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ABSTRACT 

This study explores the efficacy of diffusion probabilistic models for generating synthetic histopathological images, 
specifically canine Perivascular Wall Tumours (cPWT), to supplement limited datasets for deep learning applications in 
digital pathology. This research evaluates an open-source medical domain-focused diffusion model called Medfusion, 
where the model was trained on a small (1,000 patches) and a large dataset (17,000 patches) of cPWT images to compare 
performance on the different sized datasets. A Receiver Operating Characteristic (ROC) study was implemented to 
investigate the ability of six veterinary medical professionals and pathologists to discern between generated and real cPWT 
patch images. The participants engaged in two separate rounds, where each round corresponded to models that had been 
trained on the two different sized datasets. The ROC study revealed mean average Area Under the Curve (AUC) values 
close to 0.5 for both rounds. The results from this study suggests that diffusion models can create histopathological patch 
images that are convincingly realistic where our participants often struggled to reliably differentiate between generated 
and real images. This underscores the potential of these models as a valuable tool for augmenting digital pathology datasets. 

Keywords: Artificial Intelligence, Deep Learning, Digital Pathology, Generative Models, Diffusion Models, Image 
Synthesis 

1. INTRODUCTION 

Deep learning typically requires large datasets for effective training of models [1]. However, this requirement can be 
problematic in the medical/veterinary domains due to reasons such as patient data confidentiality. These problems are 
further exacerbated in the case of digital pathology due to the invasive nature of obtaining tissues biopsy samples. However, 
generating synthetic images can potentially provide a solution to increase the size of medical datasets that would aid in 
training deep learning models. Until recently Generative Adversarial Networks (GANs) were considered the state of the 
art and demonstrated some success in creating synthetic digital pathology images. However, GANs are prone to unstable 
training, mode collapse and other architectural problems, potentially yielding sub-optimal synthetic images that fail to 
capture the true diversity of a training set [2]. Diffusion models are a recent approach that have become popular for 
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mainstream image generation tasks [3]. There has been relatively little work in the digital pathology space [e.g., 4-9], 
where statistical evaluation metrics have been limited to the Fréchet Inception Distance (FID) [10] and/or qualitative 
assessments which are often undertaken to provide feedback on the realism of these generated images. Furthermore, as 
with other generative methods, it has been suggested that diffusion models require large samples of data for effective 
training. As a result, this study proposes training an open-source medical domain focused diffusion probabilistic model 
[4][5] on two different sized datasets (small and large) and evaluating these models using a series of Likert scale-based 
subjective assessments of pathology image patches, complemented by objective Receiver Operating Characteristic (ROC) 
analysis to gauge user confidence in discerning generated images from real histopathological image patches. 

2. METHODS 

2.1 Data collection and patch extraction process 

In this study we used a canine Perivascular Wall Tumour (cPWT) dataset to train our models [11][12][13][14]. A veterinary 
pathologist diagnosed canine Soft Tissue Sarcoma (cSTS) using histology slides collected from the Department of 
Microbiology, Immunology and Pathology, Colorado State University. Additionally, a Non-Animals Scientific Procedures 
Act 1986 (NASPA) form was submitted to and approved by the University of Surrey (approval number NERA-1819-045). 
Collaborating pathologists from the University of Surrey chose representative cPWT histological slides and confirmed the 
grades of these slides. Subsequently, these slides underwent digitisation using a Hamamatsu NDP 2.0 HT scanner. The 
scanning process was carried out using a magnification of 40x, resulting in an image resolution of 0.23 micrometres per 
pixel. The length of the scanning process was approximately 150 seconds for an area of 15 mm x 15 mm, resulting in the 
generation of a digital Whole Slide Image (WSI). For pre-processing, Otsu thresholding was applied to separate 
background slide from the tissue sample to generate tissue slide maps. Due to the large nature of WSIs, a patch-based 
approach was necessary and thus the tissue slide maps were generated to ensure that we extracted tissue containing patch 
images only. Applying a tissue threshold of 0.95 (where 95% of the patch must contain tissue) and non-overlapping patches 
of size 512 x 512 pixels were extracted from these slides (see examples of patch images in Figure 1). Image patches from 
17 WSIs were used for training of these models. Exactly 1000 patches were randomly extracted from each of the 17 WSIs 
creating a total of 17,000 patch images. As previously mentioned, large datasets are often the requirement for training 
generative models. As a result, a random selection of 1000 patches from the training set were used to create a small subset 
training dataset to compare and determine the effectiveness of diffusion models trained on the two very different sized 
training sets.  

