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Abstract
GrPPI library aims to simplify the burdening task of parallel programming. It pro-
vides a unified, abstract, and generic layer while promising minimal overhead on 
performance. Although it supports stream parallelism, GrPPI lacks an evaluation 
regarding representative performance metrics for this domain, such as throughput 
and latency. This work evaluates GrPPI focused on parallel stream processing. We 
compare the throughput and latency performance, memory usage, and programma-
bility of GrPPI against handwritten parallel code. For this, we use the benchmarking 
framework SPBench to build custom GrPPI benchmarks and benchmarks with hand-
written parallel code using the same backends supported by GrPPI. The basis of the 
benchmarks is real applications, such as Lane Detection, Bzip2, Face Recognizer, 
and Ferret. Experiments show that while performance is often competitive with 
handwritten parallel code, the infeasibility of fine-tuning GrPPI is a crucial draw-
back for emerging applications. Despite this, programmability experiments estimate 
that GrPPI can potentially reduce the development time of parallel applications by 
about three times.

Keywords  Stream parallelism · GrPPI · SPBench · OpenMP · Intel TBB · FastFlow

1  Introduction

Implementing parallelism for stream processing is not easy. Some strategies can 
mitigate this difficulty, such as structured parallel patterns  [1]. Pipeline and Farm 
are examples of parallel patterns for stream processing. Some parallel program-
ming interfaces (PPIs), such as FastFlow [2] and Intel® Threading Building Blocks 
(TBB) [3], natively implement concurrent patterns. However, even using these PPIs, 
implementing stream parallelism while achieving performance improvement is still 
a task for experts.
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Based on that, some PPIs aim to ease the programmability of these parallelism 
libraries by adding extra abstraction layers. This way, users can implement paral-
lelism with simpler syntax and reduced lines of code. However, such abstraction 
may end up causing some mechanisms specific to backend PPIs not to be supported. 
Fine-tuning is often required to achieve desirable performance and efficient resource 
utilization. Therefore, evaluating such solutions with diverse setups can help iden-
tify how well they can express parallelism for different scenarios and how efficient 
they are.

In this context, GrPPI is a generic and reusable parallel pattern interface for both 
stream processing and data-intensive C++ applications [4]. It allows users to com-
pile their own programs with FastFlow, TBB, OpenMP, ISO C++ threads, and other 
backends from a single generic implementation. Even though they also implement 
parallel patterns for data stream processing applications [5], which usually have low-
latency requirements, and support for distributed platforms [6, 7], which increases 
the communication delay between nodes of the pipeline, we found no performance 
evaluation of GrPPI regarding latency in the literature. Most previous work evalu-
ated it regarding execution time or speedup.

This work extends the last previous work from  [8]. The goal is to evaluate the 
performance of GrPPI’s backends for multi-cores in terms of throughput, latency, 
memory usage, and programmability. In the previous work, GrPPI was not evalu-
ated against handwritten OpenMP and ISO C++ threads. Furthermore, the experi-
ments were incomplete, and the analysis and discussion were rather limited. To help 
achieve the goal, we implemented four benchmarks using GrPPI and compared the 
performance of each backend against handwritten parallel code using the same back-
ends: OpenMP, Intel TBB, FastFlow, and ISO C++ threads. We use SPBench [9] 
to create the handwritten and GrPPI benchmarks. It is a framework that simplifies 
the development and management of custom benchmarks for stream processing. 
Its main goal is to enable users to evaluate and compare the performance of PPIs, 
which is the purpose of this paper.

The main contributions of this work can be summarized as follows:

•	 An extension of the SPBench benchmarking framework with support for bench-
mark generation using GrPPI.

•	 An analysis of GrPPI performance from a latency perspective using four real-
world stream processing applications and comparing it against handwritten par-
allel implementations with TBB, OpenMP, FastFlow, and ISO C++ Threads.

•	 An investigation of the programmability of GrPPI using Halstead’s method 
adapted for parallel applications.

•	 A critical analysis and suggestions for improvements to GrPPI.

The organization of our paper is as follows. Next, in Sect.  2, we provide a back-
ground for this work, introducing concepts of parallel stream processing, the GrPPI 
library, and the SPBench framework. Section  3 discusses related work. Section  4 
describes the methodology used in the experiments, and the results and experimen-
tal analysis are in Sect.  5. In Sect.  6, we evaluate the experimental results with a 
more critical view. Section  7 presents a list of suggestions for improvement and 
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future directions of GrPPI. Finally, in Sect.  8, we draw our final conclusions and 
future work.

2 � Background

2.1 � Stream parallelism

Pipeline and farm are two of the most widely used parallel patterns in parallel stream 
processing [1]. Figure 1 shows a representation of both on the left side. In a pipeline, 
stages receive a stream of data items as input, apply some computation to it, and can 
generate an output stream with the resulting data. Subsequent stages of the pipeline 
then compute this resulting data stream, and this process repeats until the end of the 
pipeline.

Each pipeline stage can be executed concurrently on a different processing unit 
to increase performance. In this context, throughput and latency are two important 
metrics to measure performance. In this work, we define throughput as the data the 
pipeline can process per unit of time. Regarding latency, we use processing-time 
latency, which is the time that elapses from when a data item is generated at the 
Source operator (first pipeline stage) to when it is computed in the Sink (last stage). 
Both metrics are limited by the processing time of the slowest stage. In such cases, 
exploiting data parallelism by replicating stages can increase pipeline performance. 
However, improving latency performance usually requires fine-tuning other param-
eters as well. For example, reducing the size of the buffers between stages implies 
shorter queues and lower data waiting time inside the pipeline.

Stage replication can be done as represented by the Farm parallel pattern, shown 
in the bottom-left of Fig.  1. If there is no data dependency, it can be freely rep-
licated. In the presence of data dependencies, such as a shared state, users must 
handle it to avoid data race and ensure coherency. In this paper, all the benchmark 

Fig. 1   High-level representation of the pipeline and the farm parallel patterns and two variations/combi-
nations also used in this work: pipeline of farms (pipe-farm) and farm of pipelines (farm-pipe)
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applications have only stateless operators/stages. Therefore, workers on the farms do 
not share any data.

In the Farm, an initial stage, often called Emitter, sends the data to the workers, 
who process it and send it to the Collector. The Emitter sends data using a round-
robin strategy by default, but some PPIs also provide distinct data-partitioning 
strategies. Most PPIs implement data buffers represented by FIFO queues between 
stages. The FastFlow PPI implements a buffer for each worker or pipeline stage in 
the Farm. Our handwritten parallel code with ISO C++ threads and OpenMP uses a 
single blocking shared queue.

On the other hand, TBB implements the work-stealing strategy as a task-schedul-
ing policy [3]. In this case, there is a pool of tasks and worker threads. TBB uses a 
deque (double-ended queue) to store tasks, and each worker thread has its deque to 
hold its own tasks. When a worker thread completes its tasks, and its deque becomes 
empty, it can “steal” tasks from the deques of other worker threads to keep itself 
busy. Therefore, work-stealing helps in load balancing across threads. Threads with 
more tasks can give away some of their tasks to other threads, preventing any one 
thread from being overloaded while others remain idle.

In the other PPIs we evaluate in this work, threads execute the same pipeline 
stage statically. It reduces the costs related to thread creation, object allocation, and 
others but adds to the problem of thread idleness in unbalanced pipelines. Load bal-
ancing must be done manually, which can be very complex in pipelines with many 
parallel stages. There are strategies to make load balancing more dynamic through 
self-adaptive parallelism, for example, but these are not features natively supported 
by these PPIs [10]. These patterns can be combined in different ways. In this work, 
we also use the combination pipeline of farms (PF) and Farm of pipelines (FP), 
shown on the right in Fig. 1.

2.2 � GrPPI

Some solutions aim to alleviate the burden of parallel programming, which is a 
time-consuming and error-prone task. One popular option is to apply algorithmic 
encapsulation techniques using pattern-based programming models. Parallel pat-
terns allow the implementation of robust, readable, and portable parallel code while 
abstracting away the complexity of concurrency control mechanisms such as thread 
management, synchronizations, or data sharing. Intel TBB and FastFlow are two 
examples of PPIs that support parallel patterns. However, such PPIs do not share the 
same programming interface and require code rewrites to port a parallel application 
to other platforms. The GrPPI library  [4] was developed to overcome these draw-
backs and be a unified, generic abstraction layer between PPIs. It proposes to act as 
a switch between different parallel programming interfaces. It uses modern C++ 
features and metaprogramming concepts to provide a compact and generic parallel 
interface that seeks to hide the complexity of concurrency mechanisms from users. 
It is also highly modular, allowing easy composition of parallel patterns. Therefore, 
GrPPI offers users an interface to implement data and stream parallelism with mini-
mal effort for multiple platforms while adding negligible overhead in performance. 
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Its goal is to make applications independent of the parallel programming framework 
used underneath, thus providing portable and readable codes [11].

In its latest public release, GrPPI allows running applications with four back-
ends: native (ISO C++ threads), FastFlow, OpenMP, and Intel TBB. Users can 
switch among backends effortlessly if the application with GrPPI implementation 
uses dynamic directives. It means that a backend can be chosen after compilation 
as an execution parameter. However, in stream processing, PPIs often offer specific 
mechanisms for fine-tuning performance. These mechanisms improve load balanc-
ing, reduce latency, apply data order to the stream, optimize resource consumption, 
and other aspects. In addition, some PPIs have unique mechanisms, such as con-
trolling the number of tokens in TBB. Most of these parameters do not have that 
much impact on throughput. However, latency is a more sensitive metric and can be 
excessively high if the application is not adequately tuned. Although GrPPI includes 
directives for managing many of these parameters, their extent and functionality 
have not yet further evaluated. We argue that assessing GrPPI with a latency-ori-
ented perspective can show how much it can express parallelism for different stream 
processing scenarios while maintaining a simple and generic interface.

2.3 � SPBench benchmarks

In this work, we create GrPPI benchmarks using the SPBench framework  [9] and 
compare their performance against hand-written stream-parallel implementations of 
using FastFlow and Intel TBB. SPBench is a framework that allows users to easily 
prototype benchmarks from real-world applications and assess various parallel pro-
gramming interfaces for stream processing in C++. Users can create custom bench-
marks using different PPIs through a simple and intuitive interface. These bench-
marks natively provide most of the performance metrics used in the literature.

Applying stream parallelism to applications in this domain can be very chal-
lenging. Commonly, users face sequential applications where operator boundaries 
and data dependencies are challenging to recognize in the source code. One of the 
primary purposes of the SPBench framework is to extract the difficult and labori-
ous task of dealing with the application from the users’ side so they can focus on 
parallelism.

