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Abstract: Forest height is a fundamental parameter in forestry. Tree height is widely used to assess

a site’s productivity both in forest ecology research and forest management. Thus, a precise height

measure represents a necessary step for the estimation of carbon storage at the local, national, and

global scales. In this context, error in height measurement necessarily affects the accuracy of related

estimates. Ordinarily, forest height is surveyed by ground sampling adopting hypsometers. The

latter suffers from many errors mainly related to the correct tree apex identification (not always

well visible in dense stands) and to the measurement process itself. In this work, a statistically

based operative method for estimating height measurement uncertainty (σH) was proposed using

the variance propagation law. Some simulations were performed involving several combinations

of terrain slope, tree height, and survey distances by modelling the σH behaviour and its sensitivity

to such parameters. Results proved that σH could vary between 0.5 m and up to 20 m (worst case).

Sensitivity analysis shows that terrain slopes and distance poorly affect σH , while angles are the

main drivers of height uncertainty. Finally, to give a practical example of such deductions, tree

height uncertainty was mapped at the global scale using Google Earth Engine and summarized per

forest biomes. Results proved that tropical biomes have higher uncertainty (from 1 m to 4 m) while

shrublands and tundra have the lowest (under 1 m).

Keywords: tree height uncertainty; hypsometer; forest biomes; variance propagation law; Google

Earth Engine

1. Introduction

Tree height (H) is a fundamental measure in forestry. It is strictly related to above-
ground biomass [1,2] and canopy vertical structure [3–5]. H is also the most used parameter
to assess a site’s productivity, not only in forest ecology research, but also in forest manage-
ment [6–8]. In fact, it is often used to define forest cover [9], and to assess timber quality [10]
and forest ecosystem services such as forest protection against natural hazard [11] or bio-
diversity [12,13]. Moreover, it can be a good proxy of forest status and it is helpful in
forecasting stand development and succession [14].

Nowadays, forests have a crucial role in greenhouse gas sequestration [15] and in
carbon market [16], highlighting the need of accurate tree measuring. For example, for
forest inventories purposes, height measurement is the most important factor, along with
diameter at breast height, in estimating stand volume [17–19]. Thus, a precise forest volume
computation represents a necessary step for the estimation of carbon storage at the local,
national, and global scales. In this context, error in height measurement necessarily affects
the accuracy of related estimates. Moreover, tree heights surveyed at the ground are usually
assumed as reference data to evaluate the accuracy of the remote deductions like the ones
derived by geomatics techniques such as: satellite remote sensing, light detection and
ranging (LiDAR) and photogrammetry [20–22].
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Ordinarily, forest height is surveyed by ground sampling adopting hypsometers [23].
The latter are lightweight instruments that can perform angular and distance measurements
from which, by applying trigonometric principles, tree height is computed [24,25]. This
method suffers from many errors mainly related to the correct tree apex identification
(not always well visible in dense stands) and to the measurement process itself [26]. For
operative reasons, in fact, hypsometric measurement is carried out without fixed supports.
The hand motion during treetop/bottom collimation affects the accuracy of the angular
measurement and consequently the height one [26]. In addition, operational conditions
such as measuring distances, terrain slope, stem curvature, and crown shape can further
affect the hypsometric measurements, introducing errors hard to detect and fix. Neverthe-
less, hypsometers constitute the standard instrument for dendrometric surveys, especially
for forest and urban inventory purposes [27,28].

In this framework, tree height uncertainty is not ordinarily considered by users, raising
some doubts about the accuracy of related forest estimates [29]. A quantification of the po-
tential uncertainty of tree height is, therefore, essential to assess the reliability of deductions
alerting the user about the significance of differences that one could test between forest
stands (or single tree) or between the same stand at different times. The uncertainty knowl-
edge is desirable especially if tree height is adopted as reference data to estimate timber
volume, above-ground biomass, or carbon sink in the plant. Unfortunately, literature about
the accuracy of tree height estimates by hypsometer is very limited. Although many works
compared tree height derived by different instruments [6,30–33], no work can be currently
found in literature about how hypsometer-based procedure affects the final estimates. In
fact, for a great number of applications, there is no possibility to obtain low-cost validations
concerning tree heights. This could be probably due to the fact that while measuring
tree height no reference data exists for a-posteriori validation, that can be only achieved
by comparing more instruments suppose showing higher accuracy. Unfortunately, this
procedure requires that height survey is made contemporarily using different instruments
or by cutting the tree or climbing by expensive experimental campaigns. Literature is not
so exhaustive concerning this issue [26,34,35]. However, no specific work can be found
concerning a comprehensive study of theoretical uncertainty affecting tree height by in-
direct measurements (such as the ones obtained by hypsometers). A validation based on
reference datasets would be required, e.g., for very accurate and reliable measurements,
the use of height poles/sticks with climbing is mostly used method by researchers and
arborists [32,36]. Although this was possible (albeit expensive) for research purposes, it
would be no longer applicable for operative purposes. The only alternative is therefore to
model the expected theoretical uncertainty.

