expression by mechanisms other than changing the affinity for a transcription
factor. Therefore, the best strategy is, currently, to use aggregation methods in
combination with single-SNP eQTL analysis to achieve maximal power in de-
tecting correlations between genetic variants and gene expression. In addition,
until now we have taken into account SNPs and indels, but an interesting expan-
sion of the approach would be to include copy number variations (CNVs), since
they are known to have a role in several human diseases [79] and datasets for big
cohorts will likely become available soon. Furthermore, our method cannot in
its present form take into account interaction effects between TFs, such as cases
in which pioneer TFs are required to bind a region before signal-dependent TFs
can bind it and drive expression. Statistically, this could be modelled by inter-
action effects between TBA profiles of different TFs. Currently, this would be
difficult to implement systematically because of the exponential growth of the
number of regressor variables, but case studies in controlled contexts in which
the number of relevant TFs is limited would be potentially interesting.

Another promising avenue of investigation is the application of TBA-based
SNP summarization to complex diseases, in which regulatory variation plays a
major role. Inspired by the gene-based approach that was proposed by Gama-
zon et al. [131], we are currently investigating statistical models in which TBA
profiles are used to predict the genetic component of gene expression that can
be subsequently correlated with any disease status (for further details see Chap-
ter 4).

2.3 Material and Methods

2.3.1 Individual sequences of regulatory regions
TSS annotation was downloaded from Gencode v12 [135] consistently with the
annotation used by the GEUVADIS Consortium [82]. For each individual, we
considered the region spanning 1,500 bp upstream and 500 bp downstream from
the Transcription Start Site (TSS). In the following, we will refer to these 2,000
bp regions as “promoters”. One TSS is defined for each transcript in Gencode
v12 and we associated a promoter to each transcript. When different promoters
linked to the same gene shared overlapping regions, the promoters were merged
with bedtools merge [136], in order to consider each genomic region only once.
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Furthermore, in order to take into account distal regulatory regions, all the
gene/enhancer associations obtained by the PreSTIGE algorithm [114] in lym-
phoblastoid cells were downloaded (GRCh37). The Gencode v12 annotation
was used to associate Ensembl Id (ENSG) to gene symbols. In addition, for
each gene, enhancers that overlap at least one of its alternative promoters were
excluded. In this way, we were able to associate at least one enhancer to 4,291
genes with expression values.

Genomic sequence variation data for 373 European samples, obtained by
the 1000 Genome Project [65], were downloaded from the GEUVADIS Data
Browser [82] together with gene expression data. 29 samples were discarded
because their genotypes were not phased by [82]; thus, a total of 344 European
samples were analysed. In addition for efficiency reasons, only genetic variants
that are variable among this subset of genotyped individuals were retained for
the subsequent analysis. The reference genome (GRCh37, as in Gencode v12)
and these whole genome sequencing data were exploited by the vcf_rider li-
brary [137] to efficiently reconstruct the diploid genomic sequence of regulatory
regions in each individual and subsequently compute Total Binding Affinity
(TBA) values on them (see below for details).

When the presence of indels led to regulatory regions (promoters or en-
hancers) differing more than 10% in length from the reference sequence the reg-
ulatory region was discarded for all individuals to prevent differences in TBA
from being strongly driven by differences in the length of regulatory regions.
Genes without any variant in all the associated regulatory regions or without
an available expression value were discarded: a total of 22,129 genes were re-
tained for further analysis.

2.3.2 Total binding affinity
Following Foat et al. [34], we computed the total binding affinity (TBA) of each
regulatory region for 640 human PWMs derived from the HOCOMOCO-v10
database. In particular, Positional Count Matrices (PCMs) were downloaded
in the TRANSFAC format (April 11, 2017). We then added a pseudocount
of 1 only to zero counts and converted PCMs into the format accepted by the
vcf_rider library, which internally performs the conversion to PWMs. The TBA
arw of a sequence r for a PWM w is given by:

arw = log

L−l∑
i=1

max

( l∏
j=1

P (wj , ri+j−1)

P (b, ri+j−1)
,

l∏
j=1

P (wl−j+1, r
′
i+j−1)

P (b, r′i+j−1)

)
(2.1)

where l is the length of the PWM w, L is the length of the sequence r, ri
is the nucleotide at the position i of the sequence r on the plus strand, r′i is
the nucleotide in the same position but on the other strand, P (wj , ri) is the
probability to observe the given nucleotide ri at the position j of the PWM w
and P (b, ri) is the background probability to observe the same nucleotide ri.
Background nucleotides frequencies were calculated on intergenic portions of
the human genome (UCSC version hg19) as [37].

To avoid excessive complexity, we decided to collapse all the promoters linked
to the same gene in a single local regulatory region; therefore, the TBA values
computed on the alternative promoters of the same gene and referring to the
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same PWM were summed. In addition, TBA values for the two alleles were
always summed. In this way, for each individual we obtained one TBA value
for each PWM on all the local and distal regulatory regions.

2.3.3 PC regression models to predict gene expression
data

To study correlation between the TBA values of regulatory regions and the
expression of their target genes across individuals, we used principal component
regression as implemented in the CRAN package pls [138]. We chose this
approach to avoid overdetermination due to the large number of independent
variables (640 TBA values for different PWMs) compared to dependent variables
(344 individuals). For each gene, a linear model was fitted independently for
each linked regulatory region, selecting in each case the number of principal
components (PC) of the log2 transformed TBA values that explained 95% of
the total variance in TBA and using those PCs as independent variables and
the gene expression e as the dependent variable:

ei = β0 +

N∑
j=1

βj × pcTBAi
j +

3∑
l=1

αl × covl + εi (2.2)

where ei is the expression for the ith individual in analysis, pcTBAi
j the PC for

the ith individual and for the jth PC, β are the fitted coefficients, β0 the intercept
and ε the errors. N is the number of PCs needed to explain 95% of the variance
of the log2 transformed TBA. cov are the first three principal components of
genotypes added as covariates to correct for possible population stratification
or sequencing biases, α are their fitted coefficients. We chose as covariates the
first three Eigenstrat [139] principal component calculated on genotype calls, as
in [82].

This is a strictly unsupervised procedure, as the dependent variable e is not
used in selecting the PCs that end up in the model. It allows us to dramatically
reduce the number of independent variables, since the average number of chosen
PCs is 3.75 (min: 1, max: 24).

Other ways of overcoming the overfitting problem, such Lasso [140] and
Ridge regression [141], are often used. We chose PC regression because it allows
a rigorous evaluation of the statistical significance of the model, as detailed
below. This is of course a crucial requirement for us when we compare our
model to other ways of detecting eQTLs. To associate a measure of statistical
significance to the regression models, while correcting for possible biases of the
genotype values we fitted two nested linear models and compared them via
an F test. The inner model uses as independent variables only the covariates
defined above and the outer one is the one described in 2.2 that adds the TBA
principal components. Thus, the F test identifies the genes for which the TBA
is able to effectively predict expression of different individuals after correcting
for differences in allele frequencies due to population stratification or sequencing
biases.

The nominal P-values of these F-tests are not completely reliable due to
possible violations in the underlying assumptions: therefore, for every model
we computed the F-test P-values of models obtained with 1000 permutations of
the expression values to obtain an empirical P-value. With this procedure, we
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obtained a P-value for at least one model for 22,125 genes: for only 4 genes the
model could not be fitted on any associated regulatory region due to insufficient
TBA variance among individuals.

2.3.4 Analysis of allele-specific expression
Allele-specific expression data were obtained from the Supplementary Material
of Ref. [82]. First of all, aseSNPs were attributed to the genes in which they
lie using the gene annotation provided by Gencode V12. Then, only aseSNPs
with at least 30 overlapping reads were selected to avoid potential bias in the
ASE detection due to the low number of overlapping reads and only those with
P < 0.005 were considered significant. Furthermore, only EUR and phased
individuals were taken into account. A gene was considered subjected to ASE in
a single individual when at least one of the associated aseSNP was significant. In
this way for each gene, we obtained the lists of ASE and non-ASE subjects. Only
genes with at least 10 individuals in each class were retained for the subsequent
analysis (2,740 genes): for each of them, the Euclidean distance between the
TBA profile of the two alleles was computed in all the individuals and then the
median distance was obtained independently for the ASE and non-ASE groups.

2.3.5 Multivariate eQTL Models
To test the effect of considering many variants together in eQTL analyses, we
fitted multivariate eQTL models using the same genetic information as in the
TBA models. We computed the principal component regression models with
the same procedure used for TBA but used as input for the PC analysis the
genotype state of all the variants used to obtain the individual sequences of the
regulatory regions (as described above).

Also in this case for each gene a linear model was done independently for
each linked regulatory region:

ei = β0 +

N∑
j=1

βj × pcMultiSNP i
j +

3∑
l=1

αl × covl + εi (2.3)

where pcMultiSNP i
j is the jth PC for the ith individual and N is the number

of principal components needed to explain 95% of the genotype calls variance.
The number of variants in the regulatory regions associated with genes ranges

from 1 to 539, while N ranges from 1 to 68 with average 5.5. The significance of
these models was evaluated with the same permutation-based procedure used
for the TBA model.

2.3.6 Relevant transcription factors
To identify the transcription factors most strongly predictive of the gene ex-
pression we used linear models in which the regressor is the TBA for a single
PWM, while correcting for the same covariates used in the PC regression.

ei = β0 + β × log ai +

3∑
l=1

αl × covl + εi (2.4)
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For each gene these linear models were done independently for each signifi-
cant regulatory region. The t-test p-values were corrected using the Benjamini-
Hochberg procedure to account for multiple testing and PWMs with a significant
(P < 0.05) coefficient were associated to the corresponding gene. An average
of 310 PWMs were significantly correlated to the expression level of the target
genes on each regulatory region.

