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Abstract

This paper introduces a model of choice to capture heuristics and reference-dependence
in consumer’s response to price information. The model is consistent with a kinked and
upward-sloping demand curve. The price and cross-price elasticities of demand can be
positive or negative, asymmetric, and product-dependent. The model offers an expla-
nation for quality-dependent price stickiness, justifies the adoption of complex pricing
strategies, and allows for the derivation of closed-form expressions for the optimal price
and reference price set by a monopolist. The model is fully characterized by testable
restrictions on demand data, which provide a method for identifying the reference price.

Reference price, Multinomial logit, Price-quality heuristic, Pricing strat-
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1 Introduction

Extensive empirical evidence shows that consumers’ response to prices is often “behavioral.”

Consumers rely on “reference” prices – internal, subjective prices used to evaluate the ap-

propriateness of actual prices (e.g., Monroe, 1973; Kalyanaram and Winer, 1995; Mazumdar

et al., 2005). Moreover, consumers may behave contrary to the standard economic intuition

that higher prices reduce demand (e.g., Ng, 1987; Cosaert, 2018; Dusansky and Koç, 2007;

Genesove and Mayer, 2001). For example, consumers use prices as a proxy for quality (the

“price-quality” heuristic), leading to an upward-sloping demand curve (e.g., Scitovszky, 1944;

Pollak, 1977; Gneezy et al., 2014).

Understanding consumers responses to price variations is essential for marketers who want

to anticipate consumer behavior and implement successful pricing strategies. But it is also
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central to policy makers who wants to anticipate the effect of fiscal or monetary policies (e.g.,

Eichenbaum et al., 2011; Kim, 2019).

Existing “behavioral” models of consumer choice have limitations. Models of the price-

quality heuristic (e.g., Gneezy et al., 2014) do not consider reference prices. Models that

integrate reference prices (e.g., Winer, 1986; Lattin and Bucklin, 1989; Putler, 1992; Hardie

et al., 1993; Kopalle et al., 1996; Bell and Lattin, 2000; den Boer and Keskin, 2022) assume

that the demand for a product is always decreasing with price, and that the evaluation of

(relative) prices is independent of the product’s quality. Moreover, as is common in models of

reference-dependent behavior, these models assume an exogenous reference price, making their

predictions sensitive to an external parameter.1

In this paper, I introduce and characterize axiomatically a model of random consumer

choice, called the Reference Price Quality (RPQ) model, which addresses these limitations and

provides new predictions about consumers’ responses to price information. The key assumption

in the RPQ model is that the consumer positively distorts the perception of a product’s quality

when its price is close to the reference price.

The RPQ model has several advantages. Firstly, it is consistent with a variety of observed

consumer responses to price information that other models cannot accommodate. Secondly,

the RPQ model maintains tractability, as demonstrated by the closed-form characterization of

the optimal price and reference price that a monopolist set in the presence of outside options.

Thirdly, the RPQ model features a relatively simple axiomatic characterization. Importantly,

these axioms enable me to uniquely determine the reference price(s) used by individuals.

The RPQ model extends the multinomial logit demand model (e.g., Guadagni and Little,

1983). In the latter, the structural value of a product of quality q and price p is given by

v(q) − c(p), for some functions v, c. In the RPQ model, the structural value of a product of

quality q and price p is σ(p|p∗)v(q)− c(p), where p∗ is the reference price and σ the distortion

function. The key assumption is that observing a price above or below the reference price

results in a lower relevance for quality; this means that the function σ is weakly single-peaked

(i.e., single-plateaued) at the reference price.

Like other models of reference-price dependent consumer choice, demand in the RPQ model
1This critique is shared by many models of reference-dependent preferences (Kahneman and Tversky, 1979).

However, there are empirical approaches for estimating reference points (e.g., Baucells et al., 2011; Allen et al.,
2017; Baillon et al., 2020).
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can be kinked. However, unlike these models, in the RPQ model, demand can be upward-

sloping. This is because increasing a price that is below the reference price can have a positive

effect on the perception of quality. If the positive effect is greater than the negative effect of

incurring a higher monetary cost, the product’s demand will increase. Furthermore, the RPQ

model predicts that upward-sloping demand is more likely when the product is of high quality.

This property is consistent with the empirical evidence that high-quality products have stickier

prices (Kim, 2019) than low-quality ones. Reducing the price of a high-quality product is more

likely to reduce demand than for a low-quality one. Thus, the model captures a reduced form

of the price-quality heuristic, but refines it by making it reference-price dependent.

In terms of the price and cross-price elasticities of demand, the RPQ model predicts that

they can be positive or negative, asymmetric, and dependent on the products’ quality (see,

for example, the empirical evidence in Dossche et al., 2010; Biondi et al., 2020; Iizuka and

Shigeoka, 2021; Yaman and Offiaeli, 2022).

I also study the demand effects of varying the reference price. Although the results are

generally ambiguous, if the actual price of a product exceeds the reference price and the prices

of alternative products are lower than the reference, increasing the reference price can lead to

a larger demand for the product.

I demonstrate the applicability of the RPQ model by studying the optimal price that a mo-

nopolist sets in the presence of an outside option when demand follows the RPQ model. Under

general conditions, the optimal price can be expressed in closed-form through the Lambert W

function (an easy-to-simulate and approximate function, see e.g., Corless et al., 1996; Aravin-

dakshan and Ratchford, 2011). I also study the case in which the monopolist can set both the

price and the reference price (e.g., in the long run). In this case, the optimal reference price

is equal to the posted price and the optimal posted price takes a “logit-like” closed form. If

there is no demand “premium” for observing a price equal to the reference price, the short-run

monopolist’s profit, under RPQ demand), is always lower than the profit obtained under logit

demand (the long-run profit). This leads to a new interpretation for the logit optimal price

and profit as the price and profit that emerge in the RPQ model when the monopolist has the

ability to choose both the price and the reference price.

Furthermore, a simple two-period version of the RPQ model provides a new explanation for
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the widespread adoption of complex pricing strategy, such as the markdown (MD), as opposed

to simpler alternatives, such as the everyday-low-price (EDLP) (e.g., Adida and Özer, 2019;

Özer and Zheng, 2016). When a consumer has a high reference price, facing a low price reduces

the relevance of quality. If this effect is stronger than the positive impact of paying a lower

price, the MD pricing strategy results in higher demand than the EDLP strategy.

One advantage of the RPQ model is that it can be fully characterized in terms of testable

restrictions on commonly available data (such as scanner data). Prior to characterizing the

RPQ model, I first characterize a general version of the multinomial price-quality logit model,

which includes models of reference-price dependent behavior present in the literature. In addi-

tion to some basic axioms, the defining properties of the general multinomial logit demand are

the independence between the product’s quality and its price, and a downward-sloping demand

for all products. In terms of observable restrictions, the first property implies that the relative

demand between two qualities is independent of prices. The second property translates into a

monotonicity condition. In the characterization of the RPQ model, I relax both independence

and monotonicity. Most notably, I establish a testable condition on choice probabilities that

allows to uniquely identify the reference price (or an interval of reference prices). Reference

prices are those at which quality differences are most relevant for the relative differences in de-

mand. Indeed, at the reference price, the distortion of quality is maximal, so even small quality

differences are magnified. This intuition clarifies why the interplay between quality and price is

essential for identifying reference prices in the model. Without this interplay, reference prices

cannot be determined from choice data.

To illustrate this point further, I provide the axioms that characterize the standard reference-

price models, where the cost function c is increasing and piecewise linear, and compare them

with those characterizing the RPQ model. I demonstrate that reference prices can only be

identified under these specific parametric restrictions on c, meaning that any modifications to

the cost function would require testing different conditions.

Lastly, I extend the model in two directions. First, I consider a model that generalizes

the RPQ model by allowing for a price-quality interaction that is potentially independent of

the reference price. Special cases of this model have appeared in the literature on the price-

quality interaction (e.g., Crawford et al., 2015; Li et al., 2020). In the second extension, I allow
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for “context-dependent” distortion effects, so that the price distorts quality depending on the

other available products. This model allows me to provide a reference-price-based explanation

for context effects, such as the asymmetric dominance and the compromise effects (Simonson,

1989). Similarly to the baseline model, I provide a characterization of the context-dependent

model through properties of choice data. As a by-product, I show that any positive demand

probabilities can be expressed in a context-dependent logit-like formulation.

2 The model

I consider a consumer choosing among homogeneous products (i.e., products belonging to the

same category, such as cookies). I represent each product k by a pair (qk, pk), where qk denotes

the quality and pk the price of k. I assume that qk ∈ [q0, q1], with q0 < q1, and pk ∈ [0,∞) for

all products k. The consumer randomly selects a product from a finite and non-empty set of

products (a choice set). I denote by A the family of all choice sets. The demand for a product

k in a set A is the probability that k is selected from A, denoted by P ((qk, pk)|A).2 The choice

probabilities satisfy P : A× A→ [0, 1] and ∑(qk,pk)∈A P ((qk, pk)|A) = 1 for all A ∈ A.

Definition 1. The choice probabilities PRPQ have a Reference Price Quality (RPQ) model

representation if there exist p∗ ∈ [0,∞), a function σ(·|p∗) : [0,∞) → [0,∞) and weakly

increasing functions v : [q0, q1]→ [0,∞), c : [0,∞)→ [0,∞) such that:

PRPQ((qk, pk)|A) = eσ(pk|p∗)v(qk)−c(pk)∑
(ql,pl)∈A

eσ(pl|p∗)v(ql)−c(pl)
, (RPQ)

for all A ∈ A. Moreover, σ(p|p∗) ≥ σ(p′|p∗) if p∗ ≥ p ≥ p′ or p′ ≥ p ≥ p∗.

The RPQ model assumes that choice probabilities have a logit-like functional form, where

the structural value of a product of quality qk and price pk is given by u(qk, pk) = σ(pk|p∗)v(qk)−

c(pk). The function v measures the perceived quality, and the function c the perceived monetary

cost of product k. The function σ distorts the product’s perceived quality as a function of the
2I take the standard interpretation of random demand generated by a single consumer as arising from un-

observable changing tastes. These are, for example, due to neural computational constraints (Webb, 2018)
or to variations in attention, experimentation or perception (e.g., Guo, 2016; He, 2023). Alternatively, ran-
dom demand can arise from the demand of a population of individuals with deterministic but unobservable
preferences.
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actual price relative to a reference price. The distortion function satisfies a weak form of single-

peakedness—called single-plateauedness (see e.g., Moulin, 1984)—at p∗: the closer a price is to

the reference price, the (weakly) more relevant quality becomes.