In the proposed study, a statistically based operative method for estimating height
measurement uncertainty was proposed using the variance propagation law (VPL) [37].
VPL uses the accuracies of direct measurements (in this work, angles and distances), as-
sumed to be known, to estimate the theoretical variance of the indirect measurement (in this
work, the tree height). Some simulations were performed involving several combinations
of terrain slope, tree height, and distances by modelling the behaviour of height uncertainty
and its sensitivity to such parameters. The results have been summarized in graphs that
constitute an operational tool giving an estimate of the uncertainty of tree height and assess
its goodness compared to the expected application avoiding tree cut or climbing on. Finally,
to give a practical example of such deductions, tree height uncertainty was mapped at the
global scale using Google Earth Engine (GEE) and summarized per forest biomes.

2. Materials and Methods

The workflow adopted in this work is reported in Figure 1. Using field surveys, the
angular error of hypsometer was modelled. Subsequently, tree height uncertainty was
modelled by VPL, and a sensitivity analysis of this model was performed. Some theoretical
scenarios were given to explore tree uncertainty behaviour under different environmental
and operative conditions. Finally, to give a practical interpretation of theoretical deductions,
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using Google Earth Engine (GEE) platform, the height uncertainty at the global scale was
mapped and summarized according to forest biomes.

Figure 1. Workflow adopted. Starting from field surveys, the hypsometer accuracy was modelled.

Theoretical evaluations were performed concerning the formalization of tree height uncertainty

model. Subsequently, a sensitivity analysis and theoretical scenarios were provided. Finally, globally

available data in GEE was used to explore real tree height uncertainty for each forest ecoregion.

2.1. Available Data

2.1.1. Experimental Design of Field Surveys

Hypsometric measures are ordinarily performed with no fixed support thus intro-
ducing a variability due to the operator’s hand motion in collimation that affects angle
measures. The controlled laboratory environment provided an important test for bias,
but could not provide a realistic evaluation of instrument performance under field condi-
tions [6]. The latter is affected by three kinds of uncertainty: instrumental, environmental,
and operative uncertainty. The first one is related to instrumental feature/quality and can
be estimated in laboratory. The second one is related to environmental conditions such as:
terrain slope, air moisture, temperature, tree apex visibility, tree stem shape, and inclination.
Unfortunately, these conditions cannot be directly controlled by the user during the survey.
Otherwise, operative conditions such as slant range (SR) between tree and instrument can
be managed by the operator and properly set to optimize final accuracy. Nevertheless,
due to terrain asperity or cost/time-related limitations, operative conditions are often not
properly considered and addressed. All these issues deeply affect the angular measures of
hypsometer, reflecting into not neglectable errors in tree height computation. Currently,
very few works about angular accuracy of forest hypsometers are present in literature.
Trying to fill this lack, in this work, a reference light pole was used to test the precision of
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the hypsometer angle measures under operative conditions. The choice of adopting a static
and invariant object such as a light pole moves deductions from a particular context to
general one. This is mainly related to the well-known and objective operational difficulty
of selecting the proper apex of a tree (especially from different users). For this reason, we
repeated our experiment with reference to a pole located in a flat and open area. It is worth
to remind that repetition from different users was differently aimed at providing a more
robust estimate of actual instrument uncertainty, completing the one supplied by producer
with the one related to the user (that has to be intended as part of the instrument). It is
obvious that provided estimates will be “optimistic” since, operationally speaking, one has,
for example, to consider that the apex of the tree is not so unique to be defined as the apex
of a pole.

A light pole, having a height of 15 m, placed in the Campus of Department of Agricul-
ture, Forest and Food Sciences of Torino University (NW Italy, 45◦ 3′55.38′′ N–7◦35′30.61′′ E)
was selected. It is isolated and therefore its apex well visible from the ground. The pole is
not inclined and terrain slope around is lower than 5◦. The TruPulse 200/B laser rangefinder
was used. It operates through a laser (near infrared pulse) coupled to a tilt sensor. TruPulse
has nominal slant range accuracy (σSR) equal to 1 m and angular accuracy (σang) equal to
0.25◦ [38]. Before the survey, tilt sensor was calibrated according to manual requirements.