Figure 2 shows a simple example of how SPBench works in this sense. On the 
left is a short example of sequential code that computes the Mandelbrot set. This 
program can be implemented in parallel using a Farm pattern or three-stage pipe-
line. However, although it is a short piece of code, identifying the individual opera-
tors and the data dependencies among them is challenging. In the traditional form, 
at the top of the figure, users must write parallel code directly from sequential code. 
The bottom part of the figure shows the SPBench path. One of the main things we 
do in SPBench is rewrite sequential applications in a standardized way so that they 
are presented to users in a simplified interface, highlighting the main elements for 
exploiting stream parallelism, such as operators and data items. It eliminates much 
of the complexity of parallelizing these applications. For the sake of space, Fig. 2 
does not present the code of the real-world applications SPBench implements, as 
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they have hundreds or thousands of lines of code. Previous work has already pre-
sented and discussed the SPBench applications in more detail  [9]. The workloads 
used in this work were characterized in [12].

SPBench also has an interface that simplifies benchmark management, such as 
installing application dependencies, creating specific build files, and automating the 
execution of benchmarks. Furthermore, its benchmarks are highly parameterizable 
and allow data stream frequency, batch sizing control, and instantiation of multiple 
data sources. Thanks to the simple and standardized design of the applications in 
SPBench, we implemented the GrPPI parallel code in a single benchmark. Then, 
we easily replicated the implementation to create benchmarks with the other appli-
cations, modifying only the specific configuration parameters required by different 
applications. Initially, the framework already provided benchmarks with Intel TBB 
and FastFLow. We have extended the SPBench framework in this work, and now it 
also provides GrPPI, OpenMP, and ISO C++ Threads benchmarks.

3 � Related work

Our related work is papers that have evaluated the performance of applications 
implemented with GrPPI.

Table 1 summarizes the related work, and the last row regards this paper. In gen-
eral, no work has evaluated the latency of applications implemented with GrPPI. 
Latency is a more sensitive metric than throughput and requires fine-tuning to keep 
it down for the different PPIs. Thus, evaluating this metric helps show that GrPPI 
also allows fine-tuning with a generic interface for distinct backends.

The main GrPPI paper  [4] evaluated a video application using GrPPI-TBB, 
GrPPI-THR (ISO C++ threads), and GrPPI-OMP (OpenMP) against hand-written 
versions of these same PPIs. Although the authors explore various parallelism com-
positions with pipeline, farm, and stencil, only a single application was used as a 
benchmark in the experiments. The authors also did not investigate how performance 

void mandelbrot(double init_a, double init_b,
double range, long dim, long niter) {

 double step = range/((double) dim);
 unsigned char *M = new unsigned char[dim];
 for(unsigned long i = 0; i < dim; i++) {

 double im=init_b+(step*i);
 for (unsigned long j = 0; j < dim; j++) {

 double cr;
 double a=cr=init_a+step*j;
 double b=im;
 unsigned long k = 0;
 for (k = 0; k < niter; k++) {

 double a2=a*a;
 double b2=b*b;
 if ((a2+b2)>4.0) break;
 b=2*a*b+im;
 a=a2-b2+cr;

 }
 M[j] = (unsigned char)(255-((k*255/niter)));

 }
 ShowLine(M,dim,i);

 }
 delete[] M;

}

Stream
parallel
code

Difficult
Easier

void mandelbrot() {
 while(1) {

 spb::Item item;
 if(!spb::Source::op(item)) break;
 spb::Mandelbrot::op(item);
 spb::Sink::op(item);

 }
}SPBench

devs and
contributors

Stream
parallel
code

Users

Users

Difficult

Sequential code with the
SPBench API

Original sequential code

Traditional way

SPBench way

Fig. 2   Users’ perspective when writing stream parallel code: traditional vs. SPBench way



1 3

Performance and programmability of GrPPI for parallel stream…

Ta
bl

e 
1  

R
el

at
ed

 w
or

k 
su

m
m

ar
y 

ta
bl

e

R
el
at

ed
W

o
rk

P
ar

al
le
l

p
at

te
rn

s

P
ar

al
le
l

p
ro

g
ra

m
m

in
g

in
te

rf
ac

es

P
er

fo
rm

an
ce

m
et

ri
cs

P
ro

g
ra

m
.

m
et

ri
cs

B
en

ch
m

ar
k

ap
p
li
ca

ti
o
n
s

[4
]

P
ip
el
in
e
+

Fa
rm

,
P
ip
el
in
e
+

St
en

ci
l

G
rP

P
I(
T
B
B
,

T
H
R
,
O
M
P
),

T
B
B
,
C
U
D
A
,

IS
O

C
+
+
,

O
p
en

M
P

T
hr

ou
gh

pu
t

–
G
au

ss
ia
n
bl
ur

+
So

b
el

fil
te
r

b
en

ch
m
ar
k

[5
]

St
re
am

-P
oo

l,
W

in
do

w
-F
ar
m
,

St
re
am

-I
te
ra
to
r

G
rP

P
I(
T
B
B
,

T
H
R
,
O
M
P
)

Sp
ee
du

p
L
O
C
,

C
C
N

F
M
-R

ad
io

an
d

3
sy
nt
he

ti
c
b
en

ch
.:

T
ra
ve

lin
g
sa
le
sm

an
,

“S
en

so
r”

an
d
“I
m
ag

e”

[6
]

P
ip
el
in
e-
Fa

rm
G
rP

P
I(
T
H
R
,

M
P
I)

Sp
ee
du

p
L
O
C
,

C
C
N

M
an

de
lb
ro
t
+

G
au

ss
ia
n
B
lu
r

[7
]

P
ip
el
in
e-
fa
rm

G
rP

P
I(
T
H
R
,

M
P
I)
,

B
oo

st
-M

P
I,

Sp
ar
k

Sp
ee
du

p
–

G
au

ss
ia
n
bl
ur

+
So

b
el

fil
te
r,

M
an

de
lb
ro
t
+

G
au

ss
ia
n
B
lu
r

[1
3]

P
ip
el
in
e-
fa
rm

G
rP

P
I(
T
B
B
,

T
H
R
,
F
F
,

O
M
P
),

O
p
en

M
P

E
xe

c.
ti
m
e,

M
em

.
us

ag
e,

ot
he

r
ha

rd
w
ar
e

m
et
ri
cs

I
D

R
A

Hp
–

[1
1]

M
ap

,
re
du

ce
,

st
en

ci
l,
fa
rm

G
rP

P
I(
T
B
B
,

T
H
R
,
O
M
P
,
F
F
),

Fa
st
F
lo
w

E
xe

c.
ti
m
e

L
O
C
,

C
N
N

Fo
ur

sy
nt
he

ti
c
b
en

ch
.

w
it
h
si
m
pl
e
m
at
h
an

d
ve

ct
or

op
er
at
io
ns

[1
4]

P
ip
el
in
e-
fa
rm

,
m
ap

,
re
du

ce

G
rP

P
I(
T
H
R
,

O
M
P
),

P
T
hr

ea
ds

,
O
p
en

M
P

E
xe

c.
ti
m
e

L
O
C

Fr
om

P
A
R
SE

C
:

Sw
ap

ti
on

s,
B
la
ck

sh
ol
es
,

St
re
am

cl
us

te
r,

an
d
Fe

rr
et

[1
5]

P
ip
el
in
e-
fa
rm

IS
O

C
+
+

th
r.
,

G
rP

P
I(
T
H
R
,
T
B
B
)

Sp
ee
du

p
–

M
an

de
lb
ro
t,

A
nt

co
lo
ny

op
ti
m
iz
at
io
n,

M
at
ri
x
m
ul
ti
pl
ic
at
io
n,

an
d
Im

ag
e
co

nv
ol
ut

io
n

T
h
is

w
o
rk

F
ar

m
,

P
ip

el
in

e-
fa
rm

,
F
ar

m
-p

ip
el
in

e

G
rP

P
I(
T
B
B
,

T
H
R
,
O
M

P
,
F
F
),

F
as

tF
lo
w
,
T
B
B
,

O
p
en

M
P
,

IS
O

C
+
+

th
re

ad
s

T
h
ro

u
g
h
p
u
t,

L
at

en
cy

,
M

em
.
u
sa

g
e

L
O
C
,

C
C
N
,

P
H
al
st
ea

d

L
an

e
D
et

ec
t.
,

B
zi
p
2
,
F
ac

e
R
ec

o
g
.,

an
d

F
er

re
t
(P

A
R
S
E
C
)



	 A. M. Garcia et al.

1 3

scales for different parallelism degrees. They did use different problem sizes, how-
ever. Also, this is the only paper we found that evaluates performance as average 
throughput. Although this metric is derived from execution time, we believe it is 
more representative for the stream processing domain, especially when extended to 
endless data stream scenarios.

In [5], the authors extend GrPPI to support parallel patterns for data stream appli-
cations. They evaluated their work with applications from domains that typically 
require low latency, such as signal and sensor data processing. However, they used 
only speedup as a performance metric. Muñoz et al. [6] added MPI as a GrPPI back-
end, allowing GrPPI applications to run on distributed platforms. They evaluated the 
speedup of their proposal against GrPPI-THR. In the experiments, they varied the 
number of distributed nodes and the degree of parallelism within each node. In [7], 
the authors extend the work from [6] and compare their proposal against a natively 
implemented version using Boost-MPI. They also compare it against an implementa-
tion in Spark, a distributed data stream processing framework. GrPPI-MPI achieved 
significantly higher speedups than Spark, highlighting the performance benefits of 
C++ over JVM-based frameworks.

The authors from [13] have implemented parallelism with GrPPI in a real-world 
MRI application. They exploited the pipeline-farm pattern, where GrPPI-THR and 
GrPPI-OMP achieved the best speedup results. They also evaluated memory usage, 
where TBB was the parallel backend of GrPPI that used the least memory, and 
FastFlow used the most. However, no backend used less memory than the hand-
written OpenMP application. In  [11], the authors have extended GrPPI to support 
FastFlow as a parallel backend framework. They tested their solution using four syn-
thetic benchmarks for each parallel pattern ported from FastFlow. They evaluated 
the execution time of the GrPPI backends against implementations of the bench-
marks using native FastFlow. They also evaluated programmability regarding lines 
of code (LOC) and McCabe’s cyclomatic complexity number (CCN), where GrPPI 
presented similar results to handwritten FastFlow. Although FastFlow benchmarks 
achieved better or equivalent performance results on most of the parallel patterns 
evaluated, the GrPPI-TBB backend performed better with the Farm pattern.