2.3.7 Prediction of bQTLs
To establish if the results of univariate TBA models are consistent with bQTL
data, for each TF studied in [100] we fitted a logistic model that predicts if a
significant regulatory region contain bQTLs for that TF using as predictors the
result of the univariate TBA model and the length of the regulatory region.

t = β0 + β1 × univTBAi,j + β2 × lengthj (2.5)

Pr(bQTLi,j) =
1

1 + exp−t
(2.6)

Pr(bQTLi,j) is the fitted probability that the regulatory region j contains
bQTLs for TFi, univTBAi,j is a binary variable corresponding to the out-
come of the univariate TBA model done for TFi on the regulatory region j and
lengthj is the length of the regulatory region j. The regulatory region’s length
was included to take into account that the likelihood that a regulatory region
contains bQTLs increases as its length raises. The t-test p-values were cor-
rected using the Benjamini-Hochberg procedure to account for multiple testing
and those TFs with significant (P < 0.05) coefficients were considered predic-
tive of the presence of bQTLs in significant regulatory regions. The following
TF-PWM pairs were used:

• JUND/JUND_HUMAN.H10MO.A

• NF-κB/NFKB1_HUMAN.H10MO.B

• PU.1/SPI1_HUMAN.H10MO.A

• POU2F1/PO2F1_HUMAN.H10MO.B

• STAT1/STAT1_HUMAN.H10MO.A

2.3.8 bQTLs that are GWAS hits
To account for LD when considering matches between GWAS hits, bQTLs and
uni-eQTLs we downloaded linkage data for the CEU population from HapMap (
[63], downloaded 05/31/2016). We define two SNPs to be in LD when they have
an R2 > 0.8. GWAS results were downloaded from the GRASP catalog [118],
downloaded 07/15/2016) – the catalog was filtered removing results for gene
expression, methylation or differential splicing and keeping only SNPs with a
nominal P-value < 5 × 10−8, following [100]. The significance of the overlap
between GWAS hits and significant regulatory regions for the TBA model was
determined by computing an empirical P-value based on 5000 randomized sets
of regulatory regions.
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To establish if the TBA model is predictive of the presence of bQTLs as-
sociated with GWAS hits within regulatory regions and if it gives additional
information than those given by the uni-eQTL model, the following logistic
model was fitted:

t = β0 + β1 × TBAj + β2 × uni− eQTLj + β3 × lengthj (2.7)

Pr(bQTL−GWASj) =
1

1 + exp−t
(2.8)

where TBAj and uni− eQTLj are binary variables indicating if the regulatory
region j is significant according to the TBA model or the uni-eQTL model
(limited to putatively causal uni-eQTLs, namely those with the best P in the
analysis of [82]), lengthj is the length of the regulatory region j and Pr(bQTL−
GWASj) is the fitted probability that the regulatory region j includes bQTLs
associated with GWAS hits.
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The length of the expressed
3′ UTR is an intermediate
molecular phenotype linking
genetic variants to complex
diseases

While the previous chapter was dedicated to the investigation of the genetic
determinants of gene expression variation, here I will talk about transcript
structure, focusing on alternative polyadenylation. I will indeed present a new
computational strategy to discover genetic variants that specifically affect the
relative expression of alternative 3′ untranslated region (UTR) isoforms, pro-
viding also an extensive analysis of the possible mechanisms of action of the
pinpointed variants. Notably, our results point to an important role for ge-
netically determined alternative polyadenylation in affecting predisposition to
complex diseases, thus suggesting new ways to extract functional information
from GWAS data.

3.1 Results

3.1.1 Genetic variants affect the relative expression of al-
ternative 3′ UTR isoforms of thousands of genes

In order to investigate the effect of human genetic variants on the expression
of alternative 3′ UTR isoforms, we developed a computational approach similar
to the one commonly used for eQTL analysis (Figure 3.1). It was applied to
a large dataset in which WGS data paired with RNA-Seq data are available
for 373 European (EUR) individuals (GEUVADIS dataset [82]). A collection of
known alternative poly(A) sites [58] was used, together with a compendium of
human transcripts, to obtain an annotation of alternative 3′ UTR isoforms that

The content of this chapter was published as Ref. [142]
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A Alternative alleleG Reference allele Short 3'UTR isoform Long 3'UTR isoform
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Annotation of alternative 3'UTR isoforms

1. NCBI Reference Sequences (RefSeq)

2. Collection of alternative poly(A) sites (PolyA_DB v2)

Fitting of a linear model

GEUVADIS dataset

373 EUR individuals with WGS and RNA-Seq data

from lymphoblastoid cells (GM12878)

Figure 3.1 – Schematic representation of the method. Genotypic data paired with
RNA-Seq data from a large cohort of individuals are required to perform apaQTL
mapping analysis. RNA-Seq data are exploited, together with an annotation of alter-
native 3′ UTR isoforms, to compute for each gene the m/M value that is proportional
to the ratio between the expression of its short and long 3′ UTR isoforms. Then,
the association between the m/M values of a gene and each nearby genetic variant is
evaluated by linear regression. Genotypes are defined in the standard way: 0 means
homozygous for the reference allele, 1 means heterozygous and 2 indicates the presence
of two copies of the alternative allele.

Total Significant

Models 30,136,480 192,715

Genes 6,256 2,530

Variants 5,309,860 160,223

Table 3.1 – Results of apaQTL mapping analysis

was then combined with RNA-Seq data in order to compute, for each gene, the
expression ratio between short and long isoform (m/M value) in each individual.

Linear regression was then used to identify associations between the m/M
values of each gene and the genetic variants within a cis-window including the
gene itself and all sequence located within 1Mbp from the transcription start
site (TSS) or the transcription end site (TES). This led to the fitting of ∼30
million linear models, involving ∼6,300 genes and ∼5.3 million variants. About
190,000 models, involving 2,530 genes and ∼160,000 variants, revealed a signif-
icant association (Figure 3.2 and Table 3.1).

Our set of significant genes shows only moderate overlap with genes for which
eQTLs or transcript ratio QTLs (trQTLs) were reported in Ref. [82] from the
same data (Figure 3.2). Alternative polyadenylation can result in changes in
gene expression levels as a consequence of the isoform-dependent availability
of regulatory elements affecting the stability of transcripts, such as microRNA
binding sites [143]. In this case, apaQTLs should also be eQTLs. However, APA
may also have effects that do not imply changes in expression levels, including
the modulation of mRNA translation rates [144, 145] and localization [146],
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Figure 3.2 – (A) Manhattan plot illustrating the results of the apaQTL mapping
analysis. For each fitted model, the -log10 nominal P-value is shown according to
the position of the tested genetic variant. The red line indicates the threshold for
genome-wide statistical significance, after multiple-testing correction (nominal P-value
< 3.1×10−4, corresponding to corrected empirical P-value < 0.05). (B) Venn diagram
showing the overlap between genes with significant alternative polyadenylation QTL
(apaQTL), expression QTL (eQTL) and transcript ratio QTL (trQTL).

and protein cytoplasmic localization [43]. Similarly, a complete overlap with
trQTLs is not expected, because they were identified by taking into account
all the annotated alternative transcripts of a gene including alternative splicing
and transcription initiation. The identification of apaQTLs for several genes for
which trQTLs were not identified suggests that focusing on a specific class of
transcript structure allows higher sensitivity.

These results show that a large number of genetic determinants of alternative
polyadenylation can be inferred from the analysis of standard RNA-Seq data
paired with the genotypic characterization on the same individuals.

3.1.2 apaQTLs are preferentially located within active ge-
nomic regions

Just like eQTLs, we expect apaQTLs be located within genomic regions that
are active in the relevant cell type (lymphoblastoid cells for our data). In order
to verify this hypothesis, we superimposed the apaQTLs to the ChromHMM
annotation of the human genome for the GM12878 cell line [147], and used
logistic regression, as detailed in the Methods, to determine the enrichment or
depletion of apaQTLs for each chromatin state, expressed as an odds ratio (OR).
As expected, significant ORs > 1 were obtained for active genomic regions,
such as transcribed regions, promoters and enhancers, suggesting that genetic
variants have a higher probability of being apaQTLs when they are located in
active regions. Conversely, apaQTLs were depleted in repressed and inactive
chromatin states. Similar results were obtained using broad chromatin states
(Figure 3.3), defined following [147], or all 15 chromatin states reported by
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Figure 3.3 – Enrichment of apaQTLs within active genomic regions in the GM12878
cell line. For each broad state, that was defined starting from the ChromHMM anno-
tation, the OR obtained by logistic regression and its 95% CI are shown.

ChromHMM (Supplementary Figure B.1).
As a control, the same enrichment analysis was performed with the chro-

matin annotation obtained in a different cell type, namely normal human ep-
ithelial keratinocytes (NHEK). All NHEK active chromatin states showed a re-
duced enrichment in apaQTLs compared with GM1278, and regions repressed in
NHEK cells actually showed significant enrichment of lymphoblastoid apaQTLs
(Supplementary Figure B.2 and Supplementary Figure B.3). Taken together,
these results show that genetic variants affecting alternative polyadenylation
tend to be located in cell-type specific active chromatin regions.

The detection of a significant apaQTL enrichment within promoters and
enhancers suggests that also these genomic regions may be involved in the
APA regulation, in agreement with the similar enrichment found, generically
for trQTLs, in [82]. However, these results could also be explained, in principle,
by linkage disequilibrium between promoters or enhancers and 3′ UTR regions.
To evaluate the prevalence of this phenomenon, we observed that among 2113
(3192) significant genetic variants surviving LD pruning (see Methods) inside
promoters (enhancers) only 288 (376) are in LD (R2 > 0.8) with significant ge-
netic variants within 3′ UTRs. Furthermore, the reported enrichments remained
highly significant after the exclusion of these variants, supporting the idea that
promoters and enhancers have an independent role in the genetic component of
APA regulation.

In the following, we will divide apaQTLs in two classes: intragenic apaQTLs
are those located inside one of the genes whose isoform ratio we are able to
analyse, while all other apaQTLs will be referred to as extragenic (note that
these might be located inside a gene for which we are unable to perform the
analysis, for one of the reasons explained in the Methods).
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Figure 3.4 – Enrichment of intragenic apaQTLs within coding and non-coding tran-
script regions. For each gene region, the OR obtained by logistic regression its 95%
CI are shown.

3.1.3 Intragenic apaQTLs are enriched in coding exons
and 3′ UTRs

Having established that genetic variants have a widespread influence of the ex-
pression of alternative 3′ UTR isoforms, we turned to their putative mechanisms
of action. First of all, we considered the distribution of intragenic apaQTLs
among regions contributing to the mRNA vs. introns. As shown in Figure 3.4,
intragenic apaQTLs are enriched in coding exons and 3′ UTRs, and depleted
in introns and 5′ UTRs. The depletion of introns suggests that most intragenic
apaQTLs exert their regulatory role at the transcript level, e.g. by modulating
the binding of trans-acting factors to the mRNA.

Among mRNA regions, the enrichment of 3′ UTRs is expected, since these
regions contain several elements involved in the regulation of both alternative
polyadenylation and mRNA stability. The enrichment of coding exons could
be ascribed to regulatory elements residing in these portions of the mRNAs,
or to residual effects of linkage disequilibrium (LD) with variants located in
the 3′ UTR, notwithstanding the LD pruning procedure implemented in the
enrichment analysis (see Methods). Note that while several poly(A) sites are
located upstream of the last exon [148], within both intronic sequences and in-
ternal exons, such sites were not taken into account in our analysis. Finally,
the depletion of 5′ UTRs might be due to the distance of these elements from
the polyadenylation loci, and to the fact that these regions are mostly involved
in other regulatory mechanisms, such as translational regulation [149]. In the
following, we examine in more detail three possible mechanisms by which intra-
genic apaQTLs could exert their action.

Creation and destruction of PAS motifs

The first possibility is direct interference with the APA regulation, favoring the
production of one of the two isoforms in individuals with a particular genotype.
A comprehensive atlas of high-confidence PAS has been recently reported [150].
In addition to the canonical PAS motifs (AAUAAA and AUUAAA) it contains
10 previously known signals and 6 new motifs. Exploiting this resource, we
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were able to identify SNPs that cause the creation or the destruction of putative
functional PAS motifs and, as expected, we found that they were enriched among
apaQTLs (OR = 1.72, 95% confidence interval (CI) = 1.08 - 2.75, P-value =
0.0216). In total, 42 PAS-altering variants were found to be apaQTLs of the
gene in which they reside. While expected, this result can be considered to
validate our strategy.