The following are some examples of the distortion function. The first, called Piecewise

Linear, is defined as σPL(p|p∗) = max {0, σ̂PL(p|p∗)} where:

σ̂PL(p|p∗) =


ζ − η(p− p∗) if p > p∗

ζ − γ(p∗ − p) if p ≤ p∗,

(PL)

for some ζ ≥ 0, 0 ≤ γ ≤ η. The inequality γ ≤ η represents “loss aversion” (see Kalyanaram

and Winer, 1995): consumers are more sensitive to losses (observed prices above the reference

price) than gains (observed prices below the reference price). The parameter ζ represents the

“premium” of observing a price equal to the reference price. Figure 1 shows a possible specifica-

tion of the piecewise linear distortion and the corresponding demand. A related example with

0 p∗
0

0.5

1

p

σPL(p|p∗)

0 p∗
0

0.5

1

p

PRPQ((qk, p)|A)

Figure 1: Left panel: a Piecewise linear distortion with ζ = 1 and loss aversion. Right panel:
the probability of selecting (qk, p) in A = {(qk, p), (ql, pl)}, as a function of p.

similar interpretations is the Quadratic distortion, defined as the positive part of the function:

σQ(p|p∗) = ξ − κ

2 (p∗ − p)2, (Q)

for some ξ, κ ≥ 0. Figure 2 shows a possible specification of the quadratic distortion and

the corresponding demand. A third example is the “Acceptable Price Range” distortion (e.g.,
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Figure 2: Left panel: a Quadratic distortion with ξ = 1.1 and κ = 1. Right panel: the
probability of selecting (qk, p) in A = {(qk, p), (ql, pl)}, as a function of p.

Monroe, 1971; Janiszewski and Lichtenstein, 1999):

σAPR(p|p∗) =


1 if p ∈ [p∗ − δ1, p

∗ + δ2]

0 if p /∈ [p∗ − δ1, p
∗ + δ2],

(APR)

for some δ2 ≥ 0 and 0 ≤ δ1 ≤ p∗. When the actual price is not too far from the reference

price, it is acceptable, and the product’s quality matters. If the price is “unacceptable,” quality

becomes irrelevant, and demand is solely driven by the monetary cost of the product (see Figure

3). A last example of distortion function is the “Salience” distortion:

0 p∗ − δ p∗ p∗ + δ
0

0.5

1

p

σAPR(p|p∗)

0 p∗
0

0.5

1

p

PRPQ((qk, p)|A)

Figure 3: Left panel: a symmetric (i.e., δ1 = δ2 = δ) Acceptable Price Range distortion. Right
panel: the probability of selecting (qk, p) in A = {(qk, p), (ql, pl)} as a function of p.

σS(p|p∗) =


1 + θ if p = p∗

1 if p 6= p∗,

(Salience)

for some θ ≥ 0. When the actual price is equal to the reference price, it attracts the consumers’

attention, and the perceived value of quality is amplified. All other prices are non-distortive.
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The RPQ choice probabilities can be derived from an additive random utility model (ARUM),

expressed as follows:

PRPQ((qk, pk)|A) = P(σ(pk|p∗)v(qk)− c(pk) + εk ≥ σ(pl|p∗)v(ql)− c(pl) + εl, ∀(ql, pl) ∈ A), (1)

assuming the error terms ε are i.i.d. and distributed according to a Gumbel distribution

(see, for example, Train, 2009). The ARUM formulation helps to understand the price-quality

“inference” in the RPQ model. A higher σ(pk|p∗) increases the weight of quality in the struc-

tural value of k. Since the noise components are i.i.d., they are unaffected by a higher σ.

Consequently, a higher distortion reduces choice variability and it increases the probability of

selecting k. In this sense, the price “signals” quality. When all products have the same price,

the RPQ model can be interpreted as a psychophysical model of stimuli discrimination, where

σ measures “randomness” in the choice of quality. The higher σ, the closer the choices are to

deterministic utility maximization (see Appendix A).

Special cases. The RPQ model generalizes the multinomial logit demand model proposed

by Guadagni and Little (1983), where a product’s demand is given by:

PLogit((qk, pk)|A) = ev(qk)−βpk∑
(ql,pl)∈A

ev(ql)−βpl
. (Logit)

This corresponds to a RPQ model with σ(p|p∗) = 1 and c(p) = βp for some β ≥ 0.

The RPQ model also generalizes models of consumer choice that account for reference prices

(Winer, 1986; Lattin and Bucklin, 1989; Hardie et al., 1993; Bell and Lattin, 2000). In these

models, the probability of selecting a product is given by:

PRD((qk, pk)|A) = euRD(qk,pk)∑
(ql,pl)∈A

euRD(ql,pl)
, (RD)

where

uRD(p, q) =


v(q) + η+(p∗ − p)− βp if p ≤ p∗,

v(q)− η−(p− p∗)− βp if p > p∗,

and η+, η−, β ≥ 0. The RD model is a particular case of the RPQ model with σ(p|p∗) = 1 for
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all prices and a cost function c(p) = (β + η+)p − η+p∗ if p ≤ p∗ and c(p) = (β + η−)p − η−p∗

otherwise.

In both the logit and the reference-dependent models, the demand is downward-sloping, and

the value of quality is independent of the price. In the RPQ model instead, the demand can

be upward-sloping (see Figures 1, 2 and 3), and price and quality are intertwined. To illustrate

these properties, consider two products A = {(qk, pk), (ql, pl)} and assume that σAPR(pl|p∗) =

σAPR(pk|p∗) = 0 and c(p) = βp. Since both prices pk and pl are unacceptable (e.g., they are

too low), the products’ quality becomes irrelevant, and the demand for k is solely driven by

prices:

PRPQ((qk, pk)|A) = e−βpk

e−βpk + e−βpl
.

Suppose that the price of k increases by ∆ and becomes acceptable, so that σAPR(pk+∆|p∗) = 1.

The demand for (qk, pk + ∆) in A∆, where A∆ = {(qk, pk + ∆), (ql, pl)}, is given by:

PRPQ((qk, pk + ∆)|A) = ev(qk)−β(pk+∆)

ev(qk)−β(pk+∆) + e−βpl
.

It is immediate to observe that if v(qk) ≥ β∆, the RPQ model predicts a higher demand

for product k after its price increased, i.e., PRPQ((qk, pk)|A) ≥ PRPQ((qk, pk + ∆)|A∆). The

interpretation is that a higher price reduces the structural value of k by β∆, leading to a

negative effect on its demand. However, if the higher price is acceptable, it has a positive

“signaling value” that increases the value of k by an amount equal to v(qk). If the positive

effect outweighs the negative effect, the demand for product k will increase. Moreover, this

conclusion depends on the quality of the product. Specifically, it is possible that increasing

the price by ∆ may boost the demand for a high-quality product (if v(qk) ≥ β∆) but decrease

the demand for a low-quality product (if v(ql) ≤ β∆). Therefore, an upward-sloping demand

curve is more likely to occur with high-quality products. This conclusion is generally true in

the RPQ model (see Section 3).

3 The shape of demand: elasticities

Changes in demand are typically measured by price and cross-price elasticities. In this section,

I investigate these elasticities in the RPQ model and also explore how demand changes in
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response to variations in the reference price. For simplicity, I assume that both σ and c are

differentiable functions (or at least they posses one-sided derivatives).

3.1 Price elasticity

Consider the derivative of the demand for product k = (qk, pk) ∈ A with respect to its own

price:3

∂PRPQ((qk, pk)|A)
∂pk

= PRPQ((qk, pk)|A) [1− PRPQ((qk, pk)|A)] [σpk(pk|p∗)v(qk)− cpk(pk)] ,

where σpk and cpk are the derivatives of σ and c in pk, respectively. Since probabilities are

strictly positive:

∂PRPQ((qk, pk)|A)
∂pk

≥ 0 ⇐⇒ σpk(pk|p∗)v(qk) ≥ cpk(pk). (2)

The condition (2) involves all the relevant quantities of the RPQ model: the price, qual-

ity and reference price of product k. A higher price increases demand if the marginal cost

cpk(pk) is smaller than the marginal benefit σpk(pk|p∗)v(qk). Because the distortion function is

weakly single-peaked at the reference price, the inequality (2) is never satisfied if the actual

price is larger than the reference price. This is because in that case, σpk ≤ 0, which implies

σpk(pk|p∗)v(qk) ≤ 0 ≤ cpk(pk). However, the inequality can be satisfied if the actual price is

lower than the reference price. Furthermore, ceteris paribus, the inequality (2) is harder to

satisfy when v(qk) is small. Therefore, for (perceived) low-quality products, a price increase is

less likely to increase demand compared to high-quality products.

This property is consistent with the empirical evidence that price stickiness is quality-

dependent (Kim, 2019). In particular, high-quality products have stickier prices than low-

quality ones. In the RPQ model, higher quality products are more likely to display an upward-

sloping demand curve if the price is below the reference price (see Figure 4). Thus, a price

reduction for high-quality product is more likely to depress demand than for low-quality ones,
3For choice probabilities of the form P ((qk, pk)|A) = eu(qk,pk)∑

(ql,pl)∈A

eu(ql,pl) , the partial derivative with respect to

a product’s own price is given by ∂P ((qk,pk)|A)
∂pk

= P ((qk, pk)|A) [1− P ((qk, pk)|A)] ∂u(qk,pk)
∂pk

. In the RPQ model,
u(qk, pk) = σ(pk|p∗)v(qk)− c(pk), so that the result follows.
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inducing downward price stickiness.

From the marginal variation, I can derive the price elasticity of demand, which is defined

as Epk
(qk,pk),A = ∂P ((qk,pk)|A)

∂pk
· pk
P ((qk,pk)|A) . In the RPQ model, the price elasticity is given by:

Epk
(qk,pk),A = pk [1− PRPQ((qk, pk)|A)] [σpk(pk|p∗)v(qk)− cpk(pk)] ,

which has the same sign as the marginal variation. Thus, it can be positive or negative.

Moreover, it can be asymmetric around the reference price. Evidence of asymmetric price

elasticity can be found in Dossche et al. (2010); Biondi et al. (2020); Iizuka and Shigeoka

(2021); Yaman and Offiaeli (2022), for example. Moreover, the elasticity is quality-dependent.