Reference [14] evaluated the performance of GrPPI-THR and GrPPI-OMP using 
four benchmarks from the PARSEC suite. They compared performance against ver-
sions of the benchmarks originally implemented in Pthreads and OpenMP. In most 
cases, GrPPI performed equivalent to the original versions regarding execution time. 
In [15], the authors propose software refactoring techniques to introduce instances 
of GrPPI patterns into sequential C++ code semi-automatically. It supports pipe-
line and Farm parallelism, and they tested it with GrPPI-THR and GrPPI-OMP. Four 
benchmarks were used to compare the speedup of their solution against manually 
written versions in ISO C++ threads. They were able to achieve performance equiv-
alent to the baseline benchmark.

Taking an overall look at the related work, we see that GrPPI has proven to be 
able to add generic parallelism abstractions to several PPIs with a minimal perfor-
mance penalty. Compared to JVM-based PPIs such as SPark, GrPPI highlighted 
the performance benefit of using C++. However, as shown in Table 1, most related 
works evaluated performance regarding execution time/speedup only. None of them 
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measured latency, an increasingly important metric for real-time processing, which 
is one of the goals of stream processing. The evaluations considering throughput and 
memory were also quite limited, not considering different strategies and degrees of 
parallelism or different stream processing applications. This work evaluates GrPPI, 
considering latency, throughput, and memory usage. We used four real-world appli-
cations and varied the degree and parallel compositions. We also run experiments 
on a newer and more robust multi-core architecture. Regarding programmability, in 
addition to lines of code (LOC) and cyclomatic complexity number (CCN), we use 
Halstead’s method for parallel applications (PHalstead) from [16].

4 � Experimental methodology

We discuss the methodology used for the experiments in the next section. We evalu-
ate performance regarding throughput, latency, and memory consumption with var-
ying degrees of parallelism. Latency means average processing-time latency, i.e., the 
average elapsed time between the generation moment of an item at the source opera-
tor and its written moment in the output of the sink operator. Throughput means the 
number of items processed by time unit. The benchmarks we used provide these 
metrics and the total memory usage. We ran each benchmark three times for the per-
formance evaluation, and the standard deviations are in all the performance charts as 
error bars.

4.1 � Execution environment

All experiments were performed on a computer that has 144 GB of RAM and two 
Intel(R) Xeon(R) Silver 4210 @ 2.20GHz processors (a total of 20 cores and 40 
threads). We enable the performance governor. The operating system was 
Ubuntu 20.04.4 LTS, x86-64, Linux kernel 5.4.0-105-generic, and GCC 9.4.0 using 
-O3 flag. We used GrPPI v0.4.0 to implement the GrPPI benchmarks in SPBench 
and Intel TBB 2020 Update 2 (TBB_INTERFACE_VERSION 11102) for both 
GrPPI-TBB and handwritten TBB benchmarks. Hand-written code with FastFlow 
used version 3, while GrPPI used FastFlow 2.2.0. It is the newest supported version.

4.2 � Parallelism and tuning configurations

In addition to the parallel patterns and degree of parallelism, most PPIs require sev-
eral other parameters to be tuned in stream processing applications in order to achieve 
the desired performance levels. For instance, by reducing the size of communication 
queues among the stages of a pipeline, the application can present reduced latency and 
lower memory usage. Although it can add some performance penalty on throughput, 
the impact is minimal on our test cases. We also try to use simple parallelism strate-
gies and configurations that make a more fair performance comparison of the PPIs. By 
enabling a blocking behavior, threads that otherwise would be in a busy waiting state 
can free up computational resources. Blocking synchronizations fit well coarse grain 
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parallelism with milliseconds tasks or more, which is the case of the benchmarks we 
use in this work [2]. Blocking synchronizations allow taking advantage of work over-
subscription (e.g., for load balancing). The drawback is that it may exhibit performance 
overheads (also due to OS involvement) [2].

We target tuning applications in our experiments to balance three performance 
goals: throughput, latency, and efficient resource usage. Therefore, in our FastFlow 
benchmarks, we enabled an on-demand + blocking configuration. In GrPPI, 
OpenMP, and ISO C++ Threads, we simulate an on-demand behavior by setting queue 
sizes to 1. None of this applies to the TBB benchmarks since TBB implements a com-
pletely different execution model.

In the PARSEC benchmark suite  [17], the Ferret application originally imple-
ments a six-stage pipeline and each of the four middle stages is a farm. Therefore, 
we try to implement this same parallel pattern in the Ferret benchmarks in SPBench: 
Pipeline(Source, Farm1(n) , Farm2(n) , Farm3(n) , Farm4(n) , Sink). As in the original 
version, we set the same parallelism degree n for all the farms. However, it implies that 
if only 10 workers are added to each of the four farms of Ferret, the application will 
already use 40 threads (4 farms × 10 workers) only to run worker stages. Since Ferret 
stages are highly unbalanced [9], most of those threads would be idle most of the time. 
Thus, considering the 40-thread multicore architecture we used to run the experiments, 
with the default configurations, there would not be available resources to run the Ferret 
pipe farm efficiently with more than 10 workers per farm. Not even 10, since Emitters 
and Collectors are also run by different threads [12].

Therefore, we chose a high over-subscription methodology for the pipeline-farm 
experiments with the Ferret benchmarks. We also enabled blocking behavior in the 
threads, so they free computing resources when they are idle. Thus, in a highly unbal-
anced pipeline of farms (Ferret’s case), we could run each farm with many more threads 
in total than the number of available processor cores and still potentially achieve per-
formance improvement. We also implemented a farm of pipelines version of Ferret: 
Pipeline(Source,Farm(Pipeline(Stage1, Stage2, Stage3, Stage4)), Sink).

4.3 � GrPPI benchmarks in SPBench

Listing 1 shows how is a SPBench benchmark with GrPPI. It represents a complete 
implementation of a Bzip2 benchmark using a GrPPI farm. To implement the farm_
func function, we rely on the example code that GrPPI provides. The Bzip2 applica-
tion has three stages: Source, Compress/Decompress, and Sink. Therefore, we imple-
mented a farm where the Source operator acts as an Emitter, Compress represents the 
replicated farm workers, and Sink is the farm Collector. It was necessary to use the 

 (line 2) since we could not control the number of TBB threads 
directly through GrPPI.
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The function execution_mode is used to dynamically select and configure 
a parallel backend. We enable item sorting to ensure the correctness of the output 
file. We also use queues of size 1 to reduce latency and activate blocking mode to 
improve resource utilization. We omit the rest of this function because it is basi-
cally the same code used for parallel_execution_tbb (lines 21–24) but 
replicated to the other backends. The selection of Backends is dynamically made 
at execution time as an execution parameter. The command  
gets a custom execution argument from the user. Thus, to run this benchmark 
with the GrPPI-TBB backend in SPBench, varying from 1 to 40 threads, repeat-
ing the execution 3 times, and getting performance metrics, we use the following 
command:

Listing  2 describes the pipeline farm pattern used to implement the original 
topology of the Ferret application in GrPPI. We will refer to it as “pipe-farm” or 
“PF” in the following sections. It is similar to the single farm in Listing 1, but we 
add more farms in sequence.



	 A. M. Garcia et al.

1 3

To better show the ability to build composite patterns in GrPPI, we also imple-
mented another variation called farm-pipeline (abbreviated to farm-pipe or FP). This 
second version has a single farm inside a pipeline, where each farm worker runs 
another pipeline. Listing 3 shows how we built this implementation in GrPPI.

After creating the benchmarks using GrPPI and running the experiments, we 
integrated them into SPBench. SPBench has a self-contained policy. In other words, 
besides all the benchmarks presented in this work, the framework natively provides 
all its main library dependencies, including the GrPPI library and its backends. All 
benchmark source codes and tuning configurations used in this work are publicly 
available on the SPBench online repository.1 More details about the applications and 
other features can be found in the SPBench documentation2 and also in [9, 12].

5 � Experimental results

This section presents the experimental latency and throughput performance, mem-
ory usage, and programmability results.

5.1 � Performance

GrPPI is a PPI that provides structured parallel programming patterns for stream 
processing. It allows running an application with the backends OpenMP, TBB, 

1  https://​github.​com/​GMAP/​SPBen​ch.
2  https://​spben​ch-​doc.​rtfd.​io.

https://github.com/GMAP/SPBench
https://spbench-doc.rtfd.io
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FastFlow, and ISO C++ Threads from a single parallel implementation. In this sec-
tion, we evaluate GrPPI with all its backends and compare their performance against 
the handwritten parallel implementations.

5.1.1 � Varying the parallelism degree

We measure latency and throughput by varying the degree of parallelism in each 
farm stage from 1 to 40, the number of cores (with hyper-threading) in the architec-
ture we use. We enabled blocking mode on the PPIs as this allows more efficient use 
of resources and can improve performance when using hyper-threading, especially 
in applications that implement a pipeline farm [9].

Figures 3, 4, 5, 6, and 7 present each application’s latency (left) and through-
put/items per second (right) results. First, all four applications implement a single 
farm. In the case of Ferret-farm, we unified the internal operators of the appli-
cation into a single pipeline stage. However, one of the goals of this work is to 
check whether GrPPI is flexible enough to build different compositions for all 

Fig. 3   Latency and throughput performance of GrPPI backends against handwritten parallel implementa-
tions with the Bzip2 (compress) benchmark

Fig. 4   Latency and throughput performance of GrPPI backends against handwritten parallel implementa-
tions with the Lane Detection benchmark
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Fig. 5   Latency and throughput performance of GrPPI backends against handwritten parallel implementa-
tions with the face recognizer benchmark

Fig. 6   Latency and throughput performance of GrPPI backends against handwritten parallel implementa-
tions with the Ferret (single farm) benchmark

Fig. 7   Latency and throughput performance of GrPPI backends against handwritten parallel implementa-
tions with the Ferret benchmark using different compositions of pipelines and farms
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the backends from a single generic code. This way, we also implemented Ferret 
benchmarks using a pipeline of farms (PF) and a farm of pipelines (FP) composi-
tions, as demonstrated in Listings 2 and 3. The pipeline of farms is the original 
parallel structure of Ferret in the PARSEC suite [17].

The x-axis of the graphs represents the maximum number of workers on each 
farm. It is fundamental to point out that the actual degree of parallelism of the 
farms and the number of threads varies according to how each PPI implements 
it. In fact, one may notice that the GrPPI-OpenMP backend is not run up to 40 
parallel workers but only up to 38 instead. It is a matter of internal implemen-
tation logic within GrPPI. In FastFlow, for instance, if the user builds a single 
farm with two workers, it will run four threads: two threads for the workers plus 
two threads to run the Emitter and Collector stages. It works the same way with 
GrPPI-FastFlow and GrPPI-Threads. However, GrPPI does not behave the same 
way for the OpenMP backend. For a two-worker farm in GrPPI-OpenMP, users 
must explicitly set the farm parallelism degree attribute as four. Therefore, in a 
single farm, for the same farm parallelism degree, GrPPI-OpenMP runs with two 
fewer workers than the FastFlow and C++ threads backends. This way, to make 
the results more comparable, we have shifted GrPPI-OpenMP results by two. It is 
not a concern with TBB, however, because of its work-stealing task scheduler that 
behaves entirely differently.