A few examples are worth discussing in detail. SNP rs10954213 was shown by
several studies [52,107,151] to determine the preferential production of the short
isoform of the IRF5 transcription factor through the conversion of an alternative
PAS motif (AAUGAA) into the canonical one (AAUAAA) in a proximal position
within the 3′ UTR. Consistently, we found that this variant is associated with
higher prevalence of the short isoform (Figure 3.5). Moreover, the same variant
was associated to higher risk of systemic lupus erythematosus (SLE), and higher
IRF5 expression, that could be due to the loss of AU-rich elements (ARE) in the
short transcript isoform [107]. Globally, these findings are in agreement with the
known involvement of IRF5 in several pathways that are critical for the onset
of SLE (Type I IFN production, M1 macrophage polarization, autoantibody
production, and induction of apoptosis [152]).

A similar trend was detected in the case of the rs9332 variant, located within
the 3′ UTR of the MTRR gene, encoding an enzyme essential for methionine
synthesis (Figure 3.6). This variant was reported to be associated with a higher
risk of spina bifida, along with other variants within the same gene [154]. We
found that the variant is associated with the increased relative expression of
the short isoform of the MTRR transcript, as a consequence of the creation of
a proximal canonical PAS. We can thus speculate that, similarly to what was
shown for IRF5, this post-transcriptional event could lead to a variation in the
activity of the enzyme activity and ultimately to increased disease susceptibility.

The same mechanism might provide putative mechanistic explanations for
associations found by GWAS studies. For example we found the variant rs5855
to be an apaQTL for the PAM gene (Supplementary Figure B.4), essential
in the biosynthesis of peptide hormones and neurotransmitters [155–157]. No
eQTLs or trQTLs for this gene were revealed by the analysis of the same data
reported in [82]. This variant replaces an alternative PAS motif (AGUAAA)
with the canonical AAUAAA, thus presumably increasing its strength. This
PAS motif is located 26 bps upstream of an APA site corresponding to a 3′ UTR
of ∼450 bps, instead of the ∼2,000 bps of the canonical isoform, lacking several
predicted microRNA binding sites. Indeed, our analysis revealed a shortening
of the 3′ UTR in individuals with the alternate allele, i.e. the canonical PAS
motif. Notably, the variant is in strong LD (R2 = 0.90) with the intronic
variant rs10463554, itself an apaQTL for PAM, which has been associated to
Parkinson’s disease in a recent meta-analysis of GWAS studies [158].

Conversely, the destruction of a canonical, proximal PAS motif leads to
shortening of the 3′ UTR of BLOC1S2 (Supplementary Figure B.4). The variant
rs41290536 replaces the canonical PAS motif AAUAAA with the non-canonical
one AAUGAA 17 bps upstream of a poly(A) site corresponding to a UTR length
of ∼750 bps compared to the ∼2,200 of the longest isoform. The variant is in
complete LD (R2 = 1) with two variants that have been associated to predis-
position to squamous cell lung carcinoma (rs28372851 and rs12765052) [159].
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Figure 3.5 – (A) Boxplot showing the variation of the log2-transformed m/M values
obtained for IRF5 as a function of the genotype of the individuals for rs10954213.
(B) LocusZoom plot [153] illustrating the results obtained for IRF5 in the genomic
region around rs10954213 (100kb both upstream and downstream its genomic loca-
tion). In the top panel each tested genetic variant was reported as a function of both
its genomic coordinate and its association level with IRF5 (log10-transformed nomi-
nal P-value); the points color reflects the LD level (R2) between rs10954213 and each
of the other genetic variants in the locus. The bottom panel shows the genes and
their orientation in the locus. (C) Figure adapted from the UCSC Genome Browser
screenshot. RNA-Seq tracks, reporting coverage per million mapped reads, are shown
for three representative individuals: NA12778 (homozygous for the reference allele),
HG00325 (heterozygous) and NA12872 (homozygous for the alternative allele). IRF5
RefSeq, IRF5 PRE/POST segments, poly(A) sites and common SNPs are shown. The
rs10954213 variant and the affected poly(A) site (Hs.521181.1.20) are highlighted.
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Figure 3.6 – (A) Boxplot showing the variation of the log2-transformed m/M val-
ues obtained for MTRR as a function of the genotype of the individuals for rs9332.
(B) LocusZoom plot illustrating the results obtained for MTRR in the genomic re-
gion around rs9332 (100kb both upstream and downstream its genomic location).
(C) Figure adapted from the UCSC Genome Browser screenshot. RNA-Seq tracks,
reporting coverage per million mapped reads, are shown for three representative indi-
viduals: HG00268 (homozygous for the reference allele), NA12340 (heterozygous) and
NA11994 (homozygous for the alternative allele). MTRR RefSeq, MTRR PRE/POST
segments, poly(A) sites and common SNPs are shown. The rs9332 variant and the
affected poly(A) site (Hs.481551.1.38) are highlighted.
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Alteration of microRNA binding

In an alternative scenario, genetic variants can influence the relative expression
of alternative 3′ UTR isoforms by acting on the stability of transcripts, for
example through the creation or destruction of microRNA binding sites. For
each gene with alternative 3′ UTR isoforms, we divided the 3′ UTR into two
segments: the "PRE" segment, common to both isoforms, and the "POST"
segment, contained only in the longer isoform. Variants altering microRNA
binding sites located in the POST segment can result in the variation of the
relative isoform expression since they affect only the expression of the long
isoform.

For example, we found that the rs8984 variant is associated with an increased
prevalence of the long transcript isoform of the CHURC1 gene, an effect that
could be due to the destruction of a binding site recognized by microRNAs
of the miR-582-5p family within the POST segment of the gene (Supplemen-
tary Figure B.5). More generally, we found that apaQTLs are enriched, albeit
slightly, among the genetic variants that create or break putative functional
microRNA binding sites (OR = 1.15, 95% CI = 1.02 - 1.30, P-value = 0.022).
However, we could not find significant agreement between the predicted and ac-
tual direction of the change in isoform ratios for these cases. Together with the
marginal significance of the enrichment, this result suggests that the alteration
of microRNA binding sites is not among the most relevant mechanisms in the
genetic determination of 3′ UTR isoform ratios.

Alteration of RNA-protein binding

RNA-binding proteins (RBPs) play important roles in the regulation of the
whole cascade of RNA processing, including co- and post-transcriptional events.
Although many of them have not been fully characterized yet, a collection
of 193 positional weight matrices (PWMs) describing a large number of RNA
motifs recognized by human RBPs has been obtained through in-vitro experi-
ments [160]. Here we exploited this resource to identify SNPs that alter putative
functional RBP binding sites. Consistently with the involvement of RBPs in
the regulation of alternative polyadenylation, mRNA stability and microRNA
action, we found a highly significant enrichment of RBP-altering SNPs among
intragenic apaQTLs (OR = 1.48, 95% CI = 1.31 - 1.66, P-value = 8.54×10−11).

Specifically, we obtained a positive and significant OR for 20 individual
RBP binding motifs (Supplementary Table B.1). Although in most cases the
enrichment is modest, some of the enriched motifs correspond to RNA-binding
domains found in RBPs with a previously reported role in polyadenylation reg-
ulation (members of the muscleblind protein family [57, 161], KHDRBS1 [162]
and HNRNPC [150]). Other enriched RNA-binding motifs are associated with
splicing factors (RBM5, SRSF2, SRSF9 and RBMX ) and other RBPs that may
be involved in RNA processing (such as members of the MEX3 protein family
and HNRNPL). On the contrary, only one significant motif is associated with
a RBP that may be involved in RNA degradation (CNOT4 [163]). The in-
volvement of several splicing factors is consistent with evidence supporting a
mechanistic interplay between polyadenylation and splicing, that goes beyond
the regulation of the usage of intronic poly(A) sites [164–168].
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3.1.4 Extragenic apaQTLs act in-cis through the pertur-
bation of regulatory elements

Understanding the function of extragenic apaQTLs is less straightforward be-
cause, although there are few examples of DNA regulatory elements contributing
to APA regulation [169], it is commonly believed that APA is mainly controlled
by cis-elements located within transcripts, both upstream and downstream of
the poly(A) sites [143].

To further explore this aspect we took advantage of a different annotation
of active genome regions, which includes the association between regulatory re-
gions and target genes, namely the cis-regulatory domains (CRDs) identified in
lymphoblastoid cell lines in Ref. [170]. Extragenic apaQTLs were indeed found
to be enriched in CRDs (OR = 1.73, 95% CI = 1.69 - 1.78, P-value < 10−16).
The 3D structure of the genome is a key aspect of gene regulation [171], as
it determines physical contacts between distal regulatory regions and proximal
promoters. In particular, CRDs have been described as active sub-domains
within topologically associated domains (TADs), containing several non-coding
regulatory elements, both proximal and distal. The perturbation of those regu-
latory elements by genetic variants can lead to the alteration of gene expression
and perhaps interfere with other processes such as alternative polyadenylation,
as suggested by our results. Importantly, CRDs have been assigned to the
nearby genes they regulate. We could thus observe that extragenic apaQTLs
tend to fall within CRDs that have been associated with their target genes
much more frequently than expected by chance. Indeed, this correspondence
was verified for 27,527 extragenic apaQTLs, while the same degree of concor-
dance was never obtained in 100 permutations in which each extragenic apaQTL
was randomly associated to a gene in its cis-regulatory window (median number
of correspondences 12,571). These results suggest an important role of genetic
variants located in active, non-transcribed cis-regulatory regions in regulating
alternative polyadenylation of the target genes.

3.1.5 A role for apaQTLs in complex diseases
Since common genetic variation is involved in complex diseases, often by af-
fecting gene regulation, a natural question is whether apaQTLs can be used to
provide a mechanistic explanation for some of the genetically driven variability
of complex traits, thus adding 3′ UTR length to the list of useful intermedi-
ate phenotypes. Besides the specific examples discussed above, we found an
overall striking enrichment among apaQTLs of genetic variants reported in the
NHGRI-EBI GWAS Catalog [172] (OR = 3.17, 95% CI = 3.01 - 3.33, P-value
< 10-16).

We also investigated the enrichment of each trait category defined by the
Experimental Factor Ontology (EFO) and then for each individual trait. In line
with the fact that the apaQTL mapping was performed in lymphoblastoid cells,
the strongest enrichment was observed for immune system disorders (OR = 5.41,
95% CI = 4.52 - 6.45, P-value = 2.50× 10−77) (Figure 3.7 and Supplementary
Table B.2). However, a strong enrichment was also detected for almost all the
other tested categories, including neurological disorders (OR = 4.32, 95% CI =
3.86 - 4.83, P-value = 2.47× 10−142) and cancer (OR = 3.96, 95% CI = 3.36 -
4.64, P-value = 4.15× 10−63).
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Figure 3.7 – Enrichment of GWAS hits among apaQTLs, for different categories of
complex traits. For each category, the OR obtained by logistic regression and its 95%
CI are shown.

A significant enrichment was detected for 95 individual complex traits, in-
cluding several diseases. Among these, the largest ORs were observed for autism
spectrum disorder (OR = 42.6, 95% CI = 32.9 - 55.5, P-value = 2.36× 10−174),
squamous cell lung carcinoma (OR = 26.1, 95% CI = 15.7 - 43.3, P-value =
1.29 × 10−36), lung carcinoma (OR = 17.9, 95% CI = 12.7 - 25.2, P-value =
9.63 × 10−62), schizophrenia (OR = 10.6, 95% CI = 9.01 - 12.4, P-value =
1.25× 10−182), and HIV-1 infection (OR = 6.51, 95% CI = 3.75 - 10.8, P-value
= 2.28× 10−12).