Four expert operators performed pole height surveys according to the follows exper-
imental design (Figure 2). Angle measures (respectively pointing at pole top and pole
bottom) were surveyed three times per operator moving around the pole along 3 geograph-
ical directions (N, SW, and SE) placed at 120◦ to each other. For each direction, SR changes
from 10 m to 40 m with 10 m steps. It is worth to highlight that additional measurements
were operated by positioning the instrument in an open field and pointing the laser of the
TruPulse towards a reflecting signal placed close to the pole (at 1.6 m from ground) in order
to measure and compensate for the terrain slope contribution. Then, angles collimating top
(θ) and bottom (α) were surveyed. A total of 144 height surveys and 288 angle measures
were performed over the same pole.

Figure 2. Experimental design adopted in this work involving four operators. Three geographical

direction placed at 120◦ apart were used pointing to the: North, South-East, and South-West. For

each position, 3 replicas were measured. Red rhombus is the pole top collimated during the height

survey placed at 10 m, 20 m, 30 m, and 40 m distance, respectively.
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2.1.2. Geographical Data

The Global Forest Canopy Height (GFCH) represents global tree heights based on a
fusion of spaceborne-lidar data from the Geoscience Laser Altimeter System (GLAS) and
ancillary geospatial data [39]. GFCH is provided in GEE as raster layer having a geometric
resolution of 1 km and updated in 2005. The accuracy in forest height estimation ranges
between 3.8 m and 6 m according to forest types [39,40].

The Global 30 Arc-Second Elevation (GTOPO30) is a global digital elevation model
(DEM) with geometric resolution of about 1 km. The DEM was derived from several raster
and vector sources of topographic information and was updated in 1996 [41]. Currently, it
represents the only available DEM in GEE covering the entire globe including high latitude
zones (i.e., Boreal, Artic and Antarctic zones).

In order to explore and summarize tree height uncertainty over the world, the RE-
SOLVE Ecoregions map (REM) was adopted in GEE. REM is a vector layer representing
about 476 forested ecoregions grouped in 14 forests biomes. It was updated in 2017 and
is the most update dataset on remaining habitat in each terrestrial ecoregion [42]. Table 1
reports the REM biomes and the code adopted in this work.

Table 1. Forest biomes present in the RESOLVE Ecoregions map.

Biomes Code (ID)

Tropical and Subtropical Moist broadleaf Forests B1
Montane Grassland and Shrublands B10

Tundra B11
Mediterranean Forests, Woodlands, and Scrub B12

Deserts and Xeric Shrublands B13
Mangroves B14

Tropical and Subtropical Dry broadleaf Forests B2
Tropical and Subtropical Coniferous Forests B3

Temperate Broadleaf and Mixed Forests B4
Temperate Conifer Forests B5

Boreal Forests or Taiga B6
Tropical and Subtropical Grassland, Savannas, and Shrublands B7

Temperate Grassland, Savannas, and Shrublands B8
Flooded Grassland and Savannas B9

2.2. Data Processing

2.2.1. Uncertainty Modelling

Tree height measurement by hypsometer is effective and widely used in forestry,
being the standard and reference procedure to validate measures from remote sensing. Tree
height uncertainty is not ordinarily considered by users [43]; conversely, it could proficiently
support deductions, especially to assess significant differences in both spatial and time
domain. A quantification of the potential uncertainty of tree height is, therefore, essential
to support the reliability of deductions especially if tree height is adopted as reference data
to estimate wood volume, above-ground biomass, or carbon stocked. Although a precise
reference value can be obtained for research purposes, it would be no longer applicable
for operative purposes. The only alternative is therefore to model the expected theoretical
uncertainty. The variance propagation law (VPL—Equation (1)) is the statistical tool that
ordinarily can be used for this task [37]. It models the effect of variance (ordinarily assumed
as indicator of squared precision) of direct measures (i.e., angular and distance measures)
onto the variance of the derived measures (i.e., tree height).

σ2
y =

(

∂y

∂x1

)2

·σ2
x1
+

(

∂y

∂x2

)2

·σ2
x2
+ . . . +

(

∂y

∂xn

)2

·σ2
xn

+ 2 ∑
n−1

i=1 ∑
n

j=i+1

(

∂y

∂xi

)

(

∂y

∂xj

)

COV(i, j) (1)
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where y = f (x1, x2, . . . , xn) is the dependent variable, xi the independent ones, and σ2
xi

their variance (supposed known); COV(i, j) is the covariance between the i-th and j-th
independent variables. The starting point to successfully operate with VPL is to define the
model formula it has to be applied to. Ordinarily, tree height is computed by hypsometer
according to Equation (2) following the procedure summarized in Figure 3.

H = (SR · cos ϕ) ·(tan θ + tan α) (2)

where SR is the slant range between tree stem and operator; ϕ is the terrain slope measured
by pointing the reflecting pole near trunk at operator eye level (here set 1.6 m); and θ and α
are the angles derived by the collimation of tree top and tree bottom, respectively.