The charts in Figs. 3, 4, 5, and 6 show that GrPPI’s throughput with the TBB, 
OpenMP, and ISO C++ threads backends is equivalent to that of the benchmarks 
with handwritten code in the single farm benchmarks. In the Lane Detection appli-
cation (Fig. 4), GrPPI-THR and GrPPI-OMP even achieve better performance using 
hyper-threading (around 20 workers).

A similar behavior occurs in Fig.  3 with the Bzip2 benchmark, where GrPPI 
backends (not including GrPPI-FF) perform better than handwritten OpenMP and 
C++ Threads. With Face Recognizer and Ferret (farm) benchmarks, in Figs.  5 
and 6, the throughput performance of GrPPI is equivalent to or better than the hand-
written benchmarks. In the case of GrPPI-FF, it achieves throughput comparable to 
the other PPI with lower degrees of parallelism. Still, the inability to enable block-
ing mode in GrPPI’s FastFlow knocks down performance when using hyper-thread-
ing above 20 workers.

Regarding latency, the results of PPIs vary widely. In addition to the inability 
to enable blocking mode in GrPPI-FF, it is also not possible to enable on-demand 
mode or reduce the queue size, which could bring a similar effect. Therefore, GrPPI-
FF has an unlimited buffer between stages that stores many items simultaneously. 
These items wait a long in the buffers/queues until the other stages can process 
them. It incurs a significant increase in latency for all the evaluated applications.

Although GrPPI-THR has the best throughput performance, it has the second-
worst latency performance overall. However, it manages to have lower latency than 
the TBB benchmarks in Lane Detection and Ferret when using hyper-threading. 
GrPPI-TBB has comparable latency to the handwritten TBB in all applications 
except in the Ferret (Figs. 6 and 7). In this case, it presents an increasing latency 
from the beginning, an unexpected behavior. Ferret differs from the other applica-
tions because it does not require item order, and how GrPPI implements it in TBB 
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may explain this difference. GrPPI-OMP presented a similar and even better latency 
than handwritten OpenMP and C++ Threads in Lane Detection over 20 workers.

Figure  7 presents the performance results for the pipeline with multiple farms 
(PF) and farm of pipelines (FP) compositions. We only present the result for the 
Ferret application, which is the application that originally implements a farm 
pipeline  [17]. The GrPPI-OMP PF and FP parallel implementations did not work. 
Although they start running without errors, threads do not work and enter an infinite 
waiting. Thus, we do not present the results for these implementations. The highest 
throughput in the results in Fig. 7 was achieved by ISO C++ Threads (THR-PF) and 
GrPPI-THR-PF at all degrees of parallelism, followed closely by the handwritten 
version of FastFlow. A pipeline of farms in TBB behaves very similarly to a single 
farm in an application with no ordering requirement (this case) since a TBB thread 
can avoid buffering and process an item from the beginning to the end of the pipe-
line if resources are available.

TBB is the PPI that presents the best latency results in most test cases. In most 
benchmarks, handwritten TBB’s latency is about half of the second-best result when 
running less than 20 parallel workers. TBB uses a dynamic task scheduler with a 
work-stealing policy [3] that benefits from the type of applications we use in these 
experiments. In the other PPIs, each thread runs the same computation over differ-
ent data items, i.e., a thread statically runs a single pipeline stage all the time. In this 
case, data items move from one stage to the next through queues/buffers, which can 
add extra waiting time, increasing latency. In TBB, threads can run different tasks. 
These tasks are placed in each thread’s double-ended queue (deque). Also, tasks can 
be chained to subsequent tasks. For instance, if a specific task involves applying the 
computation of a pipeline stage to a single data item, the return of this task is a 
function call for the next task, which can be running the code of the next pipeline 
stage over the data item, and so on. Therefore, a single TBB worker thread can pro-
cess a data item through the entire pipeline, which means that items stay shorter in 
the inter-stage buffers, reducing average latency. However, some factors can prevent 
a task from being executed, such as a data ordering constraint or if no computing 
resource is available. In this case, the thread may try to steal and execute a task from 
the back of another thread’s deck. After processing the stolen task, the thread returns 
it to its respective place. This work-stealing can also happen if the thread empties all 
its deque tasks.

Bzip2 and Ferret are applications that pose no significant challenges for the TBB. 
In the case of Bzip2, its workload is relatively stable during computation, meaning 
that data items have similar computational costs. This generates less clutter in the 
pipeline. All the workloads used here have been properly characterized in previous 
work [12]. Despite having a very unstable workload, Ferret has no restrictions on the 
order of items. In other words, in both benchmarks, the TBB worker threads benefit 
from these aspects of the workload. When Ferret-TBB starts using hyper-threading 
(more than 20 parallel workers), latency does not increase as much because there is 
only competition for computational resources. In the case of Bzip2, this competition 
for resources causes extra clutter of items, and latency jumps slightly with more than 
20 parallel workers. In Face Recognizer, when hyper-threading is used, TBB latency 
practically doubles. This is because this application has a very unstable workload, 
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as it depends on detecting and recognizing faces in different video frames. It is also 
necessary to guarantee the order of the frames in the output video. In Lane detec-
tion, the scenario is similar, but the latency increases by almost 10x when using 
more than 20 parallel workers with hyper-threading. This big difference occurs 
because Lane Detection processes many more video frames and processes them 
faster than Face Recognizer [12]. In addition, the computational cost of each frame 
fluctuates even more. The result of these factors is a large item clutter before the 
last stage of the pipeline. This implies that TBB threads cannot process end-to-end 
data items in the pipeline at once and need to switch contexts to perform other tasks. 
This combination of factors causes this large step in TBB’s Lane Detection latency 
when using more threads than physical processor cores. The overhead caused by 
increased context switching potentially negatively affects the overall performance 
as well. This item clutter problem also similarly impacts FastFlow, but not as much 
in the OpenMP and C++ Threads implementations. Since our handwritten C++ 
Threads and OpenMP benchmarks use the same data structures for buffers and the 
same ordering algorithm, how FastFlow implements it may explain this difference in 
the latency performance.

In a pipeline of farms, the inability to optimize FastFlow code in GrPPI is a 
critical factor for both throughput and latency. If on-demand mode is not enabled, 
it adds multiple unlimited queues/buffers in the pipeline, increasing latency. With-
out enabling blocking mode, idle workers are in a busy wait state and do not free 
up resources. This combination causes a further load imbalance in this application. 
Since Ferret-PF has a pipeline with four farms and the architecture has 40 threads, 
the expectation is that the pipeline of farms in non-blocking mode will have a sig-
nificant drop in performance above ten workers per farm. On the other hand, the 
farm-pipeline pattern avoids the additional collectors/emitters between stages that 
there would be in a pipeline farm. This performance difference is because a lower 
number of queues is required for a pipe of farms, where all works in a farm share a 
single queue. Consequently, the number of queues is independent of the farm multi-
plicity. Thus, it requires fewer threads and has fewer shared queues, leading to better 
load balancing and mitigating the performance impact.

Except for the TBB benchmarks, all the PPIs considerably increased latency with 
pipeline-farm implementations. The difference between TBB and FastFlow in these 
situations has been extensively discussed in detail in previous work [9]. Despite the 
difference in throughput between GrPPI-FF-FP and GrPPI-FF-PF, the two strategies 
behaved similarly, showing the highest latencies. However, with GrPPI-THR, the 
pipeline of farms (PF) composition presented far better results than the FP composi-
tion. After all, it achieved the best throughputs and reduced latency to the same level 
as GrPPI-TBB with 40 workers.

5.1.2 � Varying the computational cost of the workload

The Lane Detection benchmark is the SPBench workload that poses the most 
unique challenges. The computational cost of each video frame varies according 
to the number of lanes that can be detected in the input video. Therefore, intersec-
tions, road bends/curves, nearby vehicles, and other elements greatly influence the 
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computational cost of each frame. In addition, this application needs to guarantee 
the correct order of the frames processed in the output. Frames with different com-
putational costs mean that parallel workers process these frames at different speeds, 
which creates a major frame clutter problem. This ordering cost increases the pro-
cessing time for each frame, increasing latency and reducing throughput. How-
ever, Lane Detection is a latency-critical application in real-world applications. For 
instance, if it is running in a self-driven vehicle, milliseconds can make the differ-
ence in avoiding an accident on the road.

Vehicles can include camera sensors of different resolutions. Naturally, higher 
resolutions can improve the quality of the result, but they require more processing 
power from the system. In addition to the cost of processing more pixels, a higher 
resolution also makes it possible to identify elements in the image more precisely, 
adding to the overall cost of computing each frame. Figure 8 shows a frame from 
Lane Detection’s output video with two different resolutions. With 360p resolu-
tion (Fig. 8a), the application can only identify the lane where the vehicle is, while 
with 720p resolution (Fig. 8b), the application can identify all the lanes on the road. 
Therefore, the processing cost is increased by the need to process more pixels and 
by processing these additional lanes.

In [4], the authors evaluated GrPPI with one video application and different frame 
resolutions, but they only evaluated the average throughput and used a synthetic 
benchmark. Therefore, we evaluate GrPPI’s latency when running the Lane Detec-
tion benchmark at two different input video resolutions (360p and 720p). Typically, 
video sensors in autonomous vehicles capture 60 frames per second (FPS)  [18]. 
Therefore, to simulate a more realistic scenario, we also added the  
parameter when running the benchmark in SPBench, which limits the input stream 
to 60 FPS in this case.

Figures  9 and  10 show the latency results in more detail using dispersion dia-
grams. The diagrams use the box-and-whisker representation, where the 1st, 2nd, 
and 3rd quartiles are the dataset’s 25th, 50th, and 75th percentiles. The whiskers are 
based on the 1.5 interquartile range (IQR) value [19], and the diagrams include out-
liers. The samples in the dataset are the latency of the frames measured every 250 
ms during the execution of the benchmarks. We avoided increasing the number of 
samples to reduce overheads over the application’s performance. Therefore, as each 

Fig. 8   Output of Lane Detection benchmark with two different input video resolutions
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sample can represent different frames when comparing two results, single outliers 
are not significant for analysis.