We observed that apaQTLs that are also GWAS hits often map to genes
in the human leukocyte antigen (HLA) locus, suggesting that in at least some
cases the enrichment could be mostly driven by this genomic region. Somewhat
unexpectedly, this was particularly evident for neurological disorders. In order
to clarify this point, we evaluated all enrichments after excluding the variants
in the HLA locus. Although in some cases the OR decreased after removing
HLA variants, for most GWAS categories the enrichment was still significant
(Supplementary Figure B.6 and Supplementary Table B.3). For example, we
found 155 apaQTLs associated with autism spectrum disorder, 116 of which
affecting HLA genes. After the exclusion of HLA variants, the enrichment was
still highly significant (OR = 10.66, 95% CI = 6.92 - 15.95, P-value = 7.05 ×
10−29). On the contrary, the enrichment of variants associated to pulmonary
adenocarcinoma is driven by the HLA locus, and becomes non-significant after



Chapter 3. apaQTL mapping analysis 64

excluding HLA variants (OR = 1.35, 95% CI = 0.22 - 4.39, P-value = 0.68).

3.1.6 The effect of genetic variants on APA can be con-
firmed in patients

As briefly discussed above, the rs10954213 variant is associated with a higher risk
of SLE. Evidence about the related molecular mechanism arose from the analysis
of cell lines derived from healthy individuals [52,151], and the effect of the variant
on IRF5 expression in blood cells was confirmed in SLE patients [173, 174].
However, direct evidence on the effect of this variant on APA regulation in SLE
patients is still missing.

In order to assess whether rs10954213 affects IRF5 APA regulation in SLE
patients, we analyzed RNA-Seq data derived from whole blood cells in 99 pa-
tients [175]. After the exclusion of 52 individuals whose genotype cannot be de-
termined with certainty from RNA-Seq reads, we detected a strong difference in
IRF5 m/M values among the three rs10954213 genotypes, with the alternative
allele associated with higher m/M values, i.e. shorter 3′ UTR (Kruskal-Wallis
test P-value = 2.49×10−8; Figure 3.8). Therefore the variant has, at least quali-
tatively, the same effect in the whole blood of SLE patients as in lymphoblastoid
cell lines of normal individuals.

3.2 Discussion
We used a new efficient strategy to study how human genetic variants influence
the expression of alternative 3′ UTR isoforms. This issue has been previously
investigated with different approaches [82, 104, 108, 109, 176]. The method we
propose combines wide applicability, being based on standard RNA-Seq data,
with the high sensitivity allowed by limiting the analysis to a single type of
transcript structure variant, namely 3′ UTR length. Such higher sensitivity
led us to discover thousands of variants associated with 3′ UTR length that
were not identified in a general analysis of transcript structure from the same
data in [82]. Moreover, the significant overlap between our apaQTLs and the
eQTLs identified in [82] confirms the known relevant role of 3′ UTRs in gene
expression regulation. However, the regulation of 3′ UTR length is known to
affect regulatory processes that do not directly alter mRNA abundance, such as
regulation of translation efficiency, mRNA localization and membrane protein
localization [43,177]. Indeed most of the apaQTLs we found were not identified
as eQTLs in [82].

The various mechanisms underlying the association between genetic variants
and the relative abundance of 3′ UTR isoforms can be classified in two main
classes based on whether they affect the production or degradation rates of the
isoforms. The production related-mechanisms include the alteration of APA
sites, of cis-regulatory elements located in promoters and enhancers, and of
binding sites of RBPs involved in nuclear RNA processing; the degradation-
related mechanisms include the alteration of the binding sites of microRNAs
and cytoplasmatic RBPs affecting mRNA stability. Taken together, our results
suggest that the genetic effects on 3′ UTR isoforms act prevalently at the level of
production, as shown by the strong enrichment of apaQTLs in non-transcribed
regulatory regions and among the variants creating or disrupting APA sites, and
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Figure 3.8 – (A) The effect of rs10954213 on the relative expression of the IRF5 al-
ternative isoforms was investigated also in a small cohort of SLE patients. The boxplot
shows the variation of the log2-transformed m/M values obtained for IRF5 as a func-
tion of the genotype of the individuals. (B) Figure adapted from the UCSC Genome
Browser screenshot. RNA-Seq tracks, reporting coverage per thousand mapped reads,
are shown for three representative individuals: SRR2443195 (homozygous for the ref-
erence allele), SRR2443197 (heterozygous) and SRR2443242 (homozygous for the
alternative allele). IRF5 RefSeq, IRF5 PRE/POST segments, poly(A) sites and
common SNPs are shown. The rs10954213 variant and the affected poly(A) site
(Hs.521181.1.20) are highlighted.
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by the relatively weak enrichment of variants creating or disrupting microRNA
binding sites. Also the results on altered RBP binding sites confirm this picture,
since most motifs altered by apaQTLs are associated to nuclear RBPs involved
in nuclear RNA processing.

In particular, we identified several apaQTLs creating or destroying putative
functional PAS motifs. However, it should be noted that our ability to detect
these events is intrinsically limited by the motif repertoire that we used [150],
which might miss some of the rarest alternative PAS motifs. For example, we
found that the rs6151429 variant is associated with the increased expression
of the long isoform of the transcript codified by the Arylsulfatase A (ARSA)
gene (Supplementary Figure B.4), in agreement with previous evidence [178].
However, we did not include this variant among those disrupting a PAS motif
since the disrupted motif (AAUAAC) is not included in the catalog that we used.
In addition, we considered only PAS-altering single nucleotide substitutions,
while also other types of genetic variants can modify the PAS landscape of a
gene. For example, a small deletion (rs374039502) causes the appearance of a
new PAS motif within the TNFSF13B gene, and has been associated with an
higher risk of both multiple sclerosis and SLE in the Sardinia population [179].

We observed a strong enrichment of apaQTLs in regulatory regions such
as promoters and enhancers, as previously found for variants generically af-
fecting transcript structure in [82]. These results point to an important role
of DNA-binding cis-acting factors in the regulation of 3′ UTR length, and to
the existence of a widespread coupling between transcription and polyadenyla-
tion [177,180]. The mechanisms behind this coupling are thought to include the
interaction between rates of Pol II elongation and alternative polyadenylation
and the recruitment, by the transcription machinery, of trans-acting factors af-
fecting PAS choice [143]. Moreover, it has been shown that RBPs involved in
APA regulation can interact with promoters [169].

Regarding the effect of genetic variants on mRNA stability, we focused on the
perturbation of microRNA binding, taking into account both the creation and
the destruction of microRNA binding sites within transcripts. The relevance of
mRNA stability seemed to be confirmed by a modest enrichment of microRNA-
altering SNPs among intragenic apaQTL, however the direction of their effect
on microRNA binding is not statistically consistent with the expected direction
of the change in 3′ UTR isoform ratio. The same type of ambiguity has been
previously reported with regard to the relationship between the effect of SNPs on
microRNA binding and gene expression levels [181] and makes us doubt whether
these microRNA-altering apaQTLs are truly causal for the associated gene.
These results suggest that the alteration of microRNA binding may not be a
predominant mechanism explaining the variation of the expression of alternative
3′ UTR isoforms across individuals. Limitations in the accuracy of predicted
microRNA binding sites might also contribute to this result.

Another possible mechanism of action of intragenic apaQTLs is the pertur-
bation of the regulatory action of RBPs, as indicated by the modest but highly
significant enrichment of SNPs altering RNA-binding motifs. However, the lack
of strong enrichments when considering each motif individually suggests that
specific RBP motifs may have a small regulatory impact on APA that may
also depend on the context, as recently suggested [57]. As in the case of mi-
croRNAs, also our limited knowledge of the binding preferences of RBPs might
limit our power to detect their effects. More sophisticated models should take
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into account the highly modular structure of RBPs that often include multiple
RNA binding domains (RBDs), the emerging importance of both the binding
context and the RNA structure and even more sophisticated modes of RNA
binding [182,183].

Furthermore, it is reasonable to assume that also non-canonical modes of
APA regulation can be affected by genetic variants and therefore drive the de-
tection of variable isoform expression ratios. For example, it has been recently
suggested that an epitranscriptomic event, the m6A mRNA methylation, can
be associated with alternative polyadenylation [184]. In addition, recently pub-
lished results suggest that genetic variants could affect APA regulation also in
an indirect way, without affecting the regulatory machinery. Past studies have
reported that a narrow range of 10-30nt between the PAS and the poly(A) site
is required for efficient processing, however [185] suggested that also greater
distances can sometimes be used thanks to RNA folding events that bring the
PAS and the poly(A) site closer to each other. Therefore, we can speculate that
if a genetic variant affects RNA folding in such a way as to modify the distance
between the PAS and the poly(A) site, it could also influence APA regulation.

While the mechanisms discussed above act at the level of the primary or
mature transcript, our results revealed a perhaps unexpectedly large number
of extragenic apaQTLs, mostly located in regulatory regions. These apaQTLs
point to an important role of DNA-binding elements such as transcription fac-
tors in regulating alternative polyadenylation through long-distance interactions
with cleavage and polyadenylation factors. The investigation of these mecha-
nisms is thus a promising avenue of future research.

Alternative polyadenylation can affect several biological processes, influenc-
ing mRNA stability, translation efficiency and mRNA localization [143]. There-
fore, it is not surprising that its perturbation has been associated with multiple
pathological conditions [89, 186]. In the present study, we detected a strong
enrichment of GWAS hits among apaQTLs, supporting the idea that 3′ UTR
length is a useful addition to the list of intermediate molecular phenotypes that
can be used for a mechanistic interpretation of GWAS hits. In particular, we
identified genetic variants previously associated to neurological disorders, such
as autism, schizophrenia and multiple sclerosis, which may act by affecting the
regulation of polyadenylation. The importance of post-transcriptional events
in the onset of neurological diseases has been recently confirmed by two stud-
ies demonstrating that genetic variants affecting alternative splicing (sQTL)
give a substantial contribution to the pathogenesis of schizophrenia [187] and
Alzheimer’s disease [188]. We also observed that the relevant apaQTLs often
map to HLA genes, but that the enrichment is not explained by the HLA locus
alone. On the other hand, examples of APA events involving HLA genes have
been reported [189, 190] and genes encoding antigen-presenting molecules ac-
count for the highest fraction of genetic risk for many neurological diseases [191].