 

Figure 1. Examples from the canine Perivascular Wall Tumours (cPWT) dataset. All image patches extracted are of size 512 
x 512 pixels. 

2.2 Model training and experimental set-up  

A number of architectures were considered where the model used in this study was the Medfusion model proposed by 
Muller-Franzes et al. [4][5]. Their Medfusion model is based on the stable diffusion architecture [15] and is made up of 
two parts: an autoencoder and a denoising diffusion probabilistic model (DDPM). The two parts are trained separately in 
two phases. The training objective of the autoencoder involved encoding the image space into a compressed latent space, 
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where the dimensions were reduced by a factor of 8 [4][5]. The pretrained autoencoder (with frozen weights) was then 
used to encode the image space into a latent space, which was then diffused into Gaussian noise using t=1000 steps as per 
by Muller-Franzes et al. [4]. A U-Net [16] model was used to denoise the latent space. Samples were then created using a 
Denoising Diffusion Implicit Model (DDIM) [17] and t=250 steps as per Muller-Franzes et al. [4][5]. For the models using 
the small training dataset of 1000 images, in the first phase, the autoencoder was trained for a minimum of 10 to a maximum 
of 50 epochs with the MSE loss function employed. A batch size of 4 was used for training the autoencoder. The second 
phase using the diffusion model was similarly trained for 50 epochs with a batch size of 4. For the models using the larger 
training dataset comprising of 17,000 patch images, the autoencoder was trained for approximately 70 epochs with a batch 
size of 4. The second phase diffusion model training on this dataset consisted of a batch size of 4 trained for approximately 
100 epochs.  

Six collaborating veterinary medical professionals and pathologists from different institutions took part in the image 
evaluation stage. The experiments were conducted remotely via screen sharing on Microsoft Teams, with participants 
being granted complete control over the host's screen for the duration of the session. A Python-based Graphical User 
Interface (GUI) program was developed to display a series of images to participants (see Figure 2). Each participant viewed 
a single image at a time and was prompted in the same window to determine whether the presented patch image was real 
or generated by using a Likert-scale range of options to express their level of confidence. As two different sized datasets 
were used for training and generating the synthetic images, there were essentially two rounds (or experiments) for the 
different sized datasets. The datasets consisted of carefully curated real and synthetic images, selected to maintain a 
consistent level of diversity between both types of images. Before the implementation of these image evaluation 
experiments, the participants received verbal instructions and engaged in a short 6-image preliminary sample round to 
familiarise themselves with the process. To minimise biases and potential learning, they were not informed of the accuracy 
of their selections during this preliminary round. The sequence in which the participants viewed the series of images was 
randomised for each individual. The first round consisted of 88 real images (n=58) and generated (n=30) images, where 
the real images were taken from the larger 17,000 image training set and the generated images were created by the model 
trained on this large dataset. Additionally, the second round consisted of 36 real images (n=22) and generated (n=14) 
images, where the real images were taken from the smaller 1000-image training set and the generated images were created 
by the model trained on this smaller dataset. As a consequence, each round was evaluated independently to determine the 
participants' ability to distinguish between real and generated image outputs trained on datasets of varying sizes.  

 

Figure 2. The Python-implemented software depicting the Graphical User Interface (GUI) presenting a single patch image to 
a participant, with an integrated Likert-scale prompt for assessing the participant’s confidence when determining the 
authenticity of the image as real or generated. 
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3. RESULTS 

3.1 Model metrics 

Table 1 presents the results from phase 1 of the Medfusion model: the reconstruction quality of the autoencoder when 
trained on the small and large datasets respectively. The Multiscale Structural Similarity Index Measure (MS-SSIM) and 
mean squared error (MSE) values demonstrate the high capability of the image reconstruction, suggesting that the 
reconstructed images are structurally very similar to the originals. It is apparent that training on a vastly larger training set 
(17x larger) and for more epochs only resulted in a marginal gain in reconstruction quality. Table 2 presents a quantification 
of the image generation from the Medfusion model trained on the two different sized datasets, where the model's 
performance revealed notable differences between two dataset sizes. For the model trained on the smaller dataset of 1,000 
images, the model achieved a high precision of 0.86, demonstrating a strong ability to generate relevant pathology images, 
however produced a lower recall of 0.25, which suggests a limited variety of the generated images. The Fréchet Inception 
Distance (FID) score was 118.28, which suggests a greater disparity from the real image distribution. The model trained 
on the large dataset of 17,000 images resulted in a reduced FID of 109.91, indicating improved image quality and a slightly 
closer match to the real image distribution. However, this model showed a decrease in precision value (0.60) and recall 
(0.18), presenting a trade-off between image diversity and relevance. Nonetheless, it must be noted that the assessment of 
these metrics was based on the full (small and large) training sets, comparing them to 70 and 700 generated images from 
the models trained on the smaller and larger datasets, respectively. 