To further illustrate condition (2), let consider the Piecewise Linear function σPL(p|p∗) of

Eq. (PL), and assume c(p) = βp. In this case, I have:

∂PRPQ((qk, pk)|A)
∂pk

> 0 ⇐⇒


−ηv(qk) > β if pk > p∗

γv(qk) > β if pk < p∗.

Suppose that the price of k is lower than the reference price p∗. A positive variation of pk may

result in a higher demand for k if the marginal cost β is smaller than the “marginal value”

γv(qk) of observing a price closer to the reference p∗. If the actual price is higher than the

reference price p∗, a larger price pk will never result in higher demand for k. As mentioned

earlier, the variation of the demand is a function of the product’s quality. The inequality

γv(qk) > β is more likely to hold when v(qk) is high. Figure 4 shows a situation in which

the demand for a low-quality product is kinked but downward-sloping (blue line), while the

demand for a high-quality product (black line) is upward-sloping before the reference price and

downward-sloping after it.

3.2 Relation with models of reference-price

Before discussing the cross-price elasticity, I compare demand variations in the RPQ model and

the reference-price dependent demand of Equation RD. The latter predicts a kinked and mono-

tone decreasing demand function, similar to the blue line in Figure 4. Indeed, the structural
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Figure 4: Blue line: the probability of selecting (ql, p) as a function of p in A =
{(ql, p), (qm, pm)}, with c(p) = βp, σPL(p|p∗) and γv(ql) < β. Black line: the probability
of selecting (qk, p) as a function of p in B = {(qk, p), (qm, pm)}, with c(p) = βp, σPL(p|p∗) and
γv(qk) > β.

value uRD can be rewritten as:

uRD(p, q) =


v(q) + η+p∗ − p(β + η+) if p ≤ p∗

v(q) + η−p∗ − p(β + η−) if p > p∗.

It is immediate to observe that the demand for a product is always downward-sloping. Indeed,

the condition (2) for an upward-sloping demand becomes cpk(pk) ≤ 0 in the case of uRD. But

cpk(pk) = β + η+ if pk < p∗ and cpk(pk) = β + η− if p > p∗, and both β + η+ and β + η− are

positive.

Consider the structural value in the RPQ model with σPL (assuming it is strictly greater

than zero for simplicity) and ζ = 1:

u(p, q) =


v(q) + v(q)γp∗ − p(β − v(q)γ) if p ≤ p∗

v(q) + v(q)ηp∗ − p(β + v(q)η) if p > p∗.

This version of the RPQ model is qualitatively similar to the RD model if β ≥ v(q)γ. In

this case, a higher price always reduces demand (see the blue line in Figure 4). However, the

RPQ model is more general, since the demand can be upward-sloping when the posted price

is below the reference price, and quality is intertwined with price. In Section 6, I provide the

falsifiable restrictions of the RD model, and show that, unlike the RPQ model, they require

strong parametric assumptions.
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3.3 Cross-price elasticity

A change in the price of a product l = (ql, pl) ∈ A affects the demand for k = (qk, pk) ∈ A

according to:

∂PRPQ((qk, pk)|A)
∂pl

= −PRPQ((qk, pk)|A)PRPQ((ql, pl)|A) [σpl(pl|p∗)v(ql)− cpl(pl)] .

The condition σpl(pl|p∗)v(ql) ≥ cpl(pl), as showed earlier, implies that the demand of l will

increase. Due to the logit-like properties of the RPQ model, this results in a decrease in the

demand for k. Similar to the own price-elasticity, I can define the cross-price elasticity by

normalizing the derivative of the demand

Epl
(qk,pk),A = −plPRPQ((ql, pl)|A) [σpl(pl|p∗)v(ql)− cpl(pl)] .

The cross-price elasticity has the same sign as the cross-price variation, and it can be positive

or negative, asymmetric, and dependent on the products’ quality. If σ(p|p∗) = 1 for all prices p,

as in the logit or in the RD model, then Epl
(qk,pk),A = plPRPQ((ql, pl)|A)cpl(pl), which is positive

since cpl ≥ 0. Thus, according to these models, products are always substitutes. However,

the cross-price elasticity in the RPQ model may be negative if σpl(pl|p∗)v(ql) ≥ cpl(pl). In

such cases, a positive change in the price of an alternative product may reduce the demand

for k, similar to what happens with complementary products. However, complementarity in

demand may be spurious in the RPQ model, as it can occur as a joint consequence of the

upward-sloping demand curve for l and the logit-like substitution patterns of the RPQ model

(a higher demand for a product reduces the demand for all the alternative products).

3.4 Marginal changes in the reference price

Lastly, I analyze the demand effect of a marginal change in the reference price:

∂PRPQ((qk, pk)|A)
∂p∗

= PRPQ((qk, pk)|A)
σp∗(pk|p∗)v(qk)−

∑
(ql,pl)∈A

PRPQ((ql, pl)|A)σp∗(pl|p∗)v(ql)
 ,

(3)

13



which implies:

∂PRPQ((qk, pk)|A)
∂p∗

≥ 0 ⇐⇒ σp∗(pk|p∗)v(qk) ≥
∑

(ql,pl)∈A
PRPQ((ql, pl)|A)σp∗(pl|p∗)v(ql). (4)

The condition states that, if the marginal value of facing a higher reference price for product k

is “above average,” then the demand for product k will increase. By the weak single-peakedness

property of σ, the derivative σp∗(pk|p∗) is positive (negative) if the posted price pk is above

(below) the reference price. Therefore, a sufficient condition for inequality (4) to hold is that pk

is above the reference price while all pl are below it. With two products A = {(qk, pk), (ql, pl)},

condition (4) becomes4 σp∗(pk|p∗)v(qk) ≥ σp∗(pl|p∗)v(ql).

4 Applications

In this section, I first illustrate the applicability of the RPQ model by considering the optimal

price and reference price that a monopolist sets when facing RPQ demand in the presence of

an outside option. Then, I apply the RPQ model to explain why complex pricing strategies

(the Markdown (MD) pricing strategy) are more prevalent than simpler ones (the Everyday-

low-price (EDLP) pricing strategy (Adida and Özer, 2019; Özer and Zheng, 2016)).

4.1 Optimal price for a monopolist

A monopolist sells a product (q, p) and consumers can either buy it or choose an outside option

(with utility normalized to 0). The demand for (q, p) is given by

PRPQ((q, p)|A) = eσ(p|p∗)v(q)−βp

1 + eσ(p|p∗)v(q)−βp ,

where, for simplicity, I assumed c(p) = βp. I begin by analyzing the case in which the reference

price is fixed (e.g., in the short-run), so that the monopolist can only choose the price p̂ to

maximize profit Π:

max
p

Π = max
p

(p− C)PRPQ((q, p)|A),

4This follows from σp∗(pk|p∗)v(qk) ≥ P ((qk, pk)|A)σp∗(pk|p∗)v(qk) + P ((ql, pl)|A)σp∗(pl|p∗)v(ql), which be-
comes (1−P ((qk, pk)|A))σp∗(pk|p∗)v(qk) ≥ P ((ql, pl)|A)σp∗(pl|p∗)v(ql), but (1−P ((qk, pk)|A)) = P ((ql, pl)|A).
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where C is the marginal cost. Explicit solutions are typically hard to find because of the

interaction between linear and exponential terms (see, e.g., Aravindakshan and Ratchford,

2011). The following result, however, demonstrates that, under fairly general conditions, the

structural value of the product at the optimal price can be expressed independently of p̂ through

the Lambert W function.5 Consequently, it can be possible to obtain a closed-form expression

for the monopolist’s optimal price by isolating it from the structural value.

Proposition 1. Suppose that p̂ is the optimal price and σ(p|p∗) is differentiable at p̂. If

σ(p̂|p∗)v(q) + σp(p̂|p∗)v(q)(C − p̂) = f(C, v(q), p∗) for some function f (i.e., the expression

σ(p̂|p∗)v(q) + σp(p̂|p∗)v(q)(C − p̂) is independent of p̂), then

σ(p̂|p∗)v(q)− βp̂ = −βC − 1 + f(C, v(q), p∗)−W
(
ef(C,v(q),p∗)−1−βC

)
, (5)

where W is Lambert W function.

Equation 5 can be rewritten as σp(p̂|p∗)v(q)(p̂−C)−βp̂ = −βC−1−W
(
ef(C,v(q),p∗)−1−βC

)
and, if σp(p̂|p∗) is independent of p̂, then the optimal price has the following closed-form

expression

p̂ = C +
1 +W

(
ef(C,v(q),p∗)−1−βC

)
β − σpv(q) . (6)

The condition σ(p̂|p∗)v(q) + σp(p̂|p∗)v(q)(C − p̂) = f(C, v(q), p∗) is always satisfied if σ is

linear around p̂ (in this case, σp(p̂|p∗) will be independent of p̂, so that equation (6) holds).6

In particular, the condition is satisfied almost everywhere when σ = σPL (or when σ = σS or

σ = σAPR). Therefore, I can find closed-form expressions for the monopolist’s optimal price,

as shown in the following corollary:

Corollary 1. Suppose that p̂ is the optimal price and σPL(p|p∗) is differentiable at p̂, then

γv(q) < β and: if σPL(p̂|p∗) = 0,

p̂ = C +
1 +W

(
e−1−βC

)
β

,

5The Lambert W function is implicitly defined as W (x)eW (x) = x (see Corless et al., 1996; Aravindakshan
and Ratchford, 2011). It is positive and increasing for x ≥ 0 and it has the property that lnW (x) = ln x−W (x).

6Indeed, suppose that σ(p|p∗) = mp+k for all p in a interval around p̂. Then, σ(p̂|p∗)v(q)+σp(p̂|p∗)v(q)(C−
p) = (mp̂+k)v(q) +mv(q)(C− p̂), which simplifies to kv(q) +mv(q)C = f(C, v(q), p∗) and is independent of p̂.
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if σPL(p̂|p∗) > 0,

p̂ =


C + 1+W(eζv(q)−ηv(q)(p∗−C)−1−βC)

β+ηv(q) if p̂ ≥ p∗

C + 1+W(eζv(q)−γv(q)(p∗−C)−1−βC)
β−γv(q) if p̂ < p∗,

where W is Lambert W function.

