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Abstract

Hazelnut is a monoecius species characterized biywimiter blooming and sporophytic incompatibilitfhe
molecular mechanisms at the basis of the femaleefladdevelopment and of the pollen-stigma interactoe
little known, although pollination in this specigsa critical factor to ensure good yield. Diffetiah Display
technique was used to study genes expressed dihenfgmale flower development, comparing styleokeef
emergence from the bud and styles at full bloome Tiil-length cDNA clone, designated CavPofylus
avellanaperoxidase) and isolated in mature styles, wasacterized as a sequence encoding for a 330 amino
acids protein, containing all the conserved featwkeclass Il peroxidases. CavPrx resulted expssly in
styles, with a peak in mature styles pollinatedhwibmpatible pollen. Class Ill peroxidases are esged in
several different plant tissue types and are irlin a broad spectrum of physiological processesil now,
four peroxidases expressed in the stigma were ifatehin Arabidopsis thalianaand Senecio squalidughey
were assumed to be possibly involved in pollendpisteraction, pollen tube penetration/growth adin
defence against pathogens. CavPrx is the first mre floral peroxidase isolated in hazelnut asdexpression
pattern suggests a possible role in the pollingti@tess.
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Introduction

Peroxidases (PRXs) are heme-containing glycopretéirat may have roles in both the production and
scavenging of reactive oxygen species (ROS). Ihtfaey catalyze oxidoreduction betweepOs and various
organic and inorganic reducing compounds [1, 2foKidases have been isolated from a variety of tplan
animal, fungal and bacterial sources.

Plant peroxidases belong to a superfamily, dividéal three classes. Class | comprises intracelpgaioxidases,
found in many organisms, except animals, and aridetl into three groups: ascorbate peroxidaseschyvme

¢ peroxidases and catalase peroxidases. They hpriacpal role in protection against excesgObl Class I
contains extracellular peroxidases, secreted bgifisuch as lignin peroxidases and manganese [pses.
They are involved in soil debris. Finally classititludes the large family of secreted peroxidasgdant [3].
Class Il peroxidases are expressed in many typpant tissues and are often targeted outsidaéeptant cell

or to the vacuole, via the endoplasmic reticulurREPRXs present a large number of isoform, sugugsheir
involvement in a broad spectrum of physiologicabqasses [4]. They play different roles in metalolesnd
physiological processes, such as oxidative stresponse, salt tolerance, lignification, suberizgtiauxin
catabolism, defence against pathogen attack, @limetabolisms, developmentally related procegkes] and
recently are also considered as potentially immbitamponents of plant signal transduction pathwigjs

Class Ill PRXs constitute a large family of genegliants: in fact 73, 138 and 101 peroxidase gerezs found

in Arabidopsis thaliana(L.) Heynh [5], Oryza sativalL. [2] and Populus trichocarpaTorr. & A. Gray
(PeroxiBase, http://peroxibase.toulouse.inra.fidoigm.php), respectively.

Class Il peroxidases generally do not have a léglel of tissue specificity [7, 8], but in recenéars plant
peroxidases with organ/tissue specificity were ified [3, 9-11]. About flower specificity, a clasHI
peroxidases was identified Gossypium hirsuturh. (GhPrx37) as specific for male flower structueesl pollen
[12]. Other three peroxidases in Arabidopsis (AEx AtPrx39 and AtPrx58) are demonstrated to be
specifically expressed in stigmas and not in ofteal tissues/organs and to be involved duringriattion
between pollen and pistil [13, 14]. 8enecio squaliduks. a stigma-specific class Il peroxidase (SspRpWas
identified and it could be involved in defense agapathogens or in pollen-stigma signaling [6].

In flowering plants a correct communication and rcémation between pollen (containing sperm) andilpis
(containing ovule) is necessary to have succesgsfilihation. Only in this case the pollen tube proed by the
pollen grain can penetrate the stigmatic surfaak @rectly grow to reach the ovary [15, 16]. Moreoin
many species the stigma is also capable to recedm@zveen compatible pollen grains, which are @blead to
successful pollination, and incompatible pollenirggd17].

One of this case is the sporophytic incompatibi{fey), a mechanisms that prevents self- and geaisticlose
individual- fertilization [18]. Sl is controlled bg single multi-allelic locus, the S locus, comjmrgsgenes for the
male and female determinants. These genes codifyprioteins, expressed in the stigma surface (femal
determinant) and in the tapetum (sporophyte). @petal protein is deposited onto the exin of thkepayrains.
When pollen interacts with a stigma bearing thegimexpressed by the same S allele it is recednis self
and rejected [19]. This occurs without pollen tubenetration in the style, as it happens insteadh&
gametophytic incompatibility.