We are aware of some limitations of this study. First, the simple model that
we used for the definition of alternative 3′ UTRs isoforms limits the type of
events that can be detected, because we can see only events involving poly(A)
sites located within the transcript segments taken into account for the compu-
tation of the m/M values (the PRE and the POST segments). Nonetheless,
the adoption of this simple model significantly reduces the computational bur-
den and might be sufficient to indicate general trends that can be subsequently
further investigated with more sophisticated models. Indeed, it has been previ-
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ously shown, in a slightly different context (i.e. the comparison of APA events
detected in different cellular conditions or tissues), that the results obtained
with our model are comparable with those obtained exploiting a more com-
plex model that takes into account all the possible APA isoforms of a gene,
especially because also genes with multiple poly(A) sites mainly use only two
or a few of them [56]. Second, our strategy depends on a pre-existing anno-
tation of poly(A) sites. Methods that infer the location of poly(A) sites from
RNA-Seq data are available, but they can have lower sensitivity in the detection
of APA events [56, 57]. In addition, although the method is generally able to
successfully discriminate APA events from alternative splicing events, it may
give rise to spurious associations when intron retention is present within the
3′ UTRs and therefore such special cases should be inspected with particular
attention. Furthermore, we examined only a single cell type (lymphoblastoid
cells) to demonstrate the feasibility of apaQTL mapping analysis. A broader
investigation, exploiting data such as those provided by Genotype-Tissue Ex-
pression (GTEx) consortium [95], would be particularly valuable. Indeed, APA
regulation seems to be significantly tissue-specific and global trends of poly(A)
sites selection in specific human tissues have been described: for example tran-
scripts in the nervous system and brain are characterized by preferential usage
of distal PAS, whereas in the placenta, ovaries and blood the usage of proxi-
mal PAS is preferred [177]. Finally, we analysed only alternative APA isoforms
that derive from coding transcripts, because polyadenylation has been classi-
cally described in the context of mRNA processing. Nevertheless, recent evi-
dence suggests that also other gene classes might be specifically investigated in
future studies. Notably, in a comprehensive mapping of PASs in mammalian
genomes, about 60% human PASs were assigned to mRNAs, while about 10%
human PASs were attributed to long non-coding RNA (lncRNA) genes [192].
Indeed, although lncRNAs have several unique features, many of them are tran-
scribed by RNA polymerase II (Pol II) and therefore are 5’-capped, spliced and
polyadenylated [193].

In conclusion, we have identified thousands of common genetic variants as-
sociated with alternative polyadenylation in a population of healthy human
subjects. Furthermore, our results suggest that alternative polyadenylation is a
promising intermediate molecular phenotype for the mechanistic interpretation
of genetic variants associated to phenotypic traits and diseases. Therefore, we
are now working to integrate apaQTLs with GWAS summary statistics, thus
aiming to directly identify genes whose contribution to diseases is mediated by
APA dysregulation (for further details see Chapter 4).

3.3 Material and Methods

3.3.1 Data sources
Human genome and transcriptome

The coordinates of the NCBI Reference Sequences (RefSeqs) in the human
genome (hg19) were downloaded from the UCSC Genome Browser (09/04/2015)
[194,195]. The corresponding transcript-gene map was downloaded from NCBI
(version 69) and the Bioconductor R package org.Hs.eg.db v3.4.0 [196] was
used to associate each Entrez Gene Id to its gene symbol.



Chapter 3. apaQTL mapping analysis 69

In addition, the reference sequence of the hg19 version of the human genome
was downloaded from the ENSEMBL database and a collection of poly(A) sites
was obtained from PolyA_DB2 (10/02/2014) [58].

ChromHMM annotations [147] were downloaded from the UCSC Genome
Browser for the GM12878 and the NHEK cell lines (http://genome-euro.
ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm).

Finally, the coordinates of Cis Regulatory Domains (CRDs) and their associ-
ation with genes were downloaded for lymphoblastoid cells from ftp://jungle.
unige.ch/SGX/ [170].

WGS and RNA-Seq data

We exploited the RNA-Seq data obtained by the GEUVADIS consortium in
lymphoblastoid cell lines of 462 individuals belonging to different populations,
but we considered only 373 individuals with European ancestry (EUR). BAM
files were downloaded from the E-GEUV-1 dataset [82] in the EBI Array-
Express archive (https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/).
We also downloaded genotypic data for the same individuals and the results of
the eQTL/trQTL mapping analyses. The downloaded VCF files include geno-
types for 465 individuals: among the 462 of them for which also RNA-Seq
data are available, the large majority had been previously subjected to Whole
Genome Sequencing (WGS) by the 1000 Genomes Project (Phase 1) [65], but
the GEUVADIS consortium additionally obtained genomic data for 41 of them
through genotyping with Single Nucleotide Polymorphism (SNP) array followed
by genotype imputation [82]. Furthermore, whole blood RNA-Seq data for 99
individuals affected by SLE were downloaded from the NCBI SRA database
(SRP062966) [175,197].

Regulatory motifs and related expression data

Different collections of regulatory motifs were downloaded. A list of 18 PAS
motifs was obtained from [150], microRNA seeds were downloaded from Tar-
getScan 7.2 [198] and Positional Weight Matrices (PWMs) describing the bind-
ing specificities of RNA-binding proteins were downloaded from the CISBP-
RNA dataset [160], including both the experimentally determined motifs and
those that were inferred from related proteins. In addition, the list of microR-
NAs and RBPs expressed in lymphoblastoid cells were obtained from the expres-
sion data available in the E-GEUV-2 and E-GEUV-1 datasets on the EBI Array-
Express archive (https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-2/).

GWAS Catalog

A collection of genomic loci associated with human complex traits was obtained
by downloading the NHGRI-EBI GWAS Catalog, v1.0.2 [172]. This resource is
continuously updated: the version we used was downloaded on October 10th,
2018 and it was mapped to GRCh38.p12 and dbSNP Build 151. From the same
website, we also downloaded a file showing the mapping of all the reported traits
to the Experimental Factor Ontology (EFO) terms [199], including the parent
category of each trait (the version of the downloaded file was r2018-09-30). In
addition, the dbSNP Build 151 [200] collection of human genetic variants was
downloaded for hg19.

http://genome-euro.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm
http://genome-euro.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm
ftp://jungle.unige.ch/SGX/
ftp://jungle.unige.ch/SGX/
https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/
https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-2/
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3.3.2 Annotation of alternative 3′ UTR isoforms
We considered the human mRNAs included in RefSeq and associated them
with the corresponding Entrez Gene Id. Moreover, we collapsed together the
structures of all the transcripts assigned to a gene, using the union of all the
exons of the various transcripts associated to a gene and defining the 3′ or
5′ UTR using respectively the most distal coding end and the most proximal
coding start.

The coordinates of the human poly(A) sites were converted from hg17 to
hg19 using liftOver [201] and then combined with the gene structures defined
above to define the alternative 3′ UTR isoforms. For the definition of alter-
native 3′ UTR isoforms we adopted a simple model taking into account only
two alternative poly(A) sites for each gene, because previous evidence suggests
that also genes with multiple poly(A) sites mainly use only two of them [56].
In particular, for each gene we selected the most proximal poly(A) site among
those falling within exons, preferring those located within the 3′ UTR, and the
end of the gene as the distal poly(A) site. In this way we were able to define
two segments of interest for each gene: the PRE segment, extending from the
beginning of the last exon to the proximal poly(A) site, and the POST segment,
from the proximal poly(A) site to the end of the gene. The PRE fragment is
assumed to be contained into both the long and the short isoform, while the
POST segment should be contained exclusively into the long isoform.

The relative prevalence of the short and long isoforms are evaluated, as
described below, based on the number of RNA-Seq reads falling into the PRE
and POST regions. While the whole region from the transcription start site to
the proximal poly(A) site could be taken, in principle, as the PRE region, we
chose to limit it to the last exon to minimize the confounding effect of alternative
splicing.

3.3.3 Computation of m/M values
Using the Bioconductor R package Roar [56], for each gene with alternative
3′ UTR isoforms we obtained anm/M value in each individual. Them/M value
estimates the ratio between the expression of the short and the long isoform of
a gene in a particular condition and the m/Ma,i of gene a in the ith individual
is defined as

m/Ma,i =
lPOSTa ×#rPREa,i

lPREa
×#rPOSTa,i

− 1 (3.1)

where lPREa and lPOSTa are respectively the length of the PRE and POST
segment of the gene a, #rPREa,i and #rPOSTa,i are respectively the number
of reads mapped on the PRE and the POST segment of the gene a in the ith
individual.

The m/M values were computed for 14,542 genes for which we were able to
define alternative 3′ UTR isoforms. Infinite and negative values of m/M (that
happen when the POST region does not produce any reads, and when the POST
region produces more reads than the PRE region after length normalization,
respectively) were considered as missing values. Then only those on autosomal
chromosomes (chr1-22) and with less than 100 missingm/M values were selected
for the following investigation, leaving us with 6,256 genes.
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3.3.4 Genotypic data pre-processing
Starting from the downloaded VCF files, we extracted genotypic data for 373
EUR individuals for whom also RNA-Seq data are available using VCFtools [202].
In addition, only common genetic variants with Minor Allele Frequency (MAF)
higher than 5% were considered in all the following analyses. The MAF values
were computed taking into account that the reference allele reported in the VCF
file may not always be the most frequent one in the EUR population consid-
ered by itself and we conservatively attributed the most frequent homozygous
genotype to individuals for which the genotype was missing, thus being sure
to exclude all the less frequent variants from the analysis. We are aware that
these MAF values may be an underestimate of the real ones and therefore in
all the enrichment analyses (see below for details) we instead used MAF values
obtained ignoring individuals with missing data.

3.3.5 Principal Component Analysis of genotypic data
It is known that special patterns of linkage disequilibrium (LD) can cause arti-
facts when a Principal Component Analysis (PCA) is used to investigate pop-
ulation structure [203]. We filtered out all the genetic variants falling within
24 long-range LD (LRLD) regions whose coordinates were derived from [203].
In addition, following [90], we performed an LD-pruning of the genetic variants
using the --indep-pairwise function from PLINK v1.9 [204] to recursively ex-
clude genetic variants with pairwise genotypic R2 >80% within sliding windows
of 50 SNPs (with a 5-SNPs increment between windows). Also in this case
VCFtools [202] was used to apply all these filters to the VCF files and finally
EIGENSTRAT v6.1.4 [139] was used to run the PCA on the remaining genotypic
data at the genome-wide level.

3.3.6 apaQTL mapping
From a statistical point of view, we adopted the same strategy used in stan-
dard eQTL mapping analyses [82] to identify genetic variants that influence the
expression level of the alternative 3′ UTR isoforms of a gene. For each of the
6,256 examined genes, we defined a cis-window as the region spanning the gene
body and 1 Mbp from both its TSS and its TES. Then, for each gene a linear
model was fitted, independently for each genetic variant within its cis-window,
using the genotype for the genetic variant as the independent variable and the
log2-transformed m/M value of the gene as the dependent variable:

log2(m/Ma,i) = β0 + β1 × gj,i + β2 × Ii +

3∑
n=1

αn × gPCn,i + εa (3.2)

where log2(m/Ma,i) is the log2-transformed m/M value computed for the a
gene in the ith individual, gj,i is the genotype of the ith individual for the jth
genetic variant, Ii is the imputation status (0|1) of the ith individual, gPCn,i is
the value of the nth Principal Component (PC) obtained from genotypic data
for the ith individual, β0 is the intercept, β1, β2 and αn are the fitted regression
coefficients and εa is the error term for the gene a.
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The fitting of the linear models was done using MatrixEQTL [205]. Genotypes
were represented using the standard 0/1/2 codification, referring to the number
of alternative alleles present in each individual, and matrices with genotypic
information were obtained from VCF files exploiting the Perl API (Vcf.pm) in-
cluded in the VCFtools suite [202]. Following [82], in all our models we included
both the imputation status of the individuals and the first three PCs obtained
from genotypic data as covariates, in order to correct for possible biases due to
population stratification (Supplementary Figure B.7) or genotype imputation.