The logit optimal price (see Aravindakshan and Ratchford, 2011) is obtained if ζ = 1 and

η = γ = 0, resulting in p̂ = C + 1+W(ev(q)−1−βC)
β

. The monopolist’s margin in the RPQ model

is always positive but may be either strictly larger or strictly smaller than the margin under

the logit demand. For example, assuming ζ = 1 and that the marginal cost is smaller then

the reference price, if the optimal price is higher than the reference price, the monopolist’s

margin in the RPQ model is strictly smaller than that in the logit case (the next section shows

that this is always true when ζ = 1). This is due to the fact that W
(
ev(q)−ηv(q)(p∗−C)−1−βC

)
≤

W
(
ev(q)−1−βC

)
and β + ηv(q) ≥ β. Similarly, the monopolist’s profit under the RPQ demand

can be smaller or larger than the profit under the logit demand.

4.2 Optimal reference and posted prices

Suppose that the monopolist can set both the posted price and the reference price (e.g., in the

long-run). First, for a fixed posted price, the optimal reference price is equal to the posted

price. Indeed, σ is (weakly) single-peaked at p∗; therefore, for a fixed price p̄, the optimal

reference price is equal to p̄:

p̄ ∈ arg max
p

(p̄− C) eσ(p̄|p)v(q)−βp̄

1 + eσ(p̄|p)v(q)−βp̄ .

Therefore, the optimization problem reduces to finding the optimal posted price that maximizes

the following expression:

max
p

(p− C) eσ(p|p)v(q)−βp

1 + eσ(p|p)v(q)−βp .

If σ(p|p) is constant across reference prices (i.e., σ(p|p) = σ(p′|p′) = σ̄ for all prices p, p′), the

solution to the above problem is given by:

p̄ = C + 1 +W (eσ̄v(q)−1−βC)
β

,
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which corresponds to the optimal price in a modified logit model in which the structural value

of the product is σ̄v(q)− βp rather than v(q)− βp. It follows that the monopolist’s short-run

profit (i.e., when the reference price is fixed) is bounded by the long-run profit, thus:

Π ≤ (p̄− C) eσ̄v(q)−βp̄

1 + eσ̄v(q)−βp̄ =
W
(
eσ̄v(q)−1−βC

)
β

,

where the equality derives from eσ̄v(q)−βp̄

1+eσ̄v(q)−βp̄ = W(eσ̄v(q)−1−βC)
1+W(eσ̄v(q)−1−βC) (see Aravindakshan and Ratch-

ford, 2011). Lastly, if σ̄ = 1, which indicates that there is no demand premium for observing a

price equal to the reference price, the monopolist’s profit under the logit model (i.e., the long-

run profit) will always be greater than the profit under the RPQ demand (i.e., the short-run

profit). Thus, I provided a new interpretation for the logit optimal price and profit as the price

and profit of a monopolist facing the RPQ demand when he has the ability to choose the price

and the reference price.

4.3 Optimality of complex pricing strategies.

Complex pricing strategies, such as frequent price changes, are more common than simpler

strategies in which prices are kept constant over time (e.g., Adida and Özer, 2019; Özer and

Zheng, 2016).

To explain this puzzling pattern, I consider a two-period (t = 1, 2) version of the RPQ

model and only one product k. The consumer’s choice is either to buy k or nothing n (with

the value of n normalized to 0). There are two possible prices for product k, pl < ph. I

denote by p1, p2 the price of k in period one and two, respectively. A pricing strategy is called

everyday-low-price (EDLP) if p1 = p2 = pl, while the Markdown (MD) strategy is such that

p1 = ph > pl = p2. Assuming that the reference price is ph, the overall demand under the

EDLP strategy is then given by:

PEDLP
1 (q, pl) + PEDLP

2 (q, pl) = eσ(pl|ph)v(q)−c(pl)

1 + eσ(pl|ph)v(q)−c(pl)
+ eσ(pl|ph)v(q)−c(pl)

1 + eσ(pl|ph)v(q)−c(pl)
.

With the MD strategy, the overall demand is given by:

PMD
1 (q, ph) + PMD

2 (q, pl) = eσ(ph|ph)v(q)−c(ph)

1 + eσ(ph|ph)v(q)−c(ph) + eσ(pl|ph)v(q)−c(pl)

1 + eσ(pl|ph)v(q)−c(pl)
.
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I can state the following immediate result:

Proposition 2. MD leads to higher demand than EDLP, i.e., PMD
1 (q, ph) + PMD

2 (q, pl) ≥

PEDLP
1 (q, pl) + PEDLP

2 (q, pl) if and only if c(ph)− c(pl) ≤ v(q)(σ(ph|ph)− σ(pl|ph))

The MD pricing strategy involves two contrasting forces. On the one hand, an initial high

price may lead to lower demand due to the higher monetary cost of acquiring the product.

On the other hand, this initial high price can also boost demand by matching the reference

price. If the latter effect outweighs the former, the overall demand under MD pricing is larger

than that under EDLP pricing. For example, with σ = σPL and c(p) = βp, the inequality in

Proposition 2 becomes β ≤ γv(q). If instead, σ = σS, the condition becomes β(ph−pl) ≤ θv(q).

Note that both the Logit model and the reference-price dependent model are incompatible with

a higher demand for the MD strategy. In both models, σ is equal to 1 and c is increasing.

Therefore, the inequality in Proposition 2 becomes c(ph) − c(pl) ≤ 0, which is never satisfied

because c is increasing. Lastly, the inequality in Proposition 2 is more likely to hold for high

quality products. Suggesting that MD pricing strategies may be more effective for high quality

products.

5 Axiomatic characterization

In this section, I introduce the properties of demand data that characterize the RPQ model,

making it falsifiable. I start by characterizing a general version of the multinomial logit demand

model that encompasses the reference-price dependent model in Equation (RD). Next, I show

which conditions need to be relaxed to obtain the RPQ model. I assume that the analyst

can observe the consumer’s choice among finitely many products. Therefore, there are finitely

many observed quality levels, denoted by Q ⊂ [q0, q1] with |Q| ≥ 2. Additionally, I assume

that q0 ∈ Q. There are finitely many observed prices, denoted by P ⊂ [0,∞) with |P| ≥ 2.

I denote by A the family of all choice sets in the dataset. The first three assumptions are

standard:

Axiom (Positivity - P). For all A ∈ A and (qk, pk) ∈ A, P ((qk, pk)|A) > 0.

This assumption is rather weak. It cannot be rejected in any finite dataset since, empirically,
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a small but strictly positive probability is indistinguishable from a zero probability. The second

property is the standard Independence of Irrelevant Alternatives (IIA):

Axiom (IIA). For all A,B ∈ A and (qk, pk), (ql, pl) ∈ A ∩B,

P ((qk, pl)|A)
P ((ql, pl)|A) = P ((qk, pk)|B)

P ((ql, pl)|B) .

The last assumption is that, for a fixed price, the demand increases with quality.

Axiom (Quality Monotonicity - QM). For all p ∈ P, all q, q′ ∈ Q with q ≤ q′ and all choice

sets A such that (q, p), (q′, p) ∈ A, P ((q, p)|A) ≤ P ((q′, p)|A).

I say that choice probabilities satisfy the Basic Axioms if they satisfy Positivity, IIA and

Quality Monotonicity.

In the multinomial logit demand model (and in the reference-price dependent model), the

structural value of a product (q, p) is v(q) − c(p). This implies a separation between quality

and price (v and c are independent), and a downward-sloping demand for all products (c is

increasing). The following two axioms capture these properties:

Axiom (Odds Independence - OI). For all qk, ql ∈ Q, all pk, pl ∈ P, and all A ∈ A with

(qk, pk), (qk, pl), (ql, pl), (ql, pk) ∈ A:

P ((qk, pk)|A)
P ((ql, pk)|A) = P ((qk, pl)|A)

P ((ql, pl)|A) .

Odds Independence means that relative quality preferences are independent of the price.

The next condition requires that, ceteris paribus, a higher price decreases the likelihood of

selecting a product:

Axiom (Monotonicity (M).). For all qk, ql ∈ Q and all pk, pl ∈ P with pk ≥ pl, P ((qk, pk)|(ql, pl)∪

(qk, pk)) ≤ P ((qk, pl)|(qk, pl) ∪ (ql, pl))

The previous axioms characterize the general multinomial logit demand:

Theorem 1 (General Logit). The choice probabilities satisfy the Basic Axioms, Odds-Independence

and Monotonicity if and only if there are weakly increasing functions v : Q → R+ and
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c : P → R+ such that:

P ((qk, pk)|A) = ev(qk)−c(pk)∑
(ql,pl)∈A

ev(ql)−c(pl)
,

for all (qk, pk) ∈ A and A ∈ A. The functions v and c are unique up to location (i.e., up to

translation by a constant).

In Section 6, I will characterize the Logit case c(p) = βp in Proposition 5 and the reference-

price model RD in Proposition 4. In the RPQ model, choice probabilities are strictly positive,

the IIA holds, and higher quality is more valuable. However, price and quality are intertwined

and the demand for some products may increase with price. Therefore, both Odds Indepen-

dence and Monotonicity need to be relaxed. Let Lqk,ql(p,A) denote the log-odds of selecting qk

and ql in a choice set A when they have the same price p:

Lqk,ql(p,A) = ln P ((qk, p)|A)
P ((ql, p)|A) .

Log-odds represent the relative demand between two quality levels, qk and ql, at a given price

p. The following axiom employs log-odds to establish the type of “independence” that holds

in the RPQ model:

Axiom (Log-odds Independence - LOI). For all p, p′ ∈ P and all A,B ∈ A:

Lqk,qm(p,A)
Lqk,qm(p′, B) = Lql,qn(p,A)

Lql,qn(p′, B) , (7)

for all qk, ql, qm, qn ∈ Q such that either ratio is well defined.

Regarding the interpretation, Log-odds Independence implies that relative changes in de-

mand between pairs of quality levels are independent of the price. Suppose that all log-odds

are non-zero, then Log-odds Independence allows me to express the relative demand between

two quality levels at price p as a quality-independent function of the relative demand at price

p′, P ((qk,p)|A)
P ((qm,p)|A) =

(
P ((qk,p′)|B)
P ((qm,p′)|B)

)ψ(p,p′)
, where ψ(p, p′) = Lql,qn(p,A)/Lql,qn(p′, B) is independent of

ql and qn.