The identification of the genes involved in theleoipistil interaction, together with genes invalvia structural
flower development, is an important step to imprplant breeding techniques. Hazelnut is a monoespesies
with a particular flower biology characterized bydmwinter blooming and SI. The molecular mechanisinthe
basis of the female flower development and of thteraction between pollen and stigma are little vkmo
although pollination in this species is a critiéattor to ensure good yield. At present, only atkeh number of
ESTs (Expressed Sequence Tag) sequences of hazskudeposited in databases, the most part of them
encoding for allergenic molecules.

In this study a class Ill peroxidase, predominaettpressed in mature styles after pollination witmpatible
pollen, was identified and fully characterised azélnut Corylus avellanal..). The gene was selected among
sequences rescued by Differential Display compagege expression in mature and immature styles thih
aim of isolating genes involved in the developmeithe female inflorescence and in the SI mecharZbh
This is the first class Il peroxidase identifieadadescribed in hazelnut.

Materialsand Methods
Plant material
Plant material was collected from hazelnut busHese cultivar ‘Tonda Gentile delle Langhe’ (‘TGJLThe

plants were located in a hazelnut germplasm cadleatstablished by the University of Torino in Caazana
(Cuneo province, Italy)C. avellanais a species blooming in mid-winter and the pa#l inflorescence consists



of cluster of 4 to 14 flowers born at the apex aompound bud. Stigma in hazelnut is not a distitieicture
from the style which becomes receptive soon aftegrgence from the bud.

For the Differential Display immature styles wemlected in December, before the red-dot stage,nwthe
styles were not exposed yet (Fig. 1). At the same branches were emasculated and then coveregulitin-
barrier bags, to prevent cross pollination. In keby, at flowering time, mature fully expanded sgylwere
collected from the bagged inflorescences (Fig. 1).

For testing gene expression in different tissueb @igans by Real Time PCR, young leaves were dellein
spring and young catkins were harvested at thriferelint times: in mid-August (stage 1), at the exidAugust
(stage 1) and in mid-September (stage IIl) wherllgoo grains complete their formation. Moreover, in
December, branches bearing catkins from cultiv&@slpla’ and ‘TGdL’ were collected and let flower in
greenhouse in order to collect compatible and ingatible pollens for ‘TGdL’ female flowers. Thesellpas
were stored at -20°C and used in February to @a#iiTGdL’ flower buds. Pollinated styles were séadpafter
4 hours from pollination. All sampled plant matéras immediately deep-frozen and stored at -80°C.

Differential Display

The comparison by Differential Display was carrad between 2 developmental stages of styles: beéaf-dot
stage (material collected in December) and atlildbm (fully expanded styles, receptive but notlipated
styles collected in February).

RNA from mature and immature styles was extractdguthe protocol by Chang et f21] and was cleaned up
with RNeasy Mini Protocol for RNA Cleanup (Qiagétilden, Germany). Residual DNA was removed by a
DNase digestion with RNase-Free DNase Set (QiagdbiNA was synthesized through a RT-PCR (reverse
transcriptase PCR), using SuperScMpReverse Transcriptase (Invitrogen, Carlsbad, Gmiia, USA) in
combination with one-base anchored oligo(dT) praner

One-base anchored oligo(dT) primers H{&) was used with arbitrary primer H-AP34 (5'-
AAGCTTCAGCAGC-3) for the Differential Display PCERNAiImage kits, GenHunter Corporation, Nashville,
Tennessee, USA).

The PCR was performed in a final volume ofi2@ontaining 1x PCR buffer, 3 mM Mg&120uM dNTPs, 0.2
uM primers, 1U of Taq polymerase (Bioline, Tauntdassachusets, USA) and approximately 25 ng of
template cDNA with the following steps: 40 cycld9d°C for 30 s, 40°C for 2 min, 72°C for 30 s,|léeVed by
one final elongation step of 72°C for 7 min. TwoMP@&plications per thesis were carried out and gatiee
control was introduced, using® instead of template.

Samples were mixed with a loading dye, containiognfimide, bromophenol blue and xylene cyanol, then
denaturated at 95°C for 10 min and chilled on ice.

Amplicons were separated by electrophoresis ongoolamide gel (5%) and stained with silver nitr§22]
(with modifications). Differentially expressed lEnwere extracted from the gel, according to tlqmol by
Basak et al. [23], and reamplified and clonedEincoli (Subcloning Efficenc}’ DH50™ Competent Cell,
Invitrogen) after ligation in a plasmid vector (Kitopo TA Cloning, Invitrogen). Differentially expressed
fragments were sequenced by capillary electropi®es 3130 Genetic Analyzer (Applied BiosystemsstEp
City, California, USA), using a ABI PRIS# BigDye® Terminator v1.1 Cycle Sequencing Kit (Applied
Biosystems); their sequence was aligned with sezpsedeposited in NCBI database by BLAST progranh [24