Figure 3. Reference framework involved during hypsometer survey. H is the tree height above-

ground; ϕ is the terrain slope measured by pointing the rangefinder to the reflecting pole near the

trunk (red rhomb); SR is the slant range (tree-operator distance) and HR is the horizontal distance;

and θ and α are the angles measured by tilt sensor (digital clinometer) collimating tree top and tree

bottom, respectively. For this work, operator height is fixed at 1.6 m.

Direct measures involved in H computation are the angles and distance measures (i.e.,
ϕ, θ, α and SR); consequently, H uncertainty (σH—Equation (3)) can be computed applying
Equation (1) to Equation (2), considering that trigonometric relationships exist between
variables.

σH =

√

(

∂H
∂SR

)2
σ2

SR +
(

∂H
∂ϕ

)2
σ2

ϕ +
(

∂H
∂α

)2
σ2

α +
(

∂H
∂θ

)2
σ2

θ + 2
(

∂H
∂SR

)(

∂H
∂α

)

COV(SR, α) + 2
(

∂H
∂SR

)(

∂H
∂θ

)

COV(SR, θ) (3)

where partial derivatives involved in Equation (3) are reported in Table 2. Precision values
are σSR the uncertainty of laser rangefinder assumed equal to the nominal one (i.e., 1 m);
σϕ, σθ , and σα are the uncertainties of hypsometer angles. Despite the same instrument
was used, angles measured are affected by different factors. For this reason, in this work,
above-mentioned precision and covariance values were explored and estimated separately.
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Table 2. Partial derivatives involved in Equation (3).

Partial Derivatives

∂H
∂SR = cos ϕ(tan θ + tan α)

∂H
∂ϕ = −(SR sin ϕ)(tan θ + tan α)

∂H
∂α = (SR cos ϕ) (tan2 α + 1)
∂H
∂θ = (SR cos ϕ) (tan2 θ + 1)

In fact, hypsometer angles uncertainty is affected by two main components and
can be linearly modelled similarly to other topographic instruments [44,45]. The first
is a constant term (intercept—β0) related to the instrument accuracy itself and assumed
equal for ϕ, θ, and α, while the second one is related to operator collimation accuracy
(gain—βi) mainly dependent from SR and hand stability. Since β0 can be estimated in
the laboratory, it is ordinarily provided by the producer. In this work, using TruPulse
200B, β0 was assumed to be equal to σang, while βi was properly calibrated using ordinary
least squares involving angular measure derived from field surveys. According to the
previously mentioned experimental design, at each position, three replica were acquired
and related standard deviation computed and assumed as precision of angular measure
probably related to hand operator stability. Then, precision values were fitted against the
SR. Finally, βi concerning θ and α were modelled by a power model (βi = aSRb and σθ and
σα were computed (Equations (4) and (5)). Furthermore, the Mean Absolute Percentage
Error (MAPE) was computed involving the residuals of regressions (power models part in
Equations (4) and (5)). Since MAPE values are computed by removing the SR dependence
from angle precision models, the remaining error component could be probably due to
operator variability (i.e., hand motion and collimation accuracy). Concerning ϕ, it is
ordinary measured without the operator collimation process but simply by pointing laser
to reflecting pole. Therefore, σϕ can be assumed equal to β0.

σθ = β0 + aSRb (4)

σα = β0 + cSRd (5)

where a, b, c, and d are the model coefficients. Moreover, the covariance between θ and
SR, cov(θ, SR), and covariance between α and SR, cov(α, SR), were computed using filed
surveys involving a total of 288 angle measures.

A sensitivity analysis was then performed to explore how different variables mainly
affect σH . Some scenarios were run varying H values from 5 m and 40 m, changing ϕ values
from 5◦ to 45◦ and SR from 10 m to 50 m using Equation (3). Then, σH behaviour was
explored by plotting ϕ and SR trends, parametrizing resulting functions by H values. A final
scenario was computed using Equation (3), setting ϕ = 15◦ and all possible combination of
H and SR in σH computation. The analysis requires that the above-mentioned formulas are
computed using the expected angular values corresponding to a certain tree height. This
can be obtained once tree height, SR, operator’s height, and terrain slope are known.

It is worth to note that precision values involved in Equation (3), once propagated by
VPL, contribute differently to final H variance. Therefore, we measured the relative weight
(importance) of each factor variance on H variance according to formula reported in Table 3
and changing SR from 5 m to 50 m.
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Table 3. Relative weights affecting variance of H.