The observed distribution of nominal P-values was compared with the ex-
pected one in Quantile-Quantile plots (Q-Q plots), revealing the expected in-
flation due to the LD issue (Supplementary Figure B.8). A permutation-based
procedure was implemented [206]: all the models were fitted again after the
random shuffling of the m/M values of each gene across samples; then for each
gene-variant pair we counted how many times we obtained a random P-value less
than its nominal P-value and divided this value by the total number of random
tests done. Finally, to control for multiple testing, the empirical P-values were
corrected with the Benjamini-Hochberg procedure [207] and models with a cor-
rected empirical P-value less than 0.05 were considered statistically significant.
Manhattan plots were drawn using the CRAN R package qqman [208].

3.3.7 Comparison with other molecular QTLs
In order to compare the genes for which we detected one or more apaQTLs with
those for which eQTL/trQTL were reported [82], we translated the Ensembl
Gene IDs (ENSG) to NCBI Entrez Gene IDs using Ensembl v67 [209] retrieved
using the Bioconductor R package biomaRt v2.30 [210,211]. 229 ENSGs could
not be translated with this procedure and were therefore excluded from this
analysis.

3.3.8 Enrichment analyses
In order to functionally characterize the apaQTLs, we analyzed the enrichment
of several features among such variants, including their genomic location, their
ability to alter known regulatory motifs, and their association with complex
diseases. All enrichments were evaluated through multivariate logistic regression
to allow correcting for covariates. In this section we provide an overview of the
method, but refer to the following subsections for details about each analysis.

For each feature we first established which genetic variants were potentially
associated with the feature (for example only variants in the 3′ UTR can alter
microRNA binding sites). Therefore, each enrichment analysis started with the
selection of the "candidate variants" that were subsequently subjected to an
LD-based pruning, in order to obtain a subset of independent candidate vari-
ants (the same strategy was implemented for example in [212] to evaluate the
enrichment of GWAS hits among eQTLs). LD-based pruning was always per-
formed using PLINK with the same parameters used in the case of the PCA of
genotypic data (see above), but applied in each case to the candidate variants
only. To each candidate variant surviving pruning we attributed a binary vari-
able indicating whether it has the feature under investigation. Finally, these
variants are classified as apaQTLs (i.e. corrected empirical P-value < 0.05 for
at least one gene) and null variants (i.e. nominal P-value > 0.1 in all the fitted
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models). We excluded the "grey area" variants with nominal P-value < 0.1
but empirical corrected P-value > 0.05 as they are likely to contain many false
negatives. Finally we fitted a multivariate logistic model in which the depen-
dent variable is the apaQTL/null status of the variant, and the independent
variables are the feature of interest and covariates. The latter always include
the MAF of the variant, since variants with higher MAF are more likely to be
found as significant apaQTLs, and possibly other covariates depending on the
feature under examination (see below).

The logistic model can thus be written as:

tj = β0 + β1 × Featurej + covariates+ εj (3.3)

Pr(apaQTL)j =
1

1 + exp−tj
(3.4)

where Featurej is a binary variable indicating whether the genetic variant j
has the feature of interest, β0 is the intercept, β1 is the regression coefficient for
the feature, εj is the error term and Pr(apaQTL)j is the fitted probability that
the genetic variant j is an apaQTL. As expected, in our models the regression
coefficient of the MAF was always positive. The regression coefficient of the
Feature term and its associated P-value were used to establish if having the
feature under investigation influences the probability of being an apaQTL, and
to compute the corresponding odds ratio (OR).

Chromatin states

This analysis was performed independently for two cell types (the GM12878
and NHEK cell lines). In both cases, the candidate variants were virtually all
the genetic variants for which the apaQTL models were fitted, but we excluded
those not associated with any chromatin state and all the structural variants,
because their length can prevent them from being univocally associated with a
chromatin state.

Each of the 15 chromatin states and 6 broad chromatin classes (promoter,
enhancer, insulator, transcribed, repressed and inactive) defined in [147], sep-
arately for the two cell lines, was treated as a binary feature to be used as a
regressor in Eq. 3.3, with value 1 assigned to the variants falling within a DNA
region associated to the given chromatin state. Only the MAF was included in
the covariates.

Gene regions

The candidate variants were all the intragenic variants for which the apaQTL
models were fitted. We defined as intragenic all variants falling between the
start and the end of the gene, plus 1,000 bps after the end (to take into account
possible misannotations of the 3′ UTR).

Independent enrichment analyses were performed for the following sequence
classes: coding exons, introns, 5′ UTR and 3′ UTR. For each class the binary
feature used as a regressor was assigned the value 1 for variants falling within
the class and 0 otherwise. Only the MAF was included in the covariates.
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Cis Regulatory Domains

The candidate variants were all the extragenic variants (i.e. all variants that
are not intragenic according to the definition given above) for which an apaQTL
model was fitted. The binary feature was given value 1 for variants falling within
a CRD and 0 otherwise. Besides the MAF, the distance from the nearest gene
was included as a covariate, since variants closer to a gene are more likely to be
apaQTLs.

To verify that the apaQTLs tend to be included in the CRDs specifically
associated to the gene on which they act, we translated the CRD-gene associa-
tions provided in [170] into Entrez Gene IDs, and we counted how many genetic
variants fall within a CRD associated to at least one gene for which the variant
is an apaQTL. This number was then compared with that obtained in the same
way after randomly assigning a target gene to each extragenic variant within
the cis-window used for apaQTL analysis (100 independent randomizations were
used).

Alteration of putative functional motifs

Similar strategies were implemented to investigate the alteration of different
types of putative functional motifs by intragenic variants. This analysis was
restricted to Single Nucleotide Polymorphism (SNPs), excluding therefore both
indels and structural variants. For all SNPs we reconstructed the sequence of
both the reference (REF) and the alternative (ALT) allele in the 20 bp region
around each candidate genetic variant to determine whether the ALT allele
creates or destroys a functional motif with respect to the REF allele. The
functional motifs analyzed included PAS motifs, microRNA binding sites, and
RBP binding sites.

To each candidate variant surviving LD pruning we associated, using PLINK,
a list of tagging variants with genotypic R2 > 80%, and a binary feature value of
1 if the candidate variant itself or any of its tagging variant altered a functional
motif. The enrichment of apaQTLs among motif-affecting variants was then
evaluated with the logistic model described by Eq. 3.3. In the following, we
describe the details of the logistic model for each class of functional motifs.

PAS motifs. The PAS motif is always located upstream of its target
poly(A) site. It has been suggested that a narrow range of 10-30 nt is required
for efficient processing, but recent work suggests that also larger distances can
be functional thanks to RNA folding processes bringing the poly(A) site closer
to the PAS [185]. Assuming that a PAS-altering SNP would affect the usage
of its nearest poly(A) site, we associated to each intragenic SNP the nearest
downstream poly(A) site, selected those for which such poly(A) site was located
within the PRE/POST segments, and retained as candidate variants only those
whose distance from the corresponding poly(A) site was between 10 and 100 nt.
PAS-altering variants were defined as those for which a particular PAS motif
was found in either the REF or the ALT sequence, but not in both (note that
the interconversion between PAS motifs is considered as well, assuming that
they can have different strength).

microRNA binding sites. microRNA binding sites located downstream
of a poly(A) site, and hence in the POST segment, can affect the relative abun-
dance of the long and short isoforms by allowing the selective degradation of
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the former by microRNAs. Therefore, we chose as candidate variants all the
SNPs within the POST segment of the genes analyzed. Putative microRNA
binding sites were classified, as in [198], in three classes: 8mer, 7mer-m8, and
7mer-A1 (matches classified as 6-mer were not considered). A variant was de-
fined to alter a microRNA binding site if a putative binding site was present in
either the REF or the ALT sequence, but not in both, or if the site class was
different between the REF and the ALT sequences. Moreover, altering variants
were classified as creating (destroying) a binding site if only the ALT (REF)
sequence contained a binding site or if the ALT (REF) sequence contained a
stronger binding site than the REF (ALT), according to the hierarchy 8mer >
7mer-m8 > 7mer-A1 match. Only microRNA families conserved across mam-
mals or broadly conserved across vertebrates and expressed in lymphoblastoid
cells were considered. Following [82], each microRNA was considered expressed
if its expression value was greater than 0 in at least 50% of the samples, and each
microRNA family was considered expressed if at least one of its microRNAs was
expressed.

RBP motifs. The candidate variants were all the intragenic SNPs. REF
and ALT sequences around each candidate variant were scanned by FIMO [213],
using as background the nucleotide frequencies on the sequence of all the ana-
lyzed genes. A motif was considered altered if its score was greater than 80%
the score of the perfect match in only one of two alleles. As in the case of mi-
croRNAs, only motifs corresponding to RBPs expressed in lymphoblastoid cell
lines were considered. Enrichment was evaluated both for SNPs altering any
RBP motif, and for each expressed RBP separately.

GWAS hits

We considered only the GWAS catalog records referring to a single genetic vari-
ant on autosomal chromosomes for which all the fields CHR_ID, CHR_POS,
SNPS, MERGED, SNP_ID_CURRENT, and MAPPED_TRAIT_URI were
available, as well as the RSID. The coordinates of the selected genetic variants
in hg19 were derived from dbSNP Build 151. We thus obtained 56,672 genetic
variants associated with at least one complex trait. Furthermore, starting from
the EFO URI(s) reported for each association, we obtained the corresponding
EFO Parent URI(s) from the EFO annotation file.

All variants examined as potential apaQTLs were considered as our can-
didate variants. A binary feature value of 1 was attributed to each candi-
date variant surviving LD pruning and associated to a trait, or with a tagging
variant associated to a trait, as in the case of motif-altering variants. En-
richment was evaluated for all trait-associated variants together, for each sin-
gle trait, and for trait categories defined based on the EFO ontology. Only
traits and trait categories associated with at least 100 GWAS hits were anal-
ysed. The same analysis was also performed after excluding all variants within
the HLA locus, as defined by The Genome Reference Consortium (https:
//www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37).

3.3.9 The rs10954213 variant in SLE patients
In the analysis of SLE patient RNA-seq data, we were interested in the IRF5
gene only. Therefore, RNA-Seq reads were aligned to a reduced genome com-

https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37
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prising the gene sequence and an additional 50bp at its 3′ end using Bowtie
v2.2.3 [214] and TopHat v2.0.12 [215]. As genotypic data were not available
for these individuals, we inferred the rs10954213 variant status from the rela-
tive proportion of A and G in the RNA-Seq reads. Initially, individuals were
considered homozygous for the reference (G) or for the alternative (A) allele
when the same nucleotide was present in all the reads, and a single read with a
different nucleotide was considered sufficient to call an heterozygous individual.
Then, genotype quality was assessed using VCFx version 1.2b [216,217] with de-
fault parameters to filter out low-confidence genotypes. In this way we obtained
11 homozygotes for the reference allele, 22 heterozygotes and 14 homozygotes
for the alternative allele (Supplementary Figure B.9), while 52 individuals with
missing genotype information were excluded from the subsequent analysis. No-
tably, the genotypes are in Hardy-Weinberg equilibrium (chi-squared P-value =
0.705). A Kruskal-Wallis test was then used to evaluate the differences in m/M
values between genotypes.