The next condition weakens Monotonicity and states that the demand for the product of

lowest quality decreases when its price increases:
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Axiom (Worst Monotonicity - WM). If pk ≥ pl, then P ((q0, pk)|(q0, pk)∪(ql, pl)) ≤ P ((q0, pl)|(q0, pl)∪

(ql, pl)).

The last condition is needed to identify the reference price(s) and to impose weak single-

peakedness of the distortion function. Note that the IIA implies that log-odds are independent

of the choice set A. Hence, I can omit the reference to the choice set and write Lqk,ql(p).

Consider qk, ql ∈ Q and p̄ ∈ P such that Lqk,ql(p̄) > 0 (which exists unless all probabilities are

uniform). I define P ∗ to be the (set of) price(s) given by:

P ∗ = argmax
p∈P

Lqk,ql(p)
Lqk,ql(p̄)

.

The normalization only serves to show that, by Log-Odds Independence, these ratios are inde-

pendent of qk, ql. The following condition requires that log-odds have a peak at (the potentially

multiple) p∗ ∈ P ∗:

Axiom (Weak Single-Peakedness - WSP). For all p∗ ∈ P ∗, if p ≥ p′ ≥ p∗ or p∗ ≥ p′ ≥ p then

Lqk,ql(p′) ≥ Lqk,ql(p).

Intuitively, the prices in P ∗ are the revealed reference prices. The WSP condition ensures

that the further a price is away from the reference price, the lower is the relative likelihood of

choosing one quality over the other. Reference prices are those at which quality differences are

most relevant for the relative difference in demand. It is crucial to highlight, that in models

where quality and price are independent, such as the logit or the RD models, all prices are

revealed reference prices (i.e., P ∗ = P), because the log-odds are independent of the price. I

can now state the main result of this section:

Theorem 2 (Reference-Price-Quality). The choice probabilities satisfy the Basic Axioms, Log-

odds Independence, Worst Monotonicity, and Weak Single-Peakedness if and only if there is

p∗ ∈ P and there are weakly increasing functions v : Q → R+ with v(q0) = 0, c : P → R+, and

a function σ(·|p∗) : P → R+ such that:

P ((qk, pk)|A) = eσ(pk|p∗)v(qk)−c(pk)∑
(ql,pl)∈A

eσ(pl|p∗)v(ql)−c(pl)
,
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for all (qk, pk) ∈ A and all A ∈ A. The function σ(·|p∗) satisfies σ(p′|p∗) ≥ σ(p|p∗) if p∗ ≥

p′ ≥ p or p ≥ p′ ≥ p∗.

If P ∗ = p∗, then p∗ is the unique reference price. However, consider the Acceptable Price

range σAPR defined in Equation APR. In this case, all prices in [p∗ − δ1, p
∗ + δ2] are revealed

reference prices and are in P ∗. For example, suppose that p∗ = 2 and δ1 = δ2 = 2, then

P ∗ = P∩ [0, 4]. However, p∗1 = 1, δ′1 = 1, and δ2 = 3 determine the same acceptable price range

P ∗ = P ∩ [0, 4]. Thus, in some cases, it is not possible to identify a unique reference price from

choice data. However, the Weak Single-Peakedness property ensures that P ∗ is an interval in

P . I conclude by stating the uniqueness properties of the RPQ model.

Proposition 3 (Uniqueness). The set P ∗ is unique. If σ̄, v̄, c̄ also represent the choice proba-

bilities, and the latter are not uniform, then there are a, b, d ∈ R such that σ̄ = aσ, v̄ = 1
a
v + b

and c̄ = c+ abσ + d.

6 Falsifiability of reference price dependent models

In this section, I present the conditions that characterize the widely used model of Equation

(RD) and the Logit model. I show that these conditions are much more stringent than those

characterizing the RPQ model.

Assuming the piecewise linear and monotone cost function of Equation RD, one could

identify the reference price by exploiting the change in the slope of c around p∗. Specifically,

for prices below the reference price, the cost function is linear with a slope of −β̄ − η+. For

prices above the reference price, it is linear with a slope of −β̄−η−. The next axiom formalizes

this property in terms of choice probabilities:

Axiom (Piecewise Constant Sensitivity - PCS). There is p∗ ∈ [0,∞) such that, for all qk ∈ Q,

all pk, pl ∈ [0,∞) with pk, pl ≤ p∗, and all A ∈ A with (qk, pk), (qk, 1
2pk + 1

2pl), (qk, pl) ∈ A

P ((qk, pk)|A)
P ((qk, 1

2pk + 1
2pl)|A) =

P ((qk, 1
2pk + 1

2pl)|A)
P ((qk, pl|A) .

An identical condition holds for all pk, pl > p∗.
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Suppose the pl ≤ pk ≤ p∗. Keeping quality fixed, the relative increase in demand due to

passing from a price pk to a lower price 1
2pk + 1

2pl is the same as the relative increase in demand

of passing from 1
2pk + 1

2pl to pl. An identical property holds for prices above the reference.

It is important to highlight that I am assuming an exogenous reference price p∗ because the

separation of quality and price does not allow me to “identify" reference prices as done with

the RPQ model. Additionally, I assume that one can observe demand at all prices in [0,∞)

(although this assumption can be partially relaxed to hold for a closed interval of prices).

The PCS assumption alone is not sufficient to characterize the cost function in the RD

model. This is because the latter is continuous, while PCS can be satisfied by a discontinuous

cost function. For example, ĉ(p) = γ+p+ θ1 if p ≤ p∗ and ĉ(p) = γ−p+ θ2 would satisfy PCS.

Therefore, I need to impose continuity of the odds ratios with respect to perturbations of the

price:

Axiom (Continuity - C). For all qk, ql ∈ Q, all p ∈ [0,∞), ε > 0, and all A ∈ A with

(ql, p) ∈ A, limε→0
P ((qk,p+ε)|A)
P ((ql,p)|A) = P ((qk,p)|A)

P ((ql,p)|A) .

I have the following result:

Proposition 4 (Reference price model). The choice probabilities satisfy the Basic Axioms,

Odds-Independence, Monotonicity, Continuity and Piecewise Constant Sensitivity if and only

if they have the General Logit representation of Theorem 1 and the cost function is c(p) =

βp − η+(p∗ − p), for some η+, β ≥ 0 when p ≤ p∗ and c(p) = βp + η−(p − p∗), for some

η−, β ≥ 0 when p > p∗.

To falsify standard models of reference price, rich choice data and continuity of the cost

function are required in addition to an exogenously specified reference price. Moreover, the

identification of the reference price critically depends on parametric assumptions about the

cost function, and specifying a different cost function (such as c(p) = η(p − p∗)2 + βp) would

require finding different conditions on choice data.

I conclude this section with the characterization of the multinomial logit. This is a particular

case of the RD model with a zero reference price p∗ = 0. Therefore, it necessarily satisfies the

next axiom, which corresponds to PCS with p∗ = 0:
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Axiom (Constant Sensitivity - CS). For all qk ∈ Q, all pk, pl ∈ [0,∞), and all A ∈ A with

(qk, pk), (qk, 1
2pk + 1

2pl), (qk, pl) ∈ A,

P ((qk, pk)|A)
P ((qk, 1

2pk + 1
2pl)|A) =

P ((qk, 1
2pk + 1

2pl)|A)
P ((qk, pl|A) .

I have the following result:

Proposition 5 (Logit with linear cost). The choice probabilities satisfy the Basic Axioms,

Odds-Independence, Monotonicity, and Constant Sensitivity if and only if they have the General

Logit representation of Theorem 1 and the cost function is c(p) = βp for some β ≥ 0.

It is worth highlighting that I did not assume continuity in the previous result, but I

nonetheless obtained a continuous cost function (this is due to the assumption of observing

demand at all price levels).

7 Extensions

In this section, I study two extensions of the RPQ model. In the first, there is a price-quality

interaction, but there is not necessarily a reference price(e.g., Crawford et al., 2015; Li et al.,

2020). In the second, the quality distortion is context-dependent.

7.1 Price-quality interaction without a reference price.

In the first generalization of the RPQ, called the General PQ model, the structural value of

a product of quality q and price p is given by σ(p)v(q) − c(p), where σ is a positive function.

This model is characterized by relaxing the WSP axiom from the axioms used to characterize

the RPQ model in Theorem 2:

Proposition 6 (Price-Quality Interaction). The choice probabilities satisfy the Basic Axioms,

Log-odds Independence, and Worst Monotonicity if and only if there is there are weakly in-

creasing functions v : Q → R+ (with v(q0) = 0), c : P → R+, and a function σ : P → R+ such

that:

P ((qk, pk)|A) = eσ(pk)v(qk)−c(pk)∑
(ql,pl)∈A

eσ(pl)v(ql)−c(pl)
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for all (qk, pk) ∈ A and all A ∈ A.

Special cases of the General PQ model have appeared in the literature studying price-quality

interaction. For instance, Crawford et al. (2015) and Li et al. (2020) propose that the value of

a product is given by u(q, p) = α0 +α1q−βp+α2qp. This corresponds to a General PQ model

with a distortion σ(p) = α1 +α2p for some α1, α2 ∈ R, a linear cost function −c(p) = −α0−βp

for some α0 ∈ R and β ≥ 0, and v(q) = q. In this model, the demand for a product is

upward-sloping if α2q ≥ β (see condition (2)).

7.2 Context effects

The second extension of the RPQ model relaxes the logit-like functional form. It is well-known

that the logit model is not suitable for modeling context-dependent behaviors, such as the

asymmetric dominance effect and the compromise effect (Simonson, 1989). These phenomena

violate a property called regularity, which states that the demand of a product cannot increase

if a new product is added to the choice set. Formally:

Definition 2. The demand P satisfies regularity if P ((qk, pk)|A) ≥ P ((qk, pk)|B), for all prod-

ucts (qk, pk) and all choice sets A ⊆ B.

To address violations of regularity, I will consider the following context-dependent general-

ization of the PQ model:

P ((qk, pk)|A) = eσA(pk)v(qk)−cA(pk)∑
(ql,pl)∈A

eσA(pl)v(ql)−cA(pl)
, (8)

where σA : P → R is a choice set-dependent distortion and cA is a cost function for each choice

set A.

Suppose that the initial choice set A contains only two products k = (qk, pk) and l = (ql, pl).