Isolation of the full-length cDNA

A specific primer pair (F-GSP: 5-GCAGCAACCAGACGGCTCTTTGA-3’; R-GSP: 5'-
CAGTCCGACCGAATCTCCCCGTTG-3") was designed on theyusce of the putative peroxidase. The
primers were initially used to perform PCRs on cDNffom leaves, catkins, mature and immature stgfes
‘TGdL’ to check the accuracy of the product obtdimad the expression profile in different tissugthe plant.
The same cDNAs were amplified with actin gene-dpegrimers, as control. PCRs were performed inuR0
containing 1x PCR buffer, 2.5 mM Mg£I120 uM dNTPs, 0.05uM of each primer, 1U of Taq polymerase
(Bioline) and approximately 25 ng of template cDNAa iCycler thermal cycler (Biorad, Hercules, @Gathnia,
USA) with the following steps: 1 cycle of 95°C f8min, 30 cycles of 95°C for 30 s, 65°C for 45 27Q for 1
min 30 s, followed by one final elongation ster@fC for 10 min.

R-GSP primer, designed as described in the SMARFACE cDNA Amplification Kit (Clontech, Mountain
View, California, USA), was also used to perform RACE (rapid amplification of cDNA ends) and obt#ie
full-length cDNA.

The elongated fragment was visualized on agarobargewas excised and purified using a Nucleo Teab
Extraction Trial Kit (Clontech). It was cloned by Topo TA Clonin§ Kit (Invitrogen) and sequenced by
capillary electrophoresis on 3130 Genetic Analy2gplied Biosystems).



Real time PCR

Total RNA was extracted from 2 g of the samplechplaaterials (leaves, not pollinated mature and atume
styles of ‘TGdL’, compatible and incompatible po#ited styles, three different stages of developaheatkins)
using the protocol by Chang et al. [21]. In orderrémove contaminant DNA from the RNA samples, the
nucleic acid extract was treated with DNasel (Fewa® Burlington, Ontario, Canada), according te th
manufacturer’s instructions. Fiyey of each RNA sample was reverse transcribed udigg Capacity cDNA
Reverse Transcription Kit (Applied Biosystems), @cling to the manufacturer’s instructions. QuatitiaPCR
was performed with StepOne Plus Real Time PCR sy¢fpplied Biosystems) in a reaction volume of 20
containing 10ul of SYBR Green Mix (Applied Biosystems), Oum primer and 2ul of cDNA. The PCR cycle
profile was as follows: 1 cycle of 95°C for 10 méQ cycles of 95°C for 15 s and 60°C for 1 min. Aifigation
data were collected during the step at 60°C. Mete analyses were made by elevating the temper#tom
60°C to 95°C at a rate of 0.3°C'sOnly a single peak with a characteristic melfiognt was observed for each
sample, indicating that the product was specifitheoprimers.

Normalization was done on the basis of the expoessiof VvUbiquitinl [25] (F-Ubi: 5'-
TCTGAGGCTTCGTGGTGGTA-3' and R-Ubi: 5’-AGGCGTGCATAALTTTGCG-3’) and on the expression
of VVACT1 (Genoscope accession number: GSVIVT00034893001; ActE:- 5'-
GCCCCTCGTCTGTGACAATG-3' and R-Actl: 5-CCTTGGCCGAGACAATA-3). The peroxidase-
specific ~ primers  were designed based on the igblatesequence (F-CavPrx; 5'-
CTCGAGGGTTTGACGTTGTTGE3 and R-CavPrx: 5-GCTTCAGCAGCAAGGGCTAGA-3)).

Relative expression of the peroxidase gene in tatima and pollinated styles, catkins and leavesoatsilated
by comparison with expression in the reference saimpmature styles using/&Ct method, after normalization
with housekeeping gendsvUbiquitinl and VVACT1 Data represent the average of three technicdicadgs
(xSD).

F-CavPrx and R-CavPrx primers, designed for RemleTiPCR, were also used to perform a PCR reacti@0 in
ul containing 1x PCR buffer, 2.5 mM Mgg£I120 uM dNTPs, 0.5uM of each primer, 1U of Taq polymerase
(Bioline) and approximately 300 ng of template cDNFhe PCR was performed in a iCycler thermal cycler
(Biorad) with the following steps: 1 cycle of 95f@ 3 min, 30 cycles of 95°C for 30 s, 60°C for €572°C for

1 min 30 s, followed by one final elongation step7@°C for 10 min. The obtained fragment was disect
sequenced by capillary electrophoresis on 313CetBeAnalyzer (Applied Biosystems), in order to ckehe
correct identity of the amplified product.

Characterization of introns

Two couples of primers (CavPrxF1:5-AAGCAATGGGCTCTTACA-