Chapter 4

Conclusions

4.1 Moving from GWAS associations to function
GWAS have identified tens of thousands of associations between genetic vari-
ants and complex traits, thus totally revolutionizing the study of human disease
genetics. While the number of associations will probably further increase thanks
to the availability of even larger cohorts and samples from different ethnic pop-
ulations, the mechanistic interpretation of the results is still disappointingly
challenging. Several strategies have been proposed to integrate GWAS findings
and reference genomic data with the purpose of gaining insight about disease
biology. For example, the stratified LD score regression is a statistical method
to estimate the proportion of genome-wide SNP heritability that is attributable
to various functional categories, taking advantage of GWAS summary statistics
and explicitly modelling the LD structure. In particular, this technique can be
exploited to uncover which cell types are more relevant for a specific complex
trait, as illustrated by the results that Finucane et al. [218] obtained partition-
ing the heritability of 17 complex diseases and quantitative traits taking into
account cell type-specific annotations. First, they were able to confirm several
well-known findings, like the importance of pancreatic islets for type 2 diabetes
and fasting glucose levels; on the other hand, they also detected some intriguing
enrichments, such as the relevance of brain cell types for several non-psychiatric
phenotypes, such as BMI and age at menarche.

Since the effect of genetic variants on common diseases is probably mediated
by the perturbation of intermediate molecular phenotypes, the integration of
GWAS results with molecular QTLs is an additional strategy to shed light on
the mechanisms that underlie genotype-phenotype associations. In particular, it
should be noted that, compared to the usage of reference annotations, molecular
QTLs can provide complementary information, among which the identification
of relevant genes is the most important. In the previous chapters, I presented
in details and extensively discussed two computational strategies to investi-
gate the genetic determinants of gene expression (Chapter 2) and alternative
polyadenylation (Chapter 3). In the first study, I showed that TBA-based re-
gression allows the identification of eQTLs not revealed by traditional methods
and that this additional power derives from both its distinguishing features: the
evaluation of the combined effect of genetic variants within regulatory regions
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and the exploitation of the available knowledge about the regulatory code to
weigh each genetic variant according to its effect on TF binding. In addition,
the TBA model can help in the eQTL interpretation in terms of altered tran-
scription factor binding. In the second project, I found that human genetic
variants have a widespread effect also on the relative expression of alternative
3′ UTR isoforms, mainly as a consequence of the perturbation of the regulation
of alternative polyadenylation. Notably, in both studies the pinpointed genomic
regions showed significant enrichment for genetic variants that were identified
by GWAS, consistently with the underlying assumption. This result is partic-
ularly remarkable in the case of apaQTLs, because, although previous studies
have definitely proved the importance of alternative polyadenylation in human
diseases, until now it was not possible to exploit this knowledge to systemati-
cally extract functional information from GWAS data. However, I would like
to point out that an experimental validation, that would be crucial to securely
discriminate between real functional associations and false positives, is currently
missing for the results of both projects; on the other hand, the lack of a direct
and systematic experimental validation is a limit shared by this work with most
existing studies in this field (e.g., [82, 95]).

The overlap between GWAS and QTL results is frequently considered as an
evidence of common causality. However, the implementation of colocalization
strategies, that correctly account for linkage disequilibrium, should be preferred
to formulate reliable mechanistic hypotheses. Indeed, given a genomic region
that includes multiple genetic variants that are tested for association with two
distinct traits, for example a disease and a molecular phenotype, five possible
configurations can be hypothesized: (1) no association with either trait; (2) as-
sociation with the first trait, but not with the second one; (3) association with
the second trait, but not with the first one; (4) association with both traits, but
the causal SNPs are independent; (5) association with both traits and the casual
SNP is shared. The commonly used COLOC package implements a Bayesian
statistical procedure to associate a posterior probability to each of these config-
urations [219, 220]. Nevertheless, some issues make the evaluation of common
causality even more challenging. First, COLOC assumes the presence of only
one causal variant in any genomic locus for both GWAS and QTL studies, thus
ignoring the widespread allelic heterogeneity (i.e. the presence in the same locus
of multiple causal variants for the same phenotype) of both complex traits [127]
and gene expression [99, 102]. Furthermore, every QTL effect can be detected
in different tissues, but only one or few associations may be relevant for the in-
vestigated disease; therefore, a joint analysis of the results obtained in different
tissues could be convenient. Both these features are implemented by eCAVIER
that, starting from GWAS summary statistics, can identify target genes and
relevant tissues [221].

Recent works have proposed transcriptome wide association studies (TWAS)
as another way to integrate GWAS and QTL data. Although TWAS are based
on the idea that many genetic variants influence complex traits by modulating
gene expression and therefore they originally have exploited eQTL data, they
can also be implemented using other molecular QTLs (see below). Measured
gene expression values can be conceptually decomposed into different parts: the
first component results from the effects of regulatory variants (genetically regu-
lated expression, or GReX), the second one reflects reverse causality (i.e. gene
expression changes that are induced by the disease under investigation) and the
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last one is determined by other factors, including the environment. In the ini-
tial version, TWAS first exploit eQTL data obtained in any reference dataset
(e.g., the GTEx dataset) to predict the genetic component of gene expression in
cases and controls for which only genotypic data are available (GWAS cohorts);
then, GReX values are correlated with the disease status, thus allowing the
identification of susceptibility genes [131]. Focusing on the genetic component
of gene expression has some key advantages compared to the usage of measured
gene expression levels [222]. First, expression data are usually not available for
large human cohorts. Second, it allows to overcome potential confounding that
may derive from reverse causality. In addition, the elimination of environmen-
tal noise may result in an increased statistical power. Furthermore, as other
gene-based strategies, TWAS benefit from a lower multiple-testing burden than
GWAS, because they evaluate thousands of genes instead of millions of variants,
and the interpretation of results is more straightforward. However, compared
with GWAS, the power of TWAS may be reduced when the effect of genetic
variants on diseases is not mediated by the perturbation of gene expression lev-
els, or when expression data cannot be obtained for the relevant tissue as a
consequence of lacking eQTL data [222].

We are now working to develop a TBA-based framework to perform TWASa.
Notably, switching from genetic variants to TF affinity, the TBA model should
be less dependent on the variants that were used for training. Therefore, com-
pared with other existing tools (e.g., PrediXcan [131] and TIGAR [224]), it
could be superior in catching also the effects of low-frequency and rare variants,
including variants that were not observed in the training cohort. In this re-
gard, it must be noted that current reference datasets usually include hundreds
of individuals with genotype and gene expression data, while commonly there
are thousands of GWAS samples. In addition, the TBA-based model could
better generalize to different populations. The latter feature would be partic-
ularly exciting because existing reference datasets mainly include individuals
of European ancestry and the predictive performance of methods that directly
evaluate genetic variants can greatly change within and among populations of
different continents [225]. We are also wondering if it could be used to pre-
dict the transcriptome starting from ancient human genomes, thus providing
an unprecedented opportunity to study gene expression evolution in the human
lineage. This speculation relies on the assumption that TFs and their binding
preferences have been conserved, consistently with the knowledge that TFs usu-
ally evolve much slower than their binding sites and the identification of human
TF orthologs well beyond primates [226]. On the other hand, we aware that the
generalization potential of the TBA model may be limited in some conditions:
for example, if in the target population the regulation of a gene depended on
a TF whose binding sites are completely absent in the regulatory region that
was observed in the reference population, the power of the TBA model would be
greatly reduced. Furthermore, a possible weakness of this method is the (appar-

aA preliminary R/Bioconductor package (AffiXcan) [223] is already available to perform
TBA-based imputation of GReX values. The TBA model can be trained in a reference dataset
where both real gene expression data and TBA values are known, and then it can be used to
predict GReX values for other samples for which only TBA values must be provided. Some
important technical improvements will be implemented in the next months. In particular, to
facilitate its use, we have planned to integrate both the computation of TBA values and the
evaluation of the association between GReX values and traits of interest. Furthermore, TBA
models trained on all GTEx tissues will be released.
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ently) mandatory usage of WGS data, while the majority of currently available
GWAS data were obtained using SNP arrays. In this regard, it is important to
point out that SNP array data are not enough for the implementation of TBA
models, because the computation of accurate TBA values requires the recon-
struction of regulatory regions as similar as possible to real ones. This issue
will be probably resolved in the coming years, with the further spread of WGS
approaches. In addition, we reasoned that, thanks to availability of large panels
of genome-wide human variation, like the ones provided by the 1000 Genomes
Project and the Haplotype Reference Consortium [227], it could be successfully
overcome through genotype imputationb. Therefore, we decided to investigate
if genotype imputation is actually a suitable solution exploiting the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) databasec that contains genotypic data
obtained both with WGS and SNP arrays, together with gene expression values
measured in whole blood cells using microarrays, for about one hundred healthy
individuals. First, despite the cell type and the technology used to measure gene
expression levels were different, significant genes that were found by the TBA
model using ADNI WGS data significantly overlap with those that were iden-
tified in the GEUVADIS dataset, supporting the reproducibility of the results.
In addition, in the ADNI dataset the TBA values that were computed after
genotype imputation were highly correlated with those obtained starting from
WGS data and the results of the TBA model were virtually the same in the two
analyses, suggesting that the TBA values resulting from genotype imputation
are good enough for this kind of analysis. Furthermore, now we would like to
perform a TBA-based imputation of GReX values for both cases and controls
for which WGS data are available in the ADNI database, thus aiming to uncover
new genes that are associated with Alzheimer’s disease onset and progression.
In particular, we believe that complementary information may be obtained cor-
relating multi-tissue GReX values with multiple phenotypes, including disease
status, quantitative biomarkers and brain imaging measurements.

As described above, the initial TWAS implementation requires GWAS data
at an individual level (individual-level TWAS). However, the results of large-
scale GWAS are frequently publicly available only as summary statistics. There-
fore, several methods have been proposed to indirectly estimate expression-trait
association statistics by integrating SNP-expression and SNP-trait correlation
data, while accounting for LD among SNPs (summary-based TWAS) [222,
224, 230, 231]. Notably, this kind of analysis has also been performed ex-
ploiting sQTL collections, leading to the identification of new susceptibility
genes for schizophrenia [232] and Alzheimer’s disease [188]. In a similar way,
apaQTLs could be integrated with GWAS summary statistics to discover cases

bGenotype imputation is the process of predicting genotypes that are not directly assayed
in a group of individuals, taking advantage of reference haplotype sets. Basically, in each
sample, phased haplotypes may be modelled as a mosaic of those present in the reference
panel and then this representation can be exploited to predict missing genotypes. For further
details, see for example [228].

cData used in the preparation of this thesis were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD). For a recent summary of
publications using ADNI data, see [229].

http://adni.loni.usc.edu/
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in which the association between genes and diseases is driven by the alter-
ation of the expression of alternative 3′ UTR isoforms. From a technical point
of view, the computational strategy that I described in the previous chapter
requires at least one important modification. While fitting models that evalu-
ate the association between single variants and quantitative phenotypes allows
the identification of molecular QTLs, TWAS require prediction models that
should be generated by fitting additive models that jointly evaluate the effect
of cis-variants. Different statistical approaches, including both variable selec-
tion (e.g., LASSO [140] and elastic net [233]) and shrinkage-based methods
(e.g., BLUP [234] and BSLMM [235]), are commonly exploited for this purpose.
Since we would like to perform APA-wide association studies (apaWAS), we are
currently applying these strategies to the generation of prediction models for
the expression of alternative 3′ UTR isoforms, using multi-tissue RNA-seq data
obtained from the GTEx dataset.