Factor Formula

Sum of weights ∑ =
(

∂H
∂SR

)2
+
(

∂H
∂ϕ

)2
+
(

∂H
∂α

)2
+
(

∂H
∂θ

)2
+

2
(

∂H
∂SR

)(

∂H
∂α

)

COV(SR, α) + 2
(

∂H
∂SR

)(

∂H
∂θ

)

COV(SR, θ)

Slant Range wSR =
( ∂H

∂SR )
2

∑

Terrain slope
wϕ =

(

∂H
∂ϕ

)2

∑

Angle pointing tree bottom wα =
( ∂H

∂α )
2

∑

Angle pointing tree apex wθ =
( ∂H

∂θ )
2

∑

Mixed term considering SR
and α correlation wcorr(SR,α) =

2( ∂H
∂SR )(

∂H
∂α ) COV(SR,α)

∑

Mixed term considering SR
and θ correlation wcorr(SR,θ) =

2( ∂H
∂SR )(

∂H
∂θ ) COV(SR,θ)

∑

2.2.2. Mapping Tree Height Uncertainty at the Global Scale

Scenarios were run to explore σH theoretical behaviour and which factor mainly
affects it. Despite theoretical scenarios, to give a practical example aimed at proposing an
operational scenario, the above-mentioned concerns were applied at the global scale using
Google Earth Engine (GEE) and developing an appropriate routine. GEE is an web-based
platform that allows an immediate access to geographical data and performing wide areas
analysis [46]. GEE consists of a multi-petabyte analysis-ready data catalogue and its parallel
computation service allows to process large geospatial datasets at the global scale. For this
reason, GEE was used in this work to map σH at the global level implementing Equation (3).
To perform such task, the following pre-processing steps were involved. GTOPO30 layer
was used to compute local terrain slope, ϕ(x, y), while the GFCH was assumed a reliable
dataset that provides a continuous estimate of forest height, H(x, y), around the world.
Involving H(x, y) and ϕ(x, y), Equation (3) was applied directly in GEE to estimate height
uncertainty at the pixel-level. Four maps of H uncertainty, σH(x, y), were computed setting
SR equal to 10 m, 20 m, 30 m, and 40 m, respectively, in order to compute σH value one can
expect if placed at given distance to the tree. Finally, REM biomes polygons were used as
spatial basis to compute the 5th, 25th, 50th, 75th, and 95th percentiles of σH(x, y), providing
information about the density function over world forest biomes. These maps, coupled
to density function, allow the operator to plan forest surveys and properly manage the
tree height uncertainty during his/her surveys, alerting about the significance difference
existing if comparing the height measures over time or in space.

3. Results

3.1. Uncertainty Modelling

Uncertainty of angular measures from hypsometer is related to both instrument
accuracy and operator skills. The former is the one provided by the producer; the latter has
to be somehow estimated. Angular accuracy of hypsometer proved to follow a power model
(Equations (4) and (5)) that was opportunely calibrated by least square-based regression
(Figure 4) involving θ and α values from field surveys. Model coefficients were reported in
Table 4. They showed to be significantly different from 0.
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( , ) =  2  ( , )


( , )( , ) ( , ) ( , )( , )
( , )

 

(a) (b) 

Figure 4. (a) βθ vs. SR model calibrated from field data (radians values); (b) βα vs. SR model

calibrated from field data. Grey bounds are the 95% confidence intervals, red lines are the cali-

brated models.

Table 4. Hypsometer accuracy models coefficients (Equations (4) and (5)).

Coefficient Value Standard Error t p-Value

a 0.1871 0.0031 3.25 0.0051
b −1.0841 0.0874 3.92 0.0064
c 0.0178 0.0035 3.22 0.0094
d −0.4156 0.1232 3.65 0.0053

Figure 4a shows that, generally, βθ decreases as SR increases. In particular, an increase
of SR from 10 m to 20 m determines a βθ reduction by half of its value, going from a value
of 0.015 radians to one of 0.007 radians, respectively. Subsequently, for SR equal to 30 m up
to 40 m, βθ decreases by 0.002–0.003 rad, respectively. A similar behaviour can be observed
in Figure 4b. However, in this case, the βα variation appears to be milder and generally a
flat behaviour characterizes βα. Nevertheless, when SR is equal to 10 m, βα is two times
lower than βθ (0.007 rad and 0.015 rad, respectively); for SR greater than 30 m, βα results to
be similar βθ (0.005 rad).