Figure 9 shows the results of running the Lane Detection benchmark with 20 par-
allel workers. The architecture of the execution environment has 20 physical cores 
and 40 threads, so this scenario has little competition for computing resources. 
With 360p input video, the benchmarks with handwritten parallel code showed 
similar latency results (Fig. 9a). It contrasts with the difference shown in Fig. 4 in 
Sect. 5.1.1. There, the input FPS was defined by the hardware speed and the applica-
tion’s limitations. Here, we can see that in a more realistic scenario, with 60 FPS, 
FastFlow can sustain a low latency both in handwritten code and with GrPPI-Fast-
Flow. So, the workers in this application are processing items fast enough that they 
do not queue for long. This is not the case of GrPPI with OpenMP and C++ Threads 
backends, which more than double the latency of handwritten parallel code. If we 
compare it with the results of Fig. 4 again, we can see that with 20 parallel workers, 

Fig. 9   Latency (250ms sample) of Lane Detection benchmarks running with 60 FPS in the input stream 
and a maximum of 20 parallel workers on a single-farm configuration

Fig. 10   Latency (250  ms sample) of Lane Detection benchmarks running with 60 FPS in the input 
stream and a maximum of 40 parallel workers on a single-farm configuration



	 A. M. Garcia et al.

1 3

the latency of both backends should be equal to or less than that of handwritten 
FastFlow when decreasing the FPS. Therefore, this indicates that GrPPI is either 
generating poorly optimized code for OpenMP and ISO C++ Threads or is adding 
extra structures that cause a large overhead compared to handwritten parallel code.

Many differences occur when the video resolution is increased. As mentioned 
earlier, in addition to the application processing more pixels, a sharper image also 
makes it possible to identify additional elements that add to the workload. Although 
FastFlow, OpenMP, and C++ Threads present low latency in Fig.  9b, this is due 
to the limited size of the queues. In other words, the pipeline cannot ingest more 
frames, and these frames would have to be buffered elsewhere, or they would be 
dropped. If they were buffered elsewhere, the latency of these three PPIs should be 
similar to that of the TBB in this case. The main difference here is GrPPI-FF, which 
does not limit the size of the queues and a higher load on each worker on the farm. 
In this case, the source can still load these larger frames into the queues faster than 
the workers can process them, even though the input is limited to 60 FPS. Further-
more, even when there is no prior buffering or frame loss, which is the case with the 
TBB benchmark, the latency would still be very high, as the median is almost 5 s. 
This is unacceptable for latency-critical applications. Therefore, it would be neces-
sary to either reduce the input FPS or the video resolution or improve the hardware 
performance for this application to run in realistic scenarios.

Figure 10 shows the same experiment but increases the number of parallel work-
ers to 40, which is the number of threads in the architecture. The main difference 
compared to 20 parallel workers is the latency of GrPPI-FastFlow, which more than 
doubles with both resolutions. So, instead of reducing latency as the number of 
workers increases, as seen in experiments without FPS limits (Fig. 4), the latency 
increases. It happens again due to the impossibility of reducing queue sizes in 
GrPPI-FF and activating blocking mode, which would cause idle threads to release 
resources. Therefore, 40 workers hold more frames for longer but have to compete 
with other threads for computational resources, even when those threads are not pro-
cessing other frames. Despite this, even when blocking mode is activated when the 
frame resolution is increased, threads spend more time working on a single frame, 
intensifying competition for resources. It can be seen in the larger distribution of 
high latency items for the handwritten FastFlow in Fig. 10a compared to the same 
result in Fig. 9b.

5.1.3 � Varying the input data frequency

Although cameras in autonomous vehicles typically capture 60 frames per sec-
ond  [18], there are several variations and types of camera sensors for vehicles of 
this type that work with lower capture rates, reaching up to just 10 FPS  [20]. 
Additionally, this frame rate may fluctuate. For example, if the vehicle is station-
ary or traveling very slowly in a straight line, many redundant frames may be dis-
carded before the main processing. This type of technique can be used to improve 
system efficiency  [21]. In this section, we evaluate the latency of the benchmarks 
using a frames-per-second rate that fluctuates between 10 and 60 FPS in a sinusoi-
dal fashion. To do this, we added the following execution parameter to SPBench: 
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. This command automatically creates a frequency pattern 
in the input stream in a sine wave format, which has a wavelength of 10 s, with the 
trough at 10 and the crest at 60 items (frames) per second [12].

Figure 11 compares the latency results of each GrPPI backend against handwrit-
ten parallel code. The benchmarks were run with 40 parallel workers on the farm 
and 360p resolution in the input video. Other configurations do not add significant 
new conclusions. We used SPBench’s monitoring functionality to monitor latency 
and throughput during the execution of the benchmarks. Every 250 ms, a latency/
throughput sample was taken, and each sample represents an average of the frames 
processed during the last 250 ms. It is all done automatically by SPBench and can be 
configured using a single execution parameter. This type of metric is usually called 
instantaneous latency/throughput. It attenuates outliers and helps to visualize the 
experimental results better.

Regarding the handwritten parallel code, all the PPIs showed similar results and 
a latency of around 120 ms throughout execution. A noticeable latency spike occurs 
around 32  s into the execution (x-axis). It is because there is a short sequence of 

Fig. 11   Latency of handwritten vs. GrPPI parallel code for the Lane Detection benchmark running with a 
maximum of 40 parallel workers in a single farm configuration and varying the number of video frames 
available per second at source from 10 to 60
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frames in the input video where the road changes and several lanes are detected. 
These frames impose a greater workload on the workers. In this experiment, we con-
figured the sine wave so that this spike would occur when the FPS is in the rising 
phase. It generates an additional stress point and allows us to test how the PPIs deal 
with critical load spikes.

All the handwritten benchmarks and GrPPI-TBB and GrPPI-FF quickly reduced 
the latency after the load spike. It is not valid for GrPPI with the OpenMP and 
ISO C++ Threads backends. In the case of GrPPI-OMP, it did not even manage 
to keep latency low after the crest of the first wave, even before the spike. Since 
we believe that GrPPI implements the same inter-stage buffer/queue mechanism for 
both OpenMP and C++ Threads, this higher initial latency of GrPPI-OMP is prob-
ably linked to differences in how it allocates work to threads. With C++ Threads, 
the thread executing the source operator has to compete with the farm workers for 
computing resources. Nevertheless, if GrPPI is run with the OpenMP backend using 
the same parallelism settings, it will create two fewer workers on the farm than ISO 
C++ Threads. So, the Source on GrPPI-OMP has more computational resources 
and unnecessarily fills the worker queues. When running GrPPI-OMP with no FPS 
limits (Fig. 4, the on-demand mechanism seems to work, since it presents the best 
latency results when running with the maximum number of workers in parallel. 
Therefore, there is some bad optimization causing this unexpected behavior with 
floating input FPS, even with the peak FPS being about three times lower in this 
case.

Regarding the ISO C++ Threads GrPPI backend, the increase in latency only 
occurs after the heavy workload spike. The application fills the buffers on high-
FPS phases, and this causes an increase in latency in the future, reducing after low-
FPS phases. Based solely on the results of Sect. 5.1.1, we hypothesize that the high 
latency could result from a flaw in the on-demand mechanism, similar to the prob-
lem with GrPPI-FF. However, the latency behavior in the experiments with reduced 
FPS in Sect. 5.1.2, and with fluctuating FPS in this section, shows that GrPPI-FF 
has very similar behavior to GrPPI-OMP. It leads to the conclusion that the prob-
lem involves other aspects, such as data contention caused by poorly optimized lock 
mechanisms. In the case of GrPPI-FF, the average latency is about double compared 

Fig. 12   Throughput of handwritten vs. GrPPI parallel code for the Lane Detection benchmark running 
with a maximum of 40 parallel workers in a single farm configuration and varying the number of video 
frames available per second at source from 10 to 60
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to the handwritten FastFlow code, but both show similar behavior throughout execu-
tion. Therefore, the only issue in this case is the lack of a functional on-demand 
mechanism for GrPPI-FF.

Figure  12 compares the output FPS with the input FPS of the benchmarks. 
Despite large variations in latency and possibly poorly optimized parallel code, all 
the PPIs managed to sustain the same level of throughput. The greater variation in 
throughput shown by GrPPI-FF is again a consequence of the impossibility of acti-
vating blocking and on-demand mode. The presence of output FPS spikes higher 
than the input FPS means that at some point in the pipeline, items are buffered and 
then processed in a shorter interval in the future. For instance, this can result from 
out-of-order items waiting for the correct item.

5.2 � Memory usage

The evaluation of memory usage is a crucial aspect of developing and optimizing 
stream processing applications. To meet real-time processing demands, SP appli-
cations typically require handling large volumes of data and running tasks concur-
rently to achieve high throughput and lower latency. By evaluating memory con-
sumption, developers can identify potential bottlenecks and optimize their code for 
better performance. It is also a relevant factor in the scalability of stream processing 
applications. As the amount of data being processed increases, so does the memory 
required to handle that data. By evaluating memory consumption, developers can 
check whether their application can scale effectively as the volume of input data 
increases.

In this section, we use the SPBench benchmarks to evaluate the memory usage 
of TBB, FastFlow, OpenMP, ISO C++ Threads, and GrPPI in stream parallelism. 
We get the memory usage from the SPBench memory-usage metric. This metric 
returns the total memory used by a benchmark during its execution (peak resident 
set size). We ran the benchmarks with a parallelism degree of 10, 20, 30, and 40. We 
ran the benchmarks without a limit on the frequency of data item ingestion, the same 
parameters used in the experiments in Sect. 5.1.1. Figure 13 shows the results of the 
benchmarks with a single farm. Note that the y-axis is in a logarithmic scale for bet-
ter data visualization. In most cases, PPIs demanded similar amounts of memory in 
each application. The apparent exception was GrPPI-FF, where unlimited queues/
buffers loaded, at once, all data into memory. It occurs due to the inability of GrPPI 
to adjust the size of FastFlow queues and the FastFlow developers’ decision not to 
set a lower default boundary. Another contribution to this effect derives from the 
GrPPI’s strategy of using value-oriented bounded queues instead of pointer-oriented 
ones. That avoids excessive allocation/deallocation at the price of preallocating 
more memory.

GrPPI-THR (ISO C++ Threads backend) was the second case that used memory 
most in all applications except Lane Detection and Bzip2 when using more than 
20 parallel workers. The difference from the other PPIs is more prominent when 
using fewer parallel workers on the farm. However, we can see that this result is 
directly linked to the high latencies that this backend presented in the performance 



	 A. M. Garcia et al.

1 3

evaluation. It may indicate the presence of bad optimizations in GrPPI or the inabil-
ity to enable the on-demand mode for this backend, as occurs with GrPPI-FastFlow. 
However, when running the Lane Detection benchmark with 20 and 40 parallel 
workers, GrPPI-THR used less memory than FastFlow and TBB, both handwritten 
and GrPPI versions. These results are tightly linked to the latency results presented 
in Fig. 4. The PPI that used the least memory in the big picture was GrPPI-OpenMP, 
followed very closely by handwritten FastFlow in most test cases. It may not seem 
like it because of the logarithmic scale of the chart’s y-axis, but GrPPI-OMP uses 
about 18% less memory than the handwritten version in most cases. We can cor-
relate this difference to the good latency results of GrPPI-OMP from Sect.  5.1.1, 
which were run under the same parameters. We expected similar results between the 
OpenMP and ISO C++ Threads backends of GrPPI, as it happens with the hand-
written benchmarks. However, GrPPI does not seem to share the structures common 
between these two PPIs.