4.2 Concluding remarks
Almost twenty years later, the revolution that was triggered by the release of
the first draft of the human genome has not reached its peak yet. Thanks
to the development of NGS technologies, we have witnessed an outstanding
drop in DNA sequencing costs that has fuelled the advent of several interna-
tional and national projects that have sequenced, or are sequencing, the whole
genome of hundreds of thousands, and soon millions, individuals. WGS will
soon became the predominant technology for genetic analysis and this will be
another fundamental breakthrough, compared with previous decades that have
been dominated by marker genotyping or exome sequencing [61]. In addition,
DNA sequencing efforts have been accompanied by numerous projects that have
measured molecular phenotypes together with genotypes in large human cohorts
(e.g., GEUVADIS and GTEx projects) and, in the most recent years, biobank
projects are making available an incredible amount of clinically valuable data.
Furthermore, the landscape of DNA sequencing technologies is still evolving:
real-time single-molecule sequencing platforms, that do not require template
amplification and generate very long reads, are already available and they could
occupy important market niches in the next future [64]. Notably, they may
contribute to the achievement of an even more comprehensive coverage of hu-
man genetic variation, allowing to overcome issues that result from the current
usage of the reference genome sequence combined with data obtained through
short-read technologies for genotype calling [61].
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Supplementary Figure A.1 – Histogram of the number of PCs needed to explain
at least 95% of the variance of the TBA values or SNPs calls on all regulatory regions
(proximal and distal). The red line is the mean.
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Supplementary Figure A.2 – Histogram of the number of PCs needed to explain
at least 95% of the variance of the TBA values for the HOCOMOCO and JASPAR
PWM databases, limited to proximal regulatory regions. The red line is the mean.
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Supplementary Figure B.1 – Enrichment of apaQTLs within chromatin states, tak-
ing into account all the 15 chromatin states reported in the ChromHMM annotation.
For each of them, the OR obtained by logistic regression and its 95% CI are shown.
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Supplementary Figure B.2 – The results of the enrichment analysis performed
with the broad chromatin states of the relevant cell type were compared with those
obtained using the ChromHMM annotation of another cell type (NHEK). For each
category, the OR obtained by logistic regression and the corresponding 95% CI are
shown.
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Supplementary Figure B.3 – The results of enrichment analysis done performed
with all the chromatin states of the relevant cell type were compared with those ob-
tained using the ChromHMM annotation of another cell type (NHEK). For each cate-
gory, the OR obtained by logistic regression and the corresponding 95% CIs are shown.
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Supplementary Figure B.4 – Boxplots showing the variation of the log2-
transformed m/M values obtained for PAM (A), BLOC1S2 (B) and ARSA (C), as a
function of the genotype of the individuals for a single genetic variant that falls within
the cis-window of the tested gene (rs5855, rs41290536 and rs6151429, respectively).
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Supplementary Figure B.5 – (A) Boxplot showing the variation of log2-transformed
m/M values obtained for CHURC1 as a function of the genotype of the individuals
for rs8984. (B) LocusZoom plot illustrating the results obtained for CHURC1 in the
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Supplementary Figure B.6 – Comparison of the results of the enrichment analyses
performed for multiple categories of complex traits considering all the studied genetic
variants (HLA included) or after having excluded those that are located within the
HLA locus (HLA excluded). For each category, the OR obtained by logistic regression
and the corresponding 95% CIs are shown.
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Supplementary Figure B.7 – Principal Component Analysis (PCA) on the geno-
typic data of EUR individuals. Points are colored according to the subpopulation
of origin: Utah Residents (CEPH) with Northern and Western European Ancestry
(CEU), Finnish in Finland (FIN), British in England and Scotland (GBR) and Toscani
in Italia (TSI).
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Supplementary Figure B.8 – Q-Q plot comparing the distribution of P-values ob-
tained fitting apaQTL models for genes on chr1 with the expected uniform distribution.
It was generated by the CRAN R package qqman.
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G A T T A A T G A A TSequence

SRR2443242

SRR2443197

SRR2443195

bp 11.430 bp 11.432 bp 11.434 bp 11.436 bp 11.438 bp 11.440 bp
11 bp

IRF5

Supplementary Figure B.9 – Genotypic information was not available for the SLE
patients, therefore their genotype in correspondence of the rs10954213 genetic vari-
ant was inferred from RNA-Seq data. The figure shows the alignment of RNA-Seq
reads in a region around the variant with respect to a reduced genome including only
the IRF5 gene and was generated using the Integrative Genomics Viewer (IGV) soft-
ware. For example, the SRR2443195 individual (top panel) was considered homozy-
gous for the reference allele, the SRR2443197 individual (central panel) was considered
heterozygous and finally the SRR2443242 individual (bottom panel) was considered
homozygous for the alternative allele.
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Supplementary tables

MOTIF ID RBP NAMES OR 95% CI P-VALUE FDR

M016_0.6 FMR1 3.72 1.01-11.3 0.0277 0.265

M025_0.6 HNRNPC 1.77 1.06-2.83 0.0213 0.264

M070_0.6 ENSG00000180771;SRSF2 3.83 1.55-8.7 0.00196 0.0518

M075_0.6 TIA1 1.81 0.993-3.1 0.0389 0.326

M081_0.6 CSDA;YB-1 3.9 1.03-12.6 0.0284 0.265

M089_0.6 HNRNPL 3.4 1.08-9.12 0.0216 0.264

M122_0.6 MEX3B;MEX3C;MEX3D 3.85 1.03-12 0.0265 0.265

M140_0.6 ENOX1;ENOX2 3.16 1.36-6.76 0.00431 0.078

M145_0.6 RBM5 4.97 1.51-14.6 0.00441 0.078

M147_0.6 CNOT4 2.11 0.948-4.25 0.0478 0.362

M156_0.6 TIA1 1.81 1.05-2.96 0.0247 0.265

M158_0.6 HNRNPCL1 1.77 1.06-2.83 0.0213 0.264

M160_0.6 KHDRBS1 4.15 1.54-10.3 0.0027 0.0614

M250_0.6 CSDA 2.93 0.939-7.73 0.041 0.326

M256_0.6 ACO1 1.92 1.07-3.25 0.0208 0.264

M291_0.6 EIF4B 10.6 3.5-33.2 2.48e-05 0.00131

M292_0.6 EIF4B 1.98 1.31-2.88 0.000643 0.0256

M320_0.6 MBNL1;MBNL2;MBNL3 1.66 1.2-2.25 0.00163 0.0518

M333_0.6 SRSF9 1.8 0.99-3.07 0.0398 0.326

M344_0.6 RBMX;RBMXL1;RBMXL2 1.77 1.4-2.2 6.38e-07 5.07e-05

Supplementary Table B.1 – Enrichment of RBP-altering SNPs among intragenic
apaQTL.
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EFO URI EFO TERM OR 95% CI P-VALUE FDR

EFO_0000540 Immune_system_disorder 5.42 4.52-6.45 1.99e-77 1.19e-76

EFO_0000618 Neurological_disorder 4.33 3.86-4.84 1.89e-142 1.7e-141

EFO_0004503 Hematological_measurement 4.27 3.64-4.98 2.43e-74 1.09e-73

EFO_0000616 Cancer 3.96 3.36-4.64 3.72e-63 1.34e-62

EFO_0000405 Digestive_system_disorder 3.37 2.69-4.15 4e-28 9e-28

GO_0008150 Biological_process 3.26 2.8-3.76 8.22e-56 2.47e-55

EFO_0004582 Liver_enzyme_measurement 3.2 1.66-5.62 0.000167 0.000215

EFO_0001444 Other_measurement 3.09 2.87-3.33 8.45e-190 1.52e-188

EFO_0004872 Inflammatory_measurement 2.87 2.01-3.99 1.71e-09 3.07e-09

EFO_0000408 Other_disease 2.85 2.42-3.33 1.99e-38 5.11e-38

EFO_0004324 Body_measurement 2.72 2.22-3.29 1.46e-23 2.92e-23

EFO_0004732 Lipoprotein_measurement 2.64 1.77-3.79 4.98e-07 7.47e-07

EFO_0004298 Cardiovascular_measurement 2.05 1.55-2.67 2.2e-07 3.61e-07

EFO_0000319 Cardiovascular_disease 1.81 1.35-2.37 3.42e-05 4.73e-05

EFO_0004529 Lipid_measurement 1.78 1.05-2.83 0.0218 0.0231

EFO_0000589 Metabolic_disorder 1.49 0.959-2.2 0.0589 0.0589

EFO_0000001 Other_trait 1.43 1.09-1.84 0.00741 0.00889

GO_0042493 Response_to_drug 1.39 1.06-1.79 0.0135 0.0152

Supplementary Table B.2 – Enrichment of GWAS hits for different trait categories
among apaQTL.
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EFO URI EFO TERM OR 95% CI P-VALUE FDR

EFO_0004503 Hematological_measurement 3.97 3.28-4.75 3.16e-48 1.9e-47

GO_0008150 Biological_process 3.62 3.06-4.24 1.27e-54 1.15e-53

EFO_0004324 Body_measurement 3.05 2.45-3.76 2.8e-24 1.01e-23

EFO_0004582 Liver_enzyme_measurement 2.96 1.32-5.74 0.00338 0.00468

EFO_0004732 Lipoprotein_measurement 2.82 1.79-4.22 2.03e-06 3.94e-06

EFO_0000540 Immune_system_disorder 2.67 2.01-3.47 2.32e-12 6.96e-12

EFO_0000618 Neurological_disorder 2.58 2.18-3.02 2.9e-30 1.3e-29

EFO_0004298 Cardiovascular_measurement 2.54 1.89-3.35 1.76e-10 3.95e-10

EFO_0004872 Inflammatory_measurement 2.47 1.57-3.7 3.07e-05 4.61e-05

EFO_0001444 Other_measurement 2.45 2.23-2.7 4.32e-75 7.78e-74

EFO_0000616 Cancer 2.26 1.77-2.85 1.27e-11 3.26e-11

EFO_0000319 Cardiovascular_disease 2.09 1.52-2.8 2.19e-06 3.94e-06

EFO_0000405 Digestive_system_disorder 2.07 1.5-2.79 3.92e-06 6.41e-06

EFO_0004529 Lipid_measurement 1.75 0.926-3 0.0587 0.0622

EFO_0000589 Metabolic_disorder 1.64 0.995-2.52 0.0369 0.0415

EFO_0000001 Other_trait 1.48 1.08-1.98 0.00981 0.0126

EFO_0000408 Other_disease 1.37 1.05-1.75 0.0163 0.0196

GO_0042493 Response_to_drug 0.855 0.564-1.23 0.43 0.43

Supplementary Table B.3 – Enrichment of GWAS hits for different trait categories
among apaQTL, after the exclusion of genetic variants within the HLA locus.
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