Based on results, it appears that for low SR values, uncertainty of angular measure-
ments results to be higher in θ than in α, whereas with high SR values the two uncertainties
turn out to be similar. In fact, fixing tree height, if SR increase both θ and α angles should
decrease. Therefore, for higher angles (i.e., the ones generated by treetop collimation),
higher their uncertainty. Similarly, angles generated by bottom collimation follow this
trend, however since they are smaller, their uncertainty results lower. Concerning this
issue, Bragg [47] highlighted that moving away from the target, angles measurements can
be more accurate decreasing the errors related to the tree height determination. MAPE
concerning βθ is 15%, while 14% for βα. Since these MAPE values represent angle accuracy
component not dependent from SR, both values suggest that about the 15% of the error is
not due to operative condition (SR) but by operator-related ones. The latter could probably
be due to higher/lower operator hand motion accuracy during the surveys, suggesting how
a fixed support could improve hypsometer survey accuracy [6]. Using filed data cov(θ, SR)
and cov(α, SR) were found equal to −0.95 and 0.27, respectively. These values suggest
that θ is more correlated to SR than α as also proved by the determination coefficients of
calibrated models (R2 = 0.97 and R2 = 0.56 for βθ and βα, respectively).

To assess the effects of angle accuracy and other operative conditions on tree height
uncertainty, VPL was adopted, and some theoretical scenarios were proposed involved the
hypsometer angle precision models previously calibrated. In particular, two scenarios were
explored, the first one by applying VPL changing ϕ and parameterizing Equation (3) by H
(Figure 5a). The second one was obtained by applying VPL changing SR and parameteriz-
ing Equation (3) by H (Figure 5b).
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Figure 5. (a) σH scenarios derived by applying VPL changing ϕ and parameterizing Equation (3) by

H; (b) σH scenarios derived by applying VPL changing SR and parameterizing Equation (3) by H.

Generally, Figure 5a shows that σH does not significantly change even if ϕ increases.
Moreover, the σH value results to be very high (σH > 3.5 m) with H values equal to 40 m,
while are lower (σH = 0.5 m) for H values equal to 5 m. Furthermore, it can be highlighted
that with ϕ values greater than 35–40◦, σH values increase slightly. For example, considering
H = 40 m and ϕ = 25◦, the σH value results to be equal to 3.5 m, while at 45◦ it turns out to be
equal to 3.8 m, showing an increase of σH equal of about 9%. Consequently, it would appear
that σH would only be affected by high levels of slope (ϕ > 30◦). This result was supported
by Stereńczak et al. [26], who found that slope, especially when height measurement is
made below the tree base, can increase height errors.

Conversely, considering Figure 5b, the σH value appears to be strongly affected by SR.
Specifically, σH tends to decrease as SR increases. For example, assuming H equal to 40 m,
the σH value results to be 5 m, 3 m, 2.5 m, 2.2 m, and 1.8 m for the respective SR values of
10 m, 20 m, 30 m, 40 m, and 50 m. Whereas, if H is 5 m, σH remains constant around 0.80 m
despite SR variations.

Considering taller trees (between 20 m and 40 m), σH results to be very high especially
for SR low values (between 10 m and 20 m); moving away from the tree (SR between
30 m and 40 m), σH decreases until it stops with values of SR > 40 m. However, this
behaviour does not appear with smaller trees (H < 10 m). Similar results were reported by
Skovsgaard [6], who showed that higher SR positively affect the estimation of tree height.

Based on these results, it appears that the parameters H and SR significantly affect σH

value. Therefore, by combining these two parameters, it was possible to report several σH

scenarios that might normally occur during field surveys (Figure 6).
In particular, Figure 6 shows that σH values increase when H increases and SR de-

creases. Nevertheless, fixing H, σH could greatly vary depending on SR. For example,
having SR and H equal to 60 m and 30 m, respectively, a σH can be found equal to 1 m.
Otherwise, having SR and H equal to 6 m and 30 m, respectively, a σH can be found equal
to 9 m (i.e., about one order of magnitude than SR = 60 m).

From an operational point of view during height survey, the proper combinations
of H and SR that can be proposed based on scenarios in Figure 6. Three main operative
conditions can be defined: (i) distance from the target half to the tree height (SR = 0.5 H);
(ii) distance from the target equal to the tree height (SR = H); and (iii) distance from the
target twice to the tree height (SR = 2 H). In the first case, having the H-SR ratio equal to
2:1, the σH value, and consequently the errors in tree height estimation, would increase
considerably. For example, with H equal to 20 m and SR equal to 10 m, the σH values would
be equal to 2.5 m resulting in an error range between 12.5% compared to the tree height.
Concerning the second case, having the H-SR ratio equal to 1:1, for example a tree of 20 m
and placed at 20 m, σH will be about 1.5 m, i.e., 7.5% error compared to H. Considering the
ratio 1:2, the σH would decrease considerably. For example, with H = 20 m and SR = 40 m,
σH values result to be equal to 0.8 m, i.e., 3.5% error compared to H. However, it is worth to
remind that the last condition is not always allowed during field surveys. In fact, several
works [26,48,49] proved that moving away from the target, treetop visibility can be masked
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by others tree crown. Therefore, based on our results, a simple rule of thumb can be proposed:
a H-SR ratio equal to 1:2 (environmental conditions permitting) would be the most reasonable
operative choice to minimize relative tree height uncertainty under the 5%.