The images were also visually inspected to determine their suitability prior to being shown to the pathologist participants 
for the ROC study. Many of these images were strikingly realistic looking as depicted in the range of 3 generated (top) 
and 3 real (bottom) images in Figure 3. Nonetheless, upon visual inspection of the generated image sets combined with 
the quantitative generation outputs from Table 2, it was apparent that despite their realistic appearance, there was a 
homogeneity in the visual features of the generated images, suggesting a failure to capture the full diversity of the entire 
dataset. This is consistent with the quantitative findings of a high FID and low recall for the models trained on both dataset 
sizes.  

 

Table 1. The Medfusion autoencoder reconstruction quality values where Mean Squared Error (MSE) and Multiscale 
Structural Similarity Index Measure (MS-SSIM) are presented. In this table, the model is characterised by the volume of data 
used in its training. 

 

 

 

 

 

Table 2. Image generation performance using Medfusion. Presented are Fréchet Inception Distance (FID), Precision and 
Recall. The two models trained on the small and large datasets are presented in this evaluation. 

 
Model Metric Value 

Small (1000 images) 
FID 118.28 

Precision 0.86 
Recall 0.25 

Large (17,000 images) 
FID 109.91 

Precision 0.60 
Recall 0.18 

Model Metric Value Mean±Standard Deviation 

Small (1000 images) MS-SSIM 0.962 ±0.014 
MSE 0.001 ±0.001 

Large (17,000 images) MS-SSIM 0.969 ±0.011 
MSE 0.001 ±0.0004 
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Figure 3. Generated (top) and real (bottom) images. The real images are randomly selected from the larger 17,000 image 
dataset and the generated images are also a random selection from the 700 outputs from the model trained on the large dataset. 

3.2 ROC study 

The results for the ROC study are presented in Figure 4, Figure 5 and Table 3, depicting ROC curves and Area Under the 
Curve (AUC) values presented for each participant. Figure 4 depicts the ROC curves for both the small (n=36) and large 
(n=88) rounds for each participant. It is apparent that there is great confusion when selecting choices pertaining to the 
authenticity of the presented images for the large round of 88 images, for all participants, as shown by the ROC curves in 
Figures 4 and 5 and the values in Table 3 with AUC values close to 0.5. Similar was discovered for the small round, 
however, there is greater variation amongst the participants, especially Participant #4 who produced an AUC of 0.77, 
suggesting the best performance and greater ability to discern between real and generated cPWT image patches. The mean 
AUC values and mean average ROC curves demonstrate an AUC of 0.47 and 0.45 for the small and large rounds 
respectively.  

 
Figure 4. Receiver Operating Characteristic (ROC) curves depicted for both the small (n=36) and large (n=88) rounds for each 
participant. 
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Figure 5. The mean average Receiver Operating Characteristic (ROC) curves depicted for both the small (n=36) and large 
(n=88) rounds. 

 

Table 3. AUC values from the ROC plots in Figures 4 and 5, where the mean average AUC for the small round is 0.47 and for 
the large round is 0.45.   

 

Participant AUC (Small) AUC (Large) 
Participant #1 0.41 0.43 
Participant #2 0.36 0.44 
Participant #3 0.45 0.47 
Participant #4 0.77 0.55 
Participant #5 0.47 0.41 
Participant #6 0.35 0.39 

Mean Average 0.47 0.45 
 
 
 

4. DISCUSSION  

The objective of this study was to generate realistic looking histopathology images using the Medfusion model to assess 
if pathologists could be deceived by them. Results from the Receiver Operating Characteristic (ROC) analysis indicate 
significant difficulty for the participants in distinguishing between authentic and generated images when they were 
intermixed randomly. Area Under the Curve (AUC) values close to 0.5 imply that the participants were essentially 
guessing, demonstrating their inability to reliably identify the generated cPWT patch images from the real ones. Future 
work should include more participants for a broader validation of the findings from the ROC study as well as including 
additional meta-data that pertains to the level of experience within veterinary pathology. 
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