Fig. 13   Total memory consumption of benchmarks with a single farm
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Figure  14 shows the memory usage of the pipe-farm (PF) and farm-pipe (FP) 
compositions. GrPPI-FF again shows high memory usage. However, this is only in 
the farm-pipe composition and not so much in the pipe-farm. However, the mem-
ory usage of GrPPI-FF-FP with 40 workers is reduced. An explanation for this is 
that resources are very tightly contested with blocking mode disabled, and more 
intensive stages (the last ones) get more processing priority. Thus, such a lack of 
resources can lead to the inability of the first stage (emitter) to send enough items 
to fill the queues. That is because there is a bottleneck reduction in the more costly 
task. Therefore, it increases the bottleneck at the emitter. Although GrPPI-FF-PF has 
more intermediate queues because of its multiple farms, each farm runs an emitter 
and a sink stage. The lack of computing resources makes it worse in this case since 
it has to run these extra stages. It may slow down the fulfillment of the queues, keep-
ing the memory usage lower than in the farm-pipe case.

GrPPI-THR-FP also uses more memory with ten workers, but we can see that this 
is directly linked to the latencies shown in Fig. 7. The same is true for GrPPI-THR 
with a single farm (Fig. 13). Explaining this would require further investigation into 
how GrPPI implements the communication mechanisms between the stages using 
ISO C++ threads.

The handwritten FastFlow and GrPPI-TBB achieved the lowest memory usage 
with a pipeline of farms. In the single farm benchmarks, handwritten TBB and 
GrPPI-TBB got similar results. That is true for memory usage but also for latency 
and throughput performance. However, GrPPI-TBB presented such an unexpected 
behavior regarding latency when using a pipeline of farms composition. We are not 
sure what may cause that behavior, but we believe it also impacts the memory usage 
of this benchmark. On the other hand, our highly optimized handwritten FastFlow 
managed to use over 10% less memory than the handwritten TBB benchmark. The 
benefits of TBB’s work-stealing execution model add some costs. Whenever a thread 
operates on an item, it creates a new object for the next stage, including its instance 
variables. Instantiating objects in a multi-thread environment can be slow and cause 
contention for the heap and the memory allocator data structures [3]. We believe this 
contention may explain the extra memory TBB demanded compared to FastFlow.

Fig. 14   Total memory consumption of Ferret benchmarks using pipeline-farm (PF) and farm-pipeline 
(FP) compositions
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5.3 � Programmability evaluation

Parallel programming is usually evaluated in terms of execution time and speedup. 
In the stream processing domain, latency and throughput are also important perfor-
mance metrics. [1] says that a PPI should balance three properties: performance, 
portability, and programmability/productivity. However, programmer productivity is 
a critical factor in parallel programming that is usually not addressed. It is directly 
related to the lack of methods and tools that support parallel programming and the 
difficulty of performing experiments on humans [16, 22]. Thus, code metrics such 
as lines of code (LOC) or cyclomatic complexity number (CCN) are the most pro-
ductive evaluations of parallel programming. Most related works use such metrics, 
as discussed in Sect. 3. However, these metrics may be inaccurate and lead users to 
wrong assumptions [23].

If we disregard parallel programming, there are well-known code-based meth-
ods in the literature for evaluating the programmability cost of applications. One 
of the most known is Halstead’s method, a code-based metric used to measure the 
complexity of a program [24]. The basis of the method is the observation that the 
complexity of a program is related to the number of unique operators and operands 
used in it. The application of the Halstead method is predicting the effort required 
to develop or maintain a software program and to estimate the number of bugs that 
may be present in the program  [23]. We also can use the method to compare the 
complexity of different programs and to identify sections of code that may be par-
ticularly difficult to understand or maintain.

Halstead’s method, however, does not correctly address parallel programming 
since it cannot recognize specific code tokens from most of the PPIs. Andrade 
et al.  [23] overcame this problem and adapted Halstead’s method to support some 
PPIs, including the ones used in this work. This method is based on tokens of code, 
classified as operators or operands, and proposes a series of measures, including 
estimated development time. [23] added specific tokens from different PPIs and 
developed a tool called PHalstead3 from this.

Here, we evaluate the programmability/productivity of the PPIs using the most 
common metrics found in the literature and Halstead’s method leveraged by the 
PHaltead tool. We measured LOC and CCN using the Lizard 1.17.10 tool.4 Fig-
ure 15 shows the results of the single farm plus pipeline of farms (PF) implemen-
tations. For the LOC and cyclomatic complexity, we also added the results of the 
sequential applications for baseline comparison.

Regarding GrPPI, we consider two versions: “GrPPI-static” is a more straight-
forward implementation that invokes the executor of a specific backend statically 
within the code; “GrPPI-dynamic” is an implementation that allows switch-
ing between the four backends dynamically at execution time. This second ver-
sion requires the addition of the backend selection mechanism represented in 
line 17 of listing 1. We consider these two versions because, although dynamic 

3  https://​github.​com/​GMAP/​phals​tead.
4  https://​github.​com/​terry​yin/​lizard.

https://github.com/GMAP/phalstead
https://github.com/terryyin/lizard
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backend selection is a valuable feature of GrPPI, its use is a user option and not a 
requirement.

GrPPI-dynamic is similar to TBB and FastFlow in parallel implementations 
with a single farm. However, we can see that GrPPI shows better results in pipe-
farm (PF) implementations, where the complexity of programming with FastFlow 
increases considerably. Concerning cyclomatic complexity, GrPPI-static pre-
sented equivalent results to the sequential application. On the other hand, PHal-
stead estimated a longer development time for GrPPI-dynamic with Lane Detec-
tion, Face Recognizer, and Ferret-Farm. The addition of the backend switching 
mechanism gives this extra cost. In Bzip2, which has two execution modes (com-
press and decompress), this cost is diluted, and GrPPI-dynamic can maintain a 
lower development time than TBB and FastFlow. In Ferret-PF, this is due to the 
significant increase in implementation complexity with TBB and FastFlow.

The two PPIs that showed the worst programmability results were OpenMP 
and ISO C++ Threads (THR). These PPIs do not provide structured parallel pat-
terns, nor do they abstract away the concurrency control mechanisms. Therefore, 
they require much more programming effort. Since both PPIs share some struc-
tures in the SPBench benchmarks, such as communication queues, they have sim-
ilar results in all three programmability metrics.

Fig. 15   Number of lines of code, cyclomatic complexity, and estimated development time (PHal-
stead [23]) of the PPIs with each benchmark
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6 � Critical analysis of experimental results

The performance results of GrPPI varied significantly among the four backends. 
Since it provides no mechanism to configure FastFlow queues and scheduling 
policies, this greatly limited the performance of this backend. In addition, it only 
supports an older version of the FastFlow library (2.2.0), which also limits the 
users’ option to use newer features of FastFlow, such as the BOUNDED_BUFFER 
compiling macros. Therefore, enabling support for on-demand and blocking 
modes in GrPPI-FF or making it support more recent versions of FastFlow could 
be an important improvement for GrPPI in the context of stream processing.

GrPPI-TBB performed as well as the handwritten TBB in most cases. How-
ever, it presented unexpected increased latency when running the Ferret bench-
marks. Due to GrPPI’s internal implementations and lack of documentation, we 
could not find why it shows this behavior. We tested different configurations and 
all the combinations of mechanisms available with this application. Although the 
main difference between Ferret and other applications from a stream processing 
perspective is that it does not need to sort the items, enabling or not enabling 
sorting mechanisms in GrPPI doesn’t significantly affect latency. Further investi-
gation is needed to understand this issue.

GrPPI-THR (ISO C++ Threads) did not present the throughput loss faced by 
the GrPPI-FF backend when using hyper-threading. However, it presented the 
second-worst latency, probably due to issues with the GrPPI’s fine-tuning mech-
anisms. On the other hand, GrPPI-OMP presented a surprisingly good perfor-
mance. In most cases, it achieved lower latency than handwritten OpenMP, Fast-
FLow, and ISO C++ threads. In the Lane Detection benchmark, GrPPI-OMP was 
the PPI that presented the lowest latency when using hyper-threading. With the 
Ferret (farm) benchmark, it presented equivalent latency to handwritten TBB at 
high parallelism degrees. Although GrPPI-OMP seems a good option, we could 
not run it with the pipeline of farms composition. Our preliminary experiments 
observed that it creates more and an arbitrary number of threads than expected. 
For instance, it creates around 17 threads to run the Ferret pipe-farm with two 
workers per farm. With little parallelism, it already used all the available threads 
of the architecture it was running. Therefore, GrPPI-OMP needs to be improved 
in this direction so that more complex stream parallelism patterns can be effec-
tively used.

We could find most of the aforementioned GrPPI limitations because this work 
is the first to evaluate it under a latency perspective, as we showed in the related 
work Sect. 3. All its backends presented performance or behavior issues in some 
of our experiments. The main issues are higher latency for GrPPI-FF and GrPPI-
THR, throughput drop for GrPPI-FF, unexpected high latency for GrPPI-TBB in 
Ferret benchmarks, limited parallelism scaling with GrPPI-OMP in more com-
plex compositions, and poor throughput performance and high memory usage of 
GrPPI-FF with a pipeline of farms implementation.

Therefore, while GrPPI-THR can deliver high throughput and does not 
require installing additional libraries, it delivers poor latency performance. While 
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GrPPI-OMP delivers decent latency and good throughput performance, it pre-
sents unpredictable behavior in complex parallel compositions. While GrPPI-
TBB presents good latency and throughput performance, it presents unexpected 
performance behavior in some cases and may demand more effort to set it up. In 
summary, GrPPI-FF did not show any advantage over the other backends at any 
point in our evaluation and presents many limitations that incur high memory 
usage.