Figure 6. σH scenarios (ϕ = 15◦) obtained by all possible combination between H and SR. Isolines

represent line having same σH .

In order to better assess the effect of the different parameter uncertainty involved in
σH computation, a sensitivity analysis of σH was performed. In Figure 7, the weights of
tree height variance computed applying Table 3 formulas are reported.

It can be noted that, generally, the parameters that most affect σH
2 result to be wα and

wθ . Indeed, their sum reaches about 95% of tree height variance in all scenarios. Conversely,
wcorr (SR,α), wcorr(SR,θ), wϕ, and wSR poorly affect σH

2 (under 2% on average). Concerning
this issue, wθ and wα appear to be strongly affected by SR and H. In fact, for smaller tree
(e.g., H = 5 m), the values of wθ and wα are constant as SR increase; for H > 10 m, the weight
of wα increases as SR increases, while wθ decreases. Considering weights from same SR,
it can be observed that wα and wθ significantly vary according to H values, while other
weights remain low. In particular, at low SR values, wθ tends to increase according to H
increase. Conversely, at high SR values, wθ increase little as H increases. For example,
with SR equal to 10 m, wθ result to be about 47% and 90% with H equal to 5 m and 40 m,
respectively. Whereas with SR equal to 40 m, wθ results to be again 47% with H equal to
5 m but about to 60% with H equal to 40 m. Therefore, the treetop angle (θ) uncertainty
participates for the most of tree height uncertainty for H > 5 m. For the same H, increasing
the SR value the angle θ and the corresponding wθ in the σH computation decreases and, as
a consequence, the wα increases. Another interesting conclusion concerns the importance
of terrain slope and SR accuracy. In fact, in all scenarios, the wϕ and wSR are lower than
1%, suggesting that a coarse estimate of such parameters does not significantly affect tree
height uncertainty. Therefore, more accurate rangefinder does not directly reflect in better
tree height estimates suggesting that similar tree height accuracy can be obtained by using
laser, ultrasound, or optical telemeter. Similar results were found by [6,50] where different
forest rangefinder were compared.
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Figure 7. Relative weights (importance) of factors involved in the sensitivity analysis of σH
2. Sensi-

tivity analysis was iteratively performed by computing wi changing H and SR.

3.2. Mapping Forest Height Uncertainty at the Global Scale

To give a practical example of the theoretical scenarios, an appropriate GEE routine
was developed in order to map tree height uncertainty at global scale. Since the distance
between tree and the operator was found to greatly affect the height uncertainty, four
different scenarios with SR equal to 10, 20, 30, and 40 m were proposed (Figure 8). Mapping
was achieved according to the same approach used for generating the graph of Figure 6. In
this case, the local tree height estimate was obtained from GFCH and the local slope value
from GTOPO30; an operator’s height of 1.60 m was used for all computations. It is worth
to stress that GFCH was simply used to derive an estimate of local tree height in order to
generate an estimate of the associated uncertainty if obtained by ground surveys operated
as modelled in this work. In other words, we did not model the uncertainty of GFCH, but
we used GFCH to inform users that are going to operate ground surveys in those areas
about the expected theoretical accuracy of their measurements.

Generally, σH tends to decrease when SR increases, confirmed by the previous-
mentioned role of tree-operator distance. For example, considering the Amazon zone,
σH results to be greater than 5 m at SR = 10 m, while at SR = 40 m, σH result about 1.5 m,
thus about 75% more accurate. It is worth to remind that a coarse DEM was involved in
these simulations. Therefore, slope values are affected by this low resolution probably pro-
viding underestimated slopes especially in those areas characterized by high topographic
variability (e.g., mountain).

To summarize σH(x, y) differences at global level, σH(x, y) percentiles per forest
biomes were computed and reported in boxplots (Figure 9).
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Figure 8. σH(x, y) maps at global scale computed in GEE. Four operative scenarios were proposed by

assuming SR at 10m, 20 m, 30 m, 40 m respectively.

Figure 9. σH(x, y) values distribution for forest biomes according to four operative scenarios.