A violation of Regularity occurs if addingm to A increases the probability of selecting k and/or

l. For simplicity, let cA(p) = cB(p) for all choice sets A,B ∈ A. Simple algebra shows that:

Proposition 7. The context-dependent PQ model of Equation (8) violates Regularity if and

only if

ev(qk)(σA∪m(pk)−σA(pk)) > ev(ql)(σA∪m(pl)−σA(pl)) + eσA∪m(pm)v(qm)−c(pm)−σA(pl)v(ql)+c(pl).
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To observe a violation of Regularity, the additional distortion of the quality of k = (qk, pk)

when m is added to A (the left-hand side of the inequality) must be larger than the additional

distortion of the quality of l plus the relative value of m over l (the right-hand side of the

inequality). If Regularity is violated, it must be the case that the additional distortion of k

when m is present overcomes the additional distortion of l. Indeed, a necessary condition is

that

v(qk) (σA∪m(pk)− σA(pk)) > v(ql) (σA∪m(pl)− σA(pl)) .

If the distortion of the quality of l is unaffected by the presence of m (i.e., σA∪m(pl) = σA(pl)),

the necessary condition becomes

σA∪m(pk) > σA(pk), (9)

which simply states that the distortive effect of pk is larger when m is present.

Two robust violations of Regularity are the asymmetric dominance effect and the compro-

mise effect (Simonson, 1989). In the asymmetric dominance effect, a decoy product is added

to a choice set to increase the demand for a targeted product. The decoy is a product that

is dominated by the targeted product (e.g., it has a higher price and lower quality than the

target) but not dominated by the alternative product. The asymmetric dominance effect oc-

curs when the probability of selecting the targeted product increases after adding the decoy. In

the compromise effect, the demand for a product increases when it becomes a “compromise”

between two extreme alternatives. For example, if k has higher quality and a higher price than

l, adding m that has higher quality and a higher price than k increases the demand for k.

The necessary condition (9) implies that the presence of a decoy or an extreme product

boosts demand of the target because the price of the latter becomes more “salient.”

7.2.1 Context-dependent “salience”

To illustrate an additional application of the context-dependent PQ model, I consider the wine

purchase example discussed by Bordalo et al. (2013). In a wine shop, a cheap but low-quality

wine (l) sold at $10 per bottle may be preferred over an expensive and high-quality wine (h)

sold at $20 per bottle. However, this preference may be reversed in a restaurant, even if the

price difference remains the same. For instance, the restaurant may sell the high-quality wine

at $60 and the low-quality wine at $50. Let A = {(ql, 10), (qh, 20)} and A′ = {(ql, 50), (qh, 60)},
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and cA(p) = cA′(p) = p. The context-dependent PQ model is consistent with P ((qh, 60)|A′) ≥

P ((qh, 20)|A). Indeed, I have:

P ((qh, 60)|A′) ≥ P ((qh, 20)|A) ⇐⇒ v(ql)(σA′(50)−σA(10)) ≤ v(qh)(σA′(60)−σA(20)). (10)

Suppose that v(qh) ≥ v(ql), then a sufficient condition for the inequality (10) is σA′(50) −

σA(10) ≤ σA′(60) − σA′(20). Let’s consider the special cases in which only the reference price

is context-dependent: σA(p) = σPL(p|p∗A) and σA′(p) = σPL(p|p∗A′). If the reference price at the

wine shop is $10 and it is $60 at the restaurant, I have

σPL(50|60)− σPL(10|10) = −γ10 ≤ η10 = σPL(60|60)− σPL(20|10),

which is always satisfied.

7.2.2 Characterization

I conclude this section with the characterization of the context-dependent PQ model. In

Theorem 6, I show that the axioms characterizing the general PQ model are the basic Axioms

(Positivity, Quality Monotonicity and the IIA) and the LOI. The characterization of its context-

dependent version essentially relaxes the IIA. I have the following result:

Theorem 3 (Context Effects). Suppose that, for some products (qk, pk), (ql, pl), P ((qk, pl)|Z) 6=

P ((ql, pl)|Z), where Z = {(q, p) : q ∈ Q, p ∈ P}. The choice probabilities satisfy Positivity,

Quality Monotonicity, and Log-odds Independence if and only if there exist a weakly monotone

function v : Q → R and functions cA : P → R+, σA : P → R for each A ∈ A such that:

P ((qk, pk)|A) = eσA(pk)v(qk)−cA(pk)∑
(ql,pl)∈A

eσA(pl)v(ql)−cA(pl)
,

for all (qk, pk) ∈ A and all A ∈ A.

An important intermediate step in the proof of Theorem 3 is Lemma 1 in Appendix B. This

Lemma states that choice probabilities that satisfy Positivity always have a representation given
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by

P ((qk, pk)|A) = evA(qk,pk)∑
(ql,pl)∈A e

vA(ql,pl)
,

where vA : A→ R for each choice set A.

Figure 5 summarizes the relationship among the representation results proved in the text.

Theorem 3
σA(p)v(q) − cA(p)
v weakly increasing

P, QM, LOI

Proposition 6
σ(p)v(q)− c(p)

v, c weakly increasing

Theorem 2
σ(p|p∗)v(q)− c(p)

σ weakly single-peaked
v, c weakly increasing

+WSP

Theorem 1
v(q)− c(p)

v, c weakly increasing

Proposition 4
v(q) + η+(p∗ − p)+ − η−(p− p∗)+ − βp

v weakly increasing

+PCS, +C

Proposition 5
v(q)− βp

v weakly increasing

+CS

+OI, +M

+IIA, +WM

Figure 5: Summary of the axioms and the associated representation results.

8 Related literature

This paper contributes to the literature on random choice and to the literature on behavioral

consumer choice.

In the context of the random choice literature, the axiomatic characterization of my model

is one of the first to exploit the bi-dimensional nature of products.7 In general, the results

of the present paper can inform models of discrete choice over bi-dimensional objects, such

as dated outcomes or two-person allocations. Although with a different scope and primitives,
7In this literature, Falmagne and Iverson (1979) studied the Weber’s law for random choice over bi-

dimensional objects.
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Cerreia-Vioglio et al. (2023) axiomatized a dynamic version of the multinomial logit in which

noise decreases over time. In their model, the structural value of an alternative a at time t is

v(a)/λ(t) + α(a). This can be viewed as a model in which time distorts the value of a, as the

price distorts quality in the generalized PQ model of Proposition 6.

The literature on “behavioral” consumers’ responses to price information is extensive (Mon-

roe, 1971, 1973; Cheng and Monroe, 2013, e.g.,). Within this literature, the paper contributes to

the research on reference prices (see Briesch et al., 1997; Mazumdar et al., 2005, for reviews), as

well as the research on the interdependence of price and value (e.g., Scitovszky, 1944; Cosaert,

2018; Ng, 1987; Pollak, 1977; Dodds et al., 1991; Gneezy et al., 2014). This paper offers a first

axiomatic characterization of two models that are popular in this literature: the multinomial

logit model of Guadagni and Little (1983) (see Theorem 1 and Proposition 5), and the model

of random choice with reference prices (Theorem 1 and Proposition 4). Moreover, the RPQ

model extends and fleshes out these models. Indeed, models of reference price typically disre-

gard the interaction between prices or reference-prices and quality and assume that a higher

price reduces demand. Moreover, they often assume an exogenous reference price.8 This paper

the first to allow for the identification of reference price(s) from choice data.

Concerning the literature on the price-quality heuristic, the present model results from

an additive random utility in which the consumer is uncertain about the overall value of a

product. The function distorting quality can be interpreted as if the price “signals” quality

by increasing the weight of the quality over the random component, thereby reducing choice

variability. This approach differs from Gneezy et al. (2014), where consumers are uncertain

about the product’s quality and form expectations based on prices. Typically, approaches

to the price-quality heuristic (e.g., Bagwell and Riordan, 1991; Wolinsky, 1983; Pollak, 1977;

Gneezy et al., 2014) are independent of reference prices, so I extend these approaches to include

the effects of reference prices. Additionally, I provide a first behavioral characterization of a

model allowing for the interaction between price and quality (Proposition 6).

Although not the primary focus of the paper, the context-dependent extension introduced

in Section 7.2 contributes to the vast literature developed to rationalize context-effects (e.g.,

Tversky, 1972; Guo, 2016; Steverson et al., 2019; Webb et al., 2021; He, 2023).
8One exception is Baucells and Hwang (2017), who proposed a model of intertemporal consumption that

features a time-varying reference price to account for various behavioral biases.
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A RPQ and the psychophysics of price and quality per-
ception.

Suppose that all products k in A have the same quality qk = q, as in Anderson and De Palma

(1992). In this case, the RPQ model becomes a model of price-stimulus discrimination. This

is consistent with the Behavioral Pricing Theory (e.g., Cheng and Monroe, 2013), which poses

that the perception of prices is subject to the same perceptual noise that affects the perception

of other physical stimuli (e.g., sound or light). Let denote Aq the set {pk ∈ [0,∞) : (q, pk) ∈ A}.

Then,

P ((q, pk)|A) = Pq(pk|Aq) = eσ(pk|p∗)v(q)−c(pk)∑
pl∈Aq

eσ(pl|p∗)v(q)−c(pl)

and the demand for (q, pk) in A can be interpreted as the choice of pk from Aq, denoted by

Pq(pk|Aq). In the particular case of binary choice sets A = {(q, pk), (q, pl)}, so that Aq =

{pk, pl}, the choice probabilities in the RPQ model becomes

P ((q, pk)|A) = Pq(pk|Aq) = 1
1 + e−v(q)(σ(pk|p∗)−σ(pl|p∗))−(c(pl)−c(pk)) ,

which is increasing in c(pl) − c(pk) and in σ(pk|p∗) − σ(pl|p∗). Moreover, the dependence

on v(q) makes the stimuli discrimination quality-dependent. If the price pk is “more dis-

tortive” than pl, so that σ(pk|p∗) ≥ σ(pl|p∗), products with higher (perceived) quality makes

price discrimination easier than low quality products. That is, P ((qk, pk)|(qk, pk), (qk, pl)) ≥

P ((ql, pk)|(ql, pk), (ql, pl)) if v(qk) ≥ v(ql).

Suppose now that all products in A have the same price p. In this case, the RPQ model

becomes:

P ((qk, p)|A) =

(
ev(qk)

)σ(p|p∗)

∑
(ql,p)∈A

(
ev(ql)

)σ(p|p∗) .