Regarding programmability, OpenMP and ISO C++ threads demand the most 
programming effort, as expected, since they do not provide structured parallel pat-
terns or abstract concurrency control mechanisms. In single-farm benchmarks, 
TBB and FastFlow require similar programming effort in our results. GrPPI, as 
expected, shows the best results in this regard. One of the main features of GrPPI 
is that it allows the switching of backends from a single generic implementation. 
Meanwhile, our analysis shows that implementing these switching mechanisms can 
raise the programmability cost of an application with GrPPI to the same levels as 
a hand-written implementation with FastFLow and TBB in some cases. For the 
pipeline of farms composition, the three programmability metrics we used pointed 
out that handwritten FastFlow required less than twice the programming effort of 
TBB. However, while the productivity/programmability evaluation can somewhat 
address the effort of writing parallel code, it cannot address the difficulty of finding 
parallelism configurations that perform decently. In the pipe-farm case, we argue 
that the effort required to implement a FastFlow version that achieves performance 
competitive with TBB demands much more effort than the metrics point out. This 
goes beyond the complexity of the code itself but also encompasses the parallelism 
settings required to achieve the desired performance levels. GrPPI eliminates this 
difference in programmability between PPIs while reducing the total programming 
effort at the cost of limitations that can lead to poor performance and misuse of 
computing resources.

Code-based metrics also fail to address other aspects, such as the lack of docu-
mentation of PPIs, which would increase development time. In any case, we believe 
that the code-based metrics could at least point in the right direction when evaluat-
ing PPIs in our test cases. However, they may fail with respect to proportionality in 
more specific cases.

Andrade et al. [22] also evaluated the LOC and CCN of three applications we use 
in this paper: Bzip2, Lane Detection, and Face Recognizer (Person Recognition). 
They evaluated parallel implementations of these applications using PThreads, Intel 
TBB, FastFlow, and others. Although they also measured estimated development 
time, they used the pure Halstead’s method, considering only standard C++ key-
words/tokens and not addressing specific keywords/tokens used by the PPIs. If com-
pared the LOC and CCN numbers in Fig. 15 against the data in Table III of [22], 
it further highlights how SPBench can reduce the complexity of dealing with the 
sequential code. For example, in the original sequential Bzip2 presented in  [22], 
users face 1327 lines of code and a cyclomatic complexity number equal to 288. In 
SPBench, we rebuild this sequential code in a way that users have to face only 28 
LOCs and a CCN of 8. In SPBench, we do not eliminate the original source code, 
but we bring the main parts required for typical stream parallelism implementation 
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to the surface. It works the same way as shown in the example in Fig. 2. The sim-
plified sequential version allows users to focus on implementing and tuning paral-
lelism. Also, all SPBench sequential benchmarks follow the same implementation 
standards, which can make parallel code highly portable, except for specific tuning 
configurations.

Although the last release of the GrPPI library allows users to run the benchmarks 
with four backends, it does not follow an “all-inclusive” style and does not provide 
TBB and FastFlow backends within it. It means it is up to the users to build and 
configure the backend PPIs before installing GrPPI. Installing them and setting up 
the system environment so GrPPI can find TBB and FastFlow can be tricky for less 
experienced users who do not have admin access to the system. Therefore, users 
could also benefit from some proper guidelines in this regard.

7 � Suggestions for improving GrPPI

In this section, we suggest improvements to future versions and extensions of GrPPI. 
Most of the suggestions are based on an analysis of the experimental results on per-
formance and usability and also on the critical analysis of the authors regarding the 
use of GrPPI in general, which goes beyond programming.

Suggestions for functional and technical improvements:

•	 Add more use cases to the samples available with GrPPI The examples available 
in the latest version of GrPPI only cover a couple of the simplest use cases and 
configurations regarding stream parallel patterns. No pipeline or farm examples 
make use of fine-tuning mechanisms, for example. Such mechanisms are also not 
presented and explained in the user documentation.

•	 Update support for FastFlow 3 or add support for fine-tuning mechanisms in 
the currently supported version. The ideal scenario is to implement support for 
a newer FastFlow version and fine-tune mechanisms in a generic way in GrPPI. 
However, more current versions of FastFlow also allow various mechanisms to 
be tuned through compilation directives. It would eliminate the need to translate 
specific mechanisms, although it would not improve programmability.

•	 Improve fine-tuning mechanisms In addition to the lack of mechanisms for adjust-
ing queue size and activating blocking mode for the threads in FastFlow, some of 
these mechanisms do not seem to work properly in other backends either. How-
ever, this could result from poor optimization of these mechanisms, their lack, or 
other GrPPI optimization problems. It is also not possible to set the maximum 
number of threads in the TBB backend via GrPPI directives. Therefore, there is 
plenty of room for improvement in this direction, and a comprehensive evalua-
tion of each mechanism should be carried out before future updates.

•	 Improve user documentation GrPPI is not all-inclusive, i.e., it relies on users 
installing and configuring backends beforehand. Although GrPPI does provide 
some documentation on activating or deactivating backends during installation, 
it would be useful to have documentation to help the user prepare the environ-
ment so that GrPPI properly sees the backends. Also, it should provide compre-
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hensive documentation on tuning mechanisms, showing what options are sup-
ported or not and providing more details on each.

•	 Standardize and be more transparent about system behavior While running 
experiments, we noticed that applications implemented with GrPPI did not 
behave as expected in some situations. For example, instead of setting the degree 
of parallelism with the TBB backend, this parameter sets the number of tokens in 
practice. Additionally, our experiments with the OpenMP backend were limited 
as it ran many more threads than expected. These limitations and unpredictability 
may prevent a fair comparison and analysis of the PPIs.

In addition to the practical suggestions for technical improvements, we also have 
some substantive suggestions that we believe would be important for improving 
GrPPI in the future.

•	 Include latency as a performance metric when evaluating GrPPI in the context 
of parallel stream processing. The requirement for low-latency stream processing 
applications is set to grow, and GrPPI needs to demonstrate its ability to operate 
under these requirements. Furthermore, this work demonstrates that latency is a 
metric that allows us to highlight optimization problems and tool limitations.

•	 Evaluating usability and programmability using experiments with people In our 
analysis of the usability/programmability of the PPIs used in this work, we con-
cluded that evaluating PPIs solely based on written code can give a distorted 
view of reality. As GrPPI is a library with a strong focus on making parallel 
programming easier, we believe that a practical experiment using real people is 
very relevant to demonstrate how much GrPPI helps in this regard. This type of 
experiment also helps highlight the points that demand the most time from the 
user and need improvement.

•	 Evaluating energy consumption Our evaluation of memory usage complemented 
our performance analysis and helped us better understand some of GrPPI’s opti-
mization problems and limitations. Energy consumption is a growing concern 
in HPC, and we believe it can also complement future analyses and indicate the 
presence of optimization problems in GrPPI.

•	 Test tuning mechanisms in future versions of GrPPI Stream processing applica-
tions usually have different performance goals, such as throughput, latency, or 
resource usage. Achieving these performance goals may require specific mech-
anisms, which, although partially implemented by GrPPI, are not usually ana-
lyzed.

8 � Conclusion

In this work, we evaluated the GrPPI library targeting stream processing scenarios. 
Unlike related work, we use latency and throughput as more representative metrics 
to measure stream processing performance. We also used the SPBench benchmark-
ing framework to simulate more realistic workloads for evaluating GrPPI. We also 
evaluate memory usage using different parallel pattern compositions and multiple 
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degrees of parallelism. The SPBench allowed us to build, configure, and run the 
benchmarks easily and quickly, providing a highly parameterized environment. 
Finally, we evaluated GrPPI regarding programmability/productivity, including an 
adapted version of Halstead’s method for parallel applications.

GrPPI with the OpenMP backends, ISO C++ threads, and TBB showed through-
put equivalent to or better than the handwritten benchmarks with TBB and Fast-
flow in most cases. On the other hand, all GrPPI backends underperformed at some 
point in the test scenarios. Considering latency, the GrPPI FastFlow and ISO C++ 
threads backends performed much worse than the others. GrPPI-TBB also showed 
high latency in the Ferret application, which is an unexpected result. The poor per-
formance of GrPPI-FastFlow is because it does not allow configuring FastFlow buff-
ers/queues or enabling blocking mode on the threads. The memory usage results 
showed the impact of the lack of fine-tuning on system resource utilization and that 
high memory usage is commonly associated with high latency. GrPPI authors argue 
that FastFlow is targeted to expert parallel programmers, as GrPPI provides a more 
simplified and user-friendly interface aimed at a broader range of application devel-
opers while providing fewer fine-tuning options [11]. However, some of the perfor-
mance issues we’ve observed result from GrPPI’s internal implementation rather 
than a lack of fine-tuning mechanisms.

We can see that such a simplified interface fulfills its role because GrPPI showed 
the best programmability results. By applying Halstead’s method, we estimated that 
implementing a pipeline-farm composition for FastFlow takes about three times 
less development time through GrPPI than directly writing the parallelism using the 
structured parallel patterns provided by FastFlow. The source code-based metrics we 
use can give an indication of how easy it is to use/program in a given PPI. However, 
they fail to represent the real differences between PPIs more accurately.

We can say that GrPPI does what it promises as an overall conclusion. It can 
deliver competitive performance while foregoing fine-tuning. However, such fine-
tuning can be a crucial requirement for current stream processing applications, 
which demand real-time processing. For example, a Lane Detection application, 
which would be running in a self-driving vehicle, cannot have more than a few mil-
liseconds of latency in each frame. Such factors may limit the applicability of GrPPI 
in more realistic scenarios. We have integrated GrPPI into SPBench as one of the 
contributions of this work. This means that SPBench now natively provides bench-
marks with GrPPI and support for creating new benchmarks using this library. We 
hope that this will also help evaluate possible new versions of GrPPI in the future.

One of the limitations of this work is that it does not evaluate the parallel patterns 
for data stream processing that GrPPI implements, which are more complex pat-
terns [5]. This is because, although SPBench allows the creation of data stream pro-
cessing benchmarks, applications in this subdomain frequently require keyed data 
partitioning (grouping stream data by key)  [25], and GrPPI does not support this 
functionality yet. In future work, GrPPI could be tested on different architectures, 
preferably a non-Intel one, as has been done so far in previous work. It would also 
be interesting to evaluate the latency of the GrPPI parallel patterns for data streams 
using appropriate benchmarks. In addition, a comparison of GrPPI with similar solu-
tions such as SPar [26] could be done, which generates code for the same backends 
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as GrPPI but has a code annotation-based abstraction approach. We hope the results, 
analysis, and suggestions can help guide improvements and future development of 
GrPPI and also other PPIs in this context.

Acknowledgements  The authors acknowledge the High-Performance Computing Laboratory of the Pon-
tifical Catholic University of Rio Grande do Sul (LAD-IDEIA/PUCRS, Brazil) for providing support 
and technological resources, which have contributed to the development of this project and the results 
reported within this research.

Funding  Open access funding provided by Università degli Studi di Torino within the CRUI-CARE 
Agreement. This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel 
Superior - Brazil (CAPES) - Finance Code 001, European Union’s Horizon 2020 JTI-EuroHPC research 
and innovation program under Grant Agreement No. 956748, project “Adaptive multi-tier intelligent data 
manager for Exascale” (ADMIRE), by the Spanish Ministry of Science and Innovation, and FAPERGS 
10/2020-ARD ProjectSPar4.0(No. 21/2551-0000725-7).