In general, as already observed globally in Figure 8, σH decreases as SR increases in
all investigated biomes. The highest σH are also observed at SR = 10m, while the lowest
values at SR = 40 m. In particular, the average value of σH result to be equal to 1.83 m,
1.05 m, 0.83 m, and 0.73 m for SR equal to 10, 20, 30, and 40 m, respectively. Specifically,
σH for different biomes included in this work the following observations can be carried
out: (i) Tundra (B11), desert-xeric shrublands (B13), and tropical-subtropical-savannas
and shrublands (B7) are the biomes with the lowest σH (all scenarios average was found
equal to 0.60, 0.85, 0.92 m respectively); (ii) Tropical and subtropical moist broadleaf
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forest (B1), Tropical and subtropical coniferous (B3), and temperate conifer forests (B5)
are the biomes with the highest σH (all scenarios average was found equal to 1.50, 1.52,
and 1.54 m, respectively). In this context, the results obtained are consistent with the
theoretical assessment proposed in this work and recent literature. In particular, it is well
known that different vegetation, and consequently different biomes, can certainly affect
tree height estimation. However, the main factors that can affect σH can be traced back
to forest structure, tree height, terrain topography, tree species, and tree lean [26,43]. For
example, regarding biome B11, represented by Tundra and therefore characterized by small
vegetation, low values of σH were found. Conversely, considering biome B1, represented by
tropical and subtropical broadleaf forests and therefore characterized by very tall trees, high
values of σH were found. These results are consistent to the ones reported by Hyyppa [51],
Hush [48], and Korning [49]. The first one investigated forest height estimation and pointed
out that the accuracy of tree height measurement decreases as vegetation height increases
(especially with trees > 25 m). The second and third one highlight that deciduous trees
show lower tree height accuracy.

A further consideration that can be deduced in Figure 9 is the dispersion of σH in
the different SR classes. σH distribution result to be more heterogenous in the class of
SR = 10 m (σH ranges between 2 m and 4 m), while it results to be homogenous when
SR increases (around one meter). Consequently, it can be defined that within the same
biome the measurement of vegetation height is affected by SR. This result is supported by
Skovsgaard [6], who confirms that distance from the measured trees can affected the tree
high estimation. Indeed, for some biomes the variation of SR has a considerable impact
on σH values. For example, concerning Taiga (B6) at SR = 10 m, the σH values are very
different from those at SR = 20 m. This behaviour generally occurs between SR equal to 10
and 20 m and takes place in other biomes as B13, B14, B3, B5, B8, and B9. Conversely, in
other biomes this phenomenon is less present. For example, in B1, B11, and B4, boxplots
at SR = 10 m and 20 m are similar only for 50–60% of the time, therefore in this cases SR
variation seems to less affect the final σH value. Regarding the transition of SR between
30 m and 40 m, the differences in terms of σH seem to disappear or even become irrelevant
in many cases.

This finding can be interpreted as an absence of σH decrease as SR increases in some
contexts for specific biomes. Consequently, from an operational point of view, these findings
could be extremely useful for increasing the speed of surveys (avoiding too be far away
from the target) and simultaneously maintaining precise tree height estimates. For example,
in Tundra and Shrublands biomes, low σH values were found for all SR scenarios. Another
interesting outcome concerning these biomes is the following: comparing these accuracies
to the expected vegetation height in such biomes, they highlight how hypsometer is not
the proper instrument for height surveys in shrublands and Tundra since the uncertainty
is higher than expected vegetation height. In such biomes other instruments such as a
graduated pole or tape measure can guarantee a rapid and more accurate measure of small
vegetation height than the ones retrieved by hypsometer.

Finally, it is worth to remind that provided world-wide estimates of height uncertainty
are “optimistic” since they are based on theoretical conditions. In real operative conditions,
other unpredictable factors such as apex visibility/identification and stem curvature (e.g.,
in coppices) could negatively affects the height accuracy.

4. Conclusions

In this work, a statistically based operative method for estimating tree height measure-
ment uncertainty (σH) was proposed using the variance propagation law. The aim was to
model the behaviour of σH in different operative context. Therefore, several simulations
were performed involving factors such as tree height, survey distances, and terrain slope.
Regarding the terrain slope, results shown that this parameter poorly affect σH .

Concerning the first two parameters, results proved that σH could greatly be affected
by H and SR resulting in a tree height error between 0.5 m and up to 20 m (worst case).
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Moreover, in this work a simple rule of thumb was proposed (H-SR ratio equal to 1:2) to
minimize height uncertainty under 5% of H.

Concerning the sensitivity analysis of all parameters involved in the σH , results shows
that the wα and wθ were the more relevant (their sum is about 95%), while wcorr (SR,α),
wcorr(SR,θ), wϕ, and wSR contribution result to be very low in σH determination (under 1%).

Finally, to give a practical example of such deductions, tree height uncertainty was
mapped at the global scale using Google Earth Engine and summarized per forest biomes.
Results proved that tropical biomes have higher uncertainty (from 1 m to 4 m) while
shrublands and tundra the lowest (under 1 m). The proposed approach proved to be an
operative tool useful both in forest research and forest management context. It allows to
better consider the uncertainty of forest estimates, alerting the user about the significance
of difference that one could test between forest stands or between the same stand at
different times.
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