It is customary to interpret σ(p|p∗) ≥ 0 as a measure of rationality (e.g., Holt and Laury,

2002). Indeed, for σ(p|p∗) = 0, the demand is uniform P ((qk, p)|A) = 1
|A| . For a large σ(p|p∗)

(going to infinity) the demand becomes deterministic and the choice from A coincides with

the product that maximizes v. In the RPQ model with homogeneous prices, the distortion

function becomes a measure of how “random” is consumers choice.
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B Proofs

Proof of Proposition 1. Since p̂ is optimal and σ is differentiable at p̂, the first-order condition

is satisfied at p̂. The condition is

PRPQ((q, p)|A) + (p− C)PRPQ((q, p)|A)(1− PRPQ((q, p)|A))(σp(p|p∗)v(q)− β) = 0.

The optimal price cannot be smaller than C, therefore σp(p̂|p∗)v(q)−β < 0 (otherwise, the left-

hand side would be strictly positive). Then, p̂ = C − eσ(p̂|p∗)v(q)−βp̂

σp(p̂|p∗)v(q)−β −
1

σp(p̂|p∗)v(q)−β . Multiplying

both sides by σp(p̂|p∗)v(q)−β and then adding σ(p̂|p∗)v(q) to both sides, I obtain (σp(p̂|p∗)v(q)−

β)p̂+σ(p̂|p∗)v(q) = C(σp(p̂|p∗)v(q)−β)−eσ(p̂|p∗)v(q)−βp̂−1+σ(p̂|p∗)v(q). Rearranging I obtain

eσ(p̂|p∗)v(q)−βp̂ + σ(p̂|p∗)v(q)− βp̂ = σ(p̂|p∗)v(q) + v(q)σp(p̂|p∗)(C − p̂)− βC − 1. (11)

By the assumption in the proposition, there is f(C, v(q), p∗) such that σ(p̂|p∗)v(q)+v(q)σp(p̂|p∗)(C−

p̂) = f(C, v(q), p∗). Then, taking exponentials on both sides of Equation (11), I obtain

ee
σ(p̂|p∗)v(q)−βp̂

eσ(p̂|p∗)v(q)−βp̂ = ef(C,v(q),p∗)−βC−1. By defining W = eσ(p̂|p∗)v(q)−βp̂, the previous

equality can be written as WeW = ef(C,v(q),p∗)−βC−1. This expression is related to the Lambert

W function implicitly defined as W (x)eW (x) = x, so that eσ(p̂|p∗)v(q)−βp̂ = W
(
ef(C,v(q),p∗)−βC−1

)
.

Taking logs on both sides and using the property that lnW (x) = ln x−W (x), I have:

σ(p̂|p∗)v(q)− βp̂ = f(C, v(q), p∗)− βC − 1−W
(
ef(C,v(q),p∗)−βC−1

)
,

which gives the result.

Proof of Corollary 1. If σ = σPL(p̂|p∗), then σ(p̂|p∗) = 0, σ(p̂|p∗) = ζ − η(p̂− p∗), or σ(p̂|p∗) =

ζ − γ(p∗ − p̂). Thus, the condition in Proposition 1 is satisfied with f(C, v(q), p∗) = 0,

f(C, v(q), p∗) = ζv(q) − ηv(q)(p∗ − C) if p̂ > p∗ or f(C, v(q), p∗) = ζv(q) + γv(q)(C − p∗)

if p̂ ≤ p∗. Then, using the result in Proposition 1, the optimal price has a closed form solution

given by

p̂ = C +
1 +W

(
e−1−βC

)
β

,
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p̂ = C +
1 +W

(
eζv(q)−ηv(q)(p∗−C)−1−βC

)
β + ηv(q) ,

or by

p̂ = C +
1 +W

(
eζv(q)+γv(q)(C−p∗)−1−βC

)
β − γv(q) .

As showed above, β > γv(q).

Proof of Theorem 1. Necessity of the Axioms is straightforward. For sufficiency, by the IIA

and Positivity, for all A ∈ A and all (qk, pk) ∈ A, the choice probabilities can be written as

P ((qk, pk)|A) = u′(qk,pk)∑
(ql,pl)∈A

u′(ql,pl)
for a random scale u′ : Q × P → R++. Let fix an arbitrary

q∗ ∈ Q and order u′(q∗, p0) ≤ u′(q∗, p1) ≤ . . . ≤ u′(q∗, pmax). Let define u(q, p) = u′(q,p)
u′(q∗,pmax) .

With such a u, P ((qk, pk)|A) = u(qk,pk)∑
(ql,pl)∈A

u(ql,pl)
and u(q∗, p) ≤ 1 for all p ∈ P . Now, let define

c(p) = − ln u(q∗, p) ≥ 0, and similarly define vp(q) = ln u(q,p)
u(q∗,p) . By Odds Independence, vp(q)

is independent of p and I denote it by v(q). Then, ev(q)−c(p) = u(q,p)
u(q∗,p)u(q∗, p) = u(q, p). Lastly,

Quality Monotonicity states that P ((q, p)|A) ≥ P ((q′, p)|A) when q′ ≥ q and (q, p), (q′, p) ∈ A,

that implies v(q) − c(p) ≤ v(q′) − c(p), so v is weakly increasing. Monotonicity implies that

(1 + ev(ql)−c(pl)−v(qk)+c(pk))−1 = P ((qk, pk)|(qk, pk) ∪ (ql, pl)) ≤ P ((qk, pl)|(qk, pl) ∪ (ql, pl)) =

(1 + ev(ql)−v(qk))−1, when pk ≥ pl. Thus, v(ql) − c(pl) − v(qk) + c(pk) ≥ v(ql) − v(qk) or

c(pk) ≥ c(pl). For uniqueness, suppose that v̄, c̄ also represent the probabilities. By the

uniqueness of the Logit model, there is k ∈ R such that v(q)− c(p) = v̄(q)− c̄(p) + k. Fix an

arbitrary p̄ ∈ P , then v(q) = v̄(q)− c̄(p̄) + c(p̄) +k. Thus, v = v̄+ l, where l = −c̄(p̄) + c(p̄) +k

is a constant. Then, v̄(q) + l − c(p) = v̄(q)− c̄(p) + k implies c(p) = c̄(p) + l − k.

Before proving Theorem 2, I prove the more general Proposition 6.

Proof of Proposition 6. Necessity of the Basic Axioms is straightforward. For Log-odds In-

dependence, it clearly holds when v(qk) 6= v(qm) or v(qm) 6= v(ql). If for all qk, ql ∈ Q,

v(qk) = v(ql), Log-odds Independence holds vacuously, since no ratio is well-defined. Worst

Monotonicity follows directly from v(q0) = 0 and the fact that c is weakly increasing. For suf-

ficiency, by Positivity and the IIA property, for all A ∈ A and all (qk, pk) ∈ A, P ((qk, pk)|A) =
u′(qk,pk)∑

(ql,pl)∈A
u′(ql,pl)

for some u′ : Q×P → R++. By the IIA, Log-odds are independent of the choice

set, so I can write Lqk,ql(p). I say that qk, ql ∈ Q are p-distinguishable, if P ((qk, p)|(qk, p) ∪

(ql, p)) 6= 0.5 (thus Lqk,ql(p) 6= 0). If there are no p-distinguishable qualities for all p ∈ P ,
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it must be that u′(q, p) is constant for all q ∈ Q and all p ∈ P . In this case, the proof is

complete by setting v(q) = 0 for all q ∈ Q and σ(p) = 1 and c(p) = 0 for all p ∈ P . Sup-

pose there are q, q′ ∈ Q that are p̄-distinguishable. By Log-Odds Independence q and q0 are

also p̄-distinguishable. Indeed, Lq,q′(p)/Lq,q′(p̄) is a well-defined real number since q and q0

are p̄ distinguishable. By LOI, Lq,q′(p)/Lq,q′(p̄) = Lq,q0(p)/Lq,q0(p̄), so that Lq,q0(p)/Lq,q0(p̄)

must be a well-defined real number, meaning that q and q0 are p̄-distinguishable. I can or-

der u′(q0, p0) ≤ u′(q0, p1) ≤ . . . ≤ u′(q0, p
max) and define u(q, p) = u′(q,p)

u′(q0,pmax) . With such a u,

P ((qk, pk)|A) = u(qk,pk)∑
(ql,pl)∈A

u(ql,pl)
and u(q0, p) ≤ 1 for all p ∈ P . By definition, either Lq,q0(p̄) or

Lq0,q(p̄) must be greater than 0. Assume w.l.o.g. that Lq,q0(p̄) > 0. Let define

σq(p) ≡
Lq,q0(p)
Lq,q0(p̄) ,

which is a well-defined real number because q, q0 are p̄-distinguishable. By Log-odds Indepen-

dence, σqk(p) = Lqk,q0 (p)
Lqk,q0 (p̄) = Lql,q0 (p)

Lql,q0 (p̄) = σql(p), for all qk, ql ∈ Q. Thus, the function σq is indepen-

dent of q and I denote it by σ(p). Now, I define v(q) ≡ Lq,q0(p̄) and c(p) as c(p) ≡ − ln u(q0, p) ≥

0. Notice that v(q0) = 0. It follows that eσ(pk)v(qk)−c(pk) = e
Lqk,q0 (pk)
Lqk,q0 (p̄) Lqk,q0 (p̄)

u(q0, pk) = eLqk,q0 (pk)u(q0, pk) =
P ((qk,pk)|A)
P ((q0,pk)|A)u(q0, pk) = u(qk, pk). Lastly, Quality Monotonicity implies that, for all p, P ((q, p)|A) ≤

P ((q′, p)|A) when q′ ≥ q and (q, p), (q′, p) ∈ A, which implies σ(p)v(q)−c(p) ≤ σ(p)v(q′)−c(p),

or 0 ≤ σ(p)(v(q′)− v(q)). If v(q′) ≥ v(q), the inequality is satisfied if σ(p) ≥ 0 for all p. Take

any q′′′ ≥ q′′, then 0 ≤ σ(p)(v(q′′′) − v(q′′)) implies v(q′′′) ≥ v(q′′), so v is weakly increas-

ing. If v(q′) ≤ v(q), the inequality is satisfied if σ(p) ≤ 0 for all p. Take any q′′′ ≥ q′′,

then 0 ≤ σ(p)(v(q′′′) − v(q′′)) implies v(q′′) ≥ v(q′′′), so v is weakly decreasing. Defining

σ̂ = −σ and v̂ = −v, the result follows. For the second part, if c is weakly increasing,

the fact that v(q0) = 0 implies that the choice probabilities satisfy Worst Monotonicity. For

the opposite direction, Worst Monotonicity implies that (1 + eσ(ql)v(ql)−c(pl)−σ(pk)v(q0)+c(pk))−1 =

P ((q0, pk)|(q0, pk) ∪ (ql, pl)) ≤ P ((q0, pl)|(q0, pl) ∪ (ql, pl)) = (1 + eσ(pl)v(ql)−c(pl)−σ(pl)v(q0)+c(pl))−1,

when pk ≥ pl. Thus, v(q0)(σ(pl)−σ(pk))−c(pl)+c(pk) ≥ 0, but v(q0) = 0 and then c(pk) ≥ c(pl).