Availability of data and materials  Not applicable.

Declarations 

Conflict of interest  The authors have no competing interests as defined by Springer, or other interests that 
might be perceived to influence the results and/or discussion reported in this paper.

Consent for publication  All authors have read and approved the final manuscript and agree with its sub-
mission to The Journal of Supercomputing.

Ethics approval and consent to participate  Not applicable. 

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 McCool M, Reinders J, Robison A (2012) Structured parallel programming: patterns for efficient 
computation. Elsevier, Amsterdam

	 2.	 Aldinucci M, Danelutto M, Kilpatrick P, Torquati M (2017) Fastflow: high-level and efficient 
streaming on multicore, Chap. 13. In: Pllana S, Xhafa F (eds) Programming multi-core and many-
core computing systems. Wiley, Hoboken, pp 261–280. https://​doi.​org/​10.​1002/​97811​19332​015.​
ch13

	 3.	 Voss M, Asenjo R, Reinders J (2019) Pro TBB: C++ parallel programming with threading building 
blocks, vol 295. Springer, Berkeley

	 4.	 Rio Astorga D, Dolz MF, Fernández J, García JD (2017) A generic parallel pattern interface for 
stream and data processing. Concurrency Comput Pract Exp. https://​doi.​org/​10.​1002/​cpe.​4175

	 5.	 del Rio Astorga D, Dolz MF, Fernández J, García JD (2018) Paving the way towards high-level par-
allel pattern interfaces for data stream processing. Future Gen Comput Syst 87:228–241. https://​doi.​
org/​10.​1016/j.​future.​2018.​05.​011

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1002/cpe.4175
https://doi.org/10.1016/j.future.2018.05.011
https://doi.org/10.1016/j.future.2018.05.011


	 A. M. Garcia et al.

1 3

	 6.	 Muñoz JF, Dolz MF, Rio  Astorga D, Cepeda JP, García JD (2018) Supporting MPI-distributed 
stream parallel patterns in GrPPI. In: Proceedings of the 25th European MPI Users’ Group Meeting, 
EuroMPI’18. ACM, New York, NY, USA. https://​doi.​org/​10.​1145/​32363​67.​32363​80

	 7.	 López-Gómez J, Fernández Muñoz J, del Rio Astorga D, Dolz MF, Garcia JD (2019) Exploring 
stream parallel patterns in distributed MPI environments. Parallel Comput 84:24–36. https://​doi.​org/​
10.​1016/j.​parco.​2019.​03.​004

	 8.	 Garcia AM, Griebler D, Schepke C, García JD, Muñoz JF, Fernandes LG (2023) A latency, through-
put, and programmability perspective of GrPPI for streaming on multi-cores. In: 31st Euromicro 
International Conference on Parallel, Distributed and Network-Based Processing (PDP), PDP’23. 
IEEE, Naples, Italy, pp 164–168. https://​doi.​org/​10.​1109/​PDP59​025.​2023.​00033

	 9.	 Garcia AM, Griebler D, Schepke C, Fernandes LG (2022) SPBench: a framework for creating bench-
marks of stream processing applications. Computing. https://​doi.​org/​10.​1007/​s00607-​021-​01025-6

	10.	 Vogel A, Griebler D, Danelutto M, Fernandes LG (2022) Self-adaptation on parallel stream process-
ing: a systematic review. Concurrency Comput Pract Exp 34(6):6759. https://​doi.​org/​10.​1002/​cpe.​
6759

	11.	 Garcia JD, Rio D, Aldinucci M, Tordini F, Danelutto M, Mencagli G, Torquati M (2020) Challeng-
ing the abstraction penalty in parallel patterns libraries. J Supercomput 76(7):5139–5159. https://​
doi.​org/​10.​1007/​s11227-​019-​02826-5

	12.	 Garcia AM, Griebler D, Schepke C, Fernandes LG (2023) Micro-batch and data frequency for 
stream processing on multi-cores. J Supercomput. https://​doi.​org/​10.​1007/​s11227-​022-​05024-y

	13.	 Garcia-Blas J, Rio Astorga D, García JD, Carretero J (2019) Exploiting stream parallelism of MRI 
reconstruction using GrPPI over multiple back-ends. In: 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID), pp 631–637. https://​doi.​org/​10.​1109/​
CCGRID.​2019.​00081

	14.	 Vílchez  Moya C (2020) Application parallelization and debugging using pattern-based program-
ming. Technical report, Undergraduate Thesis of Double Degree in Computer Engineering and 
Mathematics, Faculty of Informatics UCM, Department of Computer Architecture and Automation. 
https://​eprin​ts.​ucm.​es/​id/​eprint/​62014/

	15.	 Brown C, Janjic V, Barwell AD, Garcia JD, MacKenzie K (2020) Refactoring GrPPI: generic refac-
toring for generic parallelism in C++. Int J Parallel Prog 48(4):603–625. https://​doi.​org/​10.​1007/​
s10766-​020-​00667-x

	16.	 Andrade G, Griebler D, Santos R, Danelutto M, Fernandes LG (2021) Assessing coding metrics for 
parallel programming of stream processing programs on multi-cores. In: 47th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA), SEAA’21. IEEE, Pavia, Italy, 
pp 291–295

	17.	 Bienia C, Kumar S, Singh JP, Li K (2008) The PARSEC benchmark suite: characterization and 
architectural implications. In: Proceedings of the 17th International Conference on Parallel Archi-
tectures and Compilation Techniques, pp 72–81

	18.	 Liu S, Gaudiot J-L (2020) Autonomous vehicles lite self-driving technologies should start small, go 
slow. IEEE Spectrum 57(3):36–49. https://​doi.​org/​10.​1109/​MSPEC.​2020.​90144​58

	19.	 Dekking FM, Kraaikamp C, Lopuhaä HP, Meester LE (2005) A modern introduction to probability 
and statistics: understanding why and how, vol 488. Springer, Berkeley

	20.	 Ignatious HA, Sayed H-E, Khan M (2022) An overview of sensors in autonomous vehicles. Proce-
dia Comput Sci 198:736–741. https://​doi.​org/​10.​1016/j.​procs.​2021.​12.​315

	21.	 Bagwe GR (2018) Video frame reduction in autonomous vehicles. Master’s Thesis, Michigan Tech-
nological University, Michigan, USA. https://​doi.​org/​10.​37099/​mtu.​dc.​etdr/​645

	22.	 Andrade G, Griebler D, Santos R, Fernandes LG (2023) A parallel programming assessment for 
stream processing applications on multi-core systems. Comput Stand Interfaces 84:1–25. https://​doi.​
org/​10.​1016/j.​csi.​2022.​103691

	23.	 Andrade G, Griebler D, Santos R, Kessler C, Ernstsson A, Fernandes LG (2022) Analyzing pro-
gramming effort model accuracy of high-level parallel programs for stream processing. In: Proceed-
ings of the International Conference on Software Engineering and Advanced Applications, pp 229–
232. https://​doi.​org/​10.​1109/​SEAA5​6994.​2022.​00043

	24.	 Halstead MH (1977) Elements of software science, vol 36. Elsevier, New York, pp 4–41
	25.	 Bordin MV, Griebler D, Mencagli G, Geyer CFR, Fernandes LG (2020) DSPBench: a suite of 

benchmark applications for distributed data stream processing systems. IEEE Access 8(na):222900–
222917. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30439​48

https://doi.org/10.1145/3236367.3236380
https://doi.org/10.1016/j.parco.2019.03.004
https://doi.org/10.1016/j.parco.2019.03.004
https://doi.org/10.1109/PDP59025.2023.00033
https://doi.org/10.1007/s00607-021-01025-6
https://doi.org/10.1002/cpe.6759
https://doi.org/10.1002/cpe.6759
https://doi.org/10.1007/s11227-019-02826-5
https://doi.org/10.1007/s11227-019-02826-5
https://doi.org/10.1007/s11227-022-05024-y
https://doi.org/10.1109/CCGRID.2019.00081
https://doi.org/10.1109/CCGRID.2019.00081
https://eprints.ucm.es/id/eprint/62014/
https://doi.org/10.1007/s10766-020-00667-x
https://doi.org/10.1007/s10766-020-00667-x
https://doi.org/10.1109/MSPEC.2020.9014458
https://doi.org/10.1016/j.procs.2021.12.315
https://doi.org/10.37099/mtu.dc.etdr/645
https://doi.org/10.1016/j.csi.2022.103691
https://doi.org/10.1016/j.csi.2022.103691
https://doi.org/10.1109/SEAA56994.2022.00043
https://doi.org/10.1109/ACCESS.2020.3043948


1 3

Performance and programmability of GrPPI for parallel stream…

Authors and Affiliations

Adriano Marques Garcia1 · Dalvan Griebler2 · Claudio Schepke3 · 
José Daniel García4 · Javier Fernández Muñoz4 · Luiz Gustavo Fernandes2

 *	 Adriano Marques Garcia 
	 adriano.marquesgarcia@unito.it

	 Dalvan Griebler 
	 dalvan.griebler@pucrs.br

	 Claudio Schepke 
	 claudioschepke@unipampa.edu.br

	 José Daniel García 
	 jdgarcia@inf.uc3m.es

	 Javier Fernández Muñoz 
	 jfmunoz@inf.uc3m.es

	 Luiz Gustavo Fernandes 
	 luiz.fernandes@pucrs.br

1	 Department of Computer Science, University of Turin, Turin, Italy
2	 School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 

Brazil
3	 Laboratory of Advances Studies in Computation (LEA), Federal University of Pampa, Alegrete, 

RS, Brazil
4	 Department of Computer Science, University Carlos III of Madrid, Madrid, Spain

	26.	 Griebler D, Danelutto M, Torquati M, Fernandes LG (2017) SPar: A DSL for high-level and pro-
ductive stream parallelism. Parallel Process Lett 27(01):1740005

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Performance and programmability of GrPPI for parallel stream processing on multi-cores
	Abstract
	1 Introduction
	2 Background
	2.1 Stream parallelism
	2.2 GrPPI
	2.3 SPBench benchmarks

	3 Related work
	4 Experimental methodology
	4.1 Execution environment
	4.2 Parallelism and tuning configurations
	4.3 GrPPI benchmarks in SPBench

	5 Experimental results
	5.1 Performance
	5.1.1 Varying the parallelism degree
	5.1.2 Varying the computational cost of the workload
	5.1.3 Varying the input data frequency

	5.2 Memory usage
	5.3 Programmability evaluation

	6 Critical analysis of experimental results
	7 Suggestions for improving GrPPI
	8 Conclusion
	Acknowledgements 
	References