Hence the conclusion.

Proof of Theorem 2. Necessity is straightforward. For sufficiency, by Proposition 6, the Basic

Axioms, LOI and Worst Monotonicity imply the existence of σ : P → R and weakly increasing
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functions v : Q → R+, c : P → R+ such that P ((qk, pk)|A) = eσ(pk)v(qk)−c(pk)∑
(ql,pl)∈A

eσ(pl)v(ql)−c(pl)
. Moreover,

by construction v(q0) = 0. Take now p∗ such that p∗ ∈ argmaxp∈P σ(p) = P ∗. By Weak

Single-Peakedness σ(p′) = Lq,q∗ (p′)
Lq,q∗ (p̄) ≤

Lq,q∗ (p)
Lq,q∗ (p̄) = σ(p) if p ≥ p′ ≥ p∗ or p∗ ≥ p′ ≥ p. Thus, σ(p)

is weakly single-peaked at p∗, and I conclude by relabeling σ(p) = σ(p|p∗) to highlight this

property.

Proof of Proposition 3. Uniqueness of P ∗ is immediate, since the positive normalization Lqk,ql(p̄)

does not affect the maximum over prices. Suppose that probabilities are not uniform and that

v̄, σ̄, c̄ also represent the probabilities. Then, for some p∗, p◦ ∈ P ∗, σ(p|p∗)
σ(p̄|p∗) = Lqk,ql (p)

Lqk,ql (p̄)
= σ̄(p|p◦)

σ̄(p̄|p◦) ,

so that σ̄(·|p◦) = aσ(·|p∗), where a = σ̄(p̄|p◦)
σ(p̄|p∗) is a constant. By the uniqueness property of the

logit model, σ(p|p∗)v(q) − c(p) = σ̄(p|p◦)v̄(q) − c̄(p) + d for some d ∈ R. Take an arbitrary

p̄ ∈ P , then v̄(q) = 1
a
v(q) − c(p̄)

aσ(p̄|p∗) + ac(p̄)
aσ(p̄|p∗) −

d
aσ(p̄|p∗) , so that v̄ = 1

a
v + b, where b is a con-

stant. Using the equality σ(p|p∗)v(q) − c(p) = aσ(p|p∗)( 1
a
v(q) + b) − c̄(p) + d again implies

c̄(p) = c(p) + abσ(p|p∗) + d.

Proof of Proposition 4. Necessity of the axioms is straightforward. For sufficiency, by Theo-

rem 1, the choice probabilities have a general multinomial logistic representation. By PCS, the

equality P ((qk,pk)|A)
P ((qk, 12pk+ 1

2pl)|A) = P ((qk, 12pk+ 1
2pl)|A)

P ((qk,pl|A) for all pk, pl ≤ p∗, implies −c(pk) + c(1
2pk + 1

2pl) =

−c(1
2pk+ 1

2pl)+c(pl). Rearranging gives 1
2c(pk)+ 1

2c(pl) = c(1
2pk+ 1

2pl). This is a Jensen’s func-

tional equation whose solution is c(p) = β̄p+ θ for some arbitrary β̄ ≥ 0 (due to Monotonicity)

and θ ∈ R (see Aczél, 1966, Th.1 p. 46). For p > p∗, Continuity and an identical argument

implies c(p) = β̂p + θ̂ for some arbitrary β̂ ≥ 0 (by Monotonicity) and θ̂ ∈ R. By Continuity,

β̄p∗ + θ = β̂p∗ + θ̂, that implies θ̂ = p∗(β̄ − β̂) + θ. Take any a, b ≥ 0 with a + b = β̂, then

c(p) = (a+ b)p+p∗(β̄−a− b)+θ. Rearranging gives c(p) = ap+ b(p−p∗)+θ+p∗(β̄−a) for all

p > p∗. Now, take b′ such that a+b′ = β̄, then c(p) = (a+b′)+θ = (a+b′)p+ θ̂−p∗(a+b′− β̂).

Rearranging gives c(p) = ap − b′(p∗ − p) + θ̂ − p∗(a − β̂) for all p ≤ p∗. By definition,

θ̂− p∗(a− β̂) = θ + p∗(β̄ − a), so this constant term cancels out when plugging c in the choice

probabilities.

Proof of Proposition 5. Necessity of the axioms is straightforward. For sufficiency, by Theorem

1, the choice probabilities have a multinomial logistic representation. By Constant Sensitivity,

the equality P ((qk,pk)|A)
P ((qk, 12pk+ 1

2pl)|A) = P ((qk, 12pk+ 1
2pl)|A)

P ((qk,pl|A) for all pk, pl, implies −c(pk) + c(1
2pk + 1

2pl) =
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−c(1
2pk+ 1

2pl)+c(pl). Rearranging gives 1
2c(pk)+ 1

2c(pl) = c(1
2pk+ 1

2pl). This is again a Jensen’s

functional equation whose solution is c(p) = βp+ θ for some β ≥ 0 (due to Monotonicity) and

θ ∈ R. Substituting into the choice probabilities gives

P ((qk, pk)|A) = ev(qk)−βpk+θ∑
(ql,pl)∈A

ev(ql)−βpl+θ
= ev(qk)−βpk∑

(ql,pl)∈A
ev(ql)−βpl

.

Before proving Theorem 3, I show that any positive choice probabilities admit a context-

dependent logit-like representation:

Lemma 1. The choice probabilities satisfy Positivity if and only if for all A ∈ A and all

(qk, pk) ∈ A,

P ((qk, pk)|A) = evA(qk,pk)∑
(ql,pl)∈A

evA(ql,pl)
, (12)

for some functions vA : A→ R−.

Proof of Lemma 1. Necessity is immediate. For sufficiency, for each A ∈ A, I fix (q∗A, p∗A) ∈ A

and define v̄A : A → R as v̄A(qk, pk) = ln P ((qk,pk)|A)
P ((q∗A,p

∗
A)|A) , which is defined because of Positivity.

Then,
ev̄A(qk,pk)∑

(ql,pl)∈A e
v̄A(ql,pl)

=
P ((qk,pk)|A)
P ((q∗A,p

∗
A)|A)∑

(ql,pl)∈A
P ((ql,pl)|A)
P ((q∗A,p

∗
A)|A)

= P ((qk, pk)|A).

Now, let define vA(qk, pk) = v̄A(qk, pk)−max(q,p)∈A v̄A(q, p)), so that vA ≤ 0 and

evA(qk,pk)∑
(ql,pl)∈A e

vA(ql,pl)
= ev̄A(qk,pk)−max(q,p)∈A v̄A(q,p)∑

(ql,pl)∈A e
v̄A(ql,pl)−max(q,p)∈A v̄A(q,p) = P ((qk, pk)|A).

Proof of Theorem 3. Necessity of the axioms is straightforward. For sufficiency, by Lemma 1,

there are choice set-dependent functions vA : A→ R− such that P ((qk, pk)|A) = evA(qk,pk)∑
(ql,pl)∈A

evA(ql,pl)

for all A ∈ A. I say that qk, ql ∈ Q are p,A-distinguishable, if P ((qk, p)|A) 6= P ((ql, p)|A). By

assumption, there are q, q∗ ∈ Q that are p̄, Z-distinguishable. By Log-odds Independence,

any q′, q′′ ∈ Q are p̄, Z-distinguishable. Indeed, if Lq,q∗(p̄, Z) 6= 0, Log-odds Independence
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implies Lq,q∗(p,A)/Lq∗,q(p̄, Z) = Lq′,q′′(p,A)/Lq′,q′′(p̄, Z). Since the left-hand side ratio is well-

defined, so is the right-hand side. Let define σA,q(p) ≡ Lq,q∗ (p,A)
Lq,q∗ (p̄,Z) . By Log-odds Independence,

σA,q(p) = Lq,q∗ (p,A)
Lq,q∗(p̄,Z) = Lq′,q∗ (p,A)

Lq′,q∗ (p̄,Z) = σA,q′(p,A), for all q′ ∈ Q such that (q′, p) ∈ A, hence the func-

tion σA,q(p) is independent of q and I denote it by σA(p). Now, letd define v(q̂) ≡ Lq̂,q∗(p̄, Z),

and define cA(p) as cA(p) ≡ −vA(q∗, p), which is positive since vA can be rescaled to be negative.

Then,

eσA(p)v(q)−cA(p) = e
Lq,q∗ (p,A)
Lq,q∗ (p̄,Z) ·Lq,q∗ (p̄,Z)

evA(q∗,p) = evA(q,p)e−vA(q∗,p)evA(q∗,p) = evA(q,p).

Lastly, Quality Monotonicity implies that, for all p, P ((q, p)|Z) ≤ P ((q′, p)|Z) when q′ ≥ q and

(q, p), (q′, p) ∈ Z, which implies σZ(p)v(q) − cZ(p) ≤ σZ(p)v(q′) − cZ(p), or 0 ≤ σZ(p)(v(q′) −

v(q)). If v(q′) ≥ v(q), the inequality is satisfied if σZ(p) ≥ 0 for all p. Take any q′′′ ≥ q′′, then

0 ≤ σZ(p)(v(q′′′)− v(q′′)) implies v(q′′′) ≥ v(q′′), so v is weakly increasing. If v(q′) ≤ v(q), the

inequality is satisfied if σZ(p) ≤ 0 for all p. Take any q′′′ ≥ q′′, then 0 ≤ σZ(p)(v(q′′′)− v(q′′))

implies v(q′′) ≥ v(q′′′), so v is weakly decreasing. The result follows by defining σ̂Z = −σZ and

v̂ = −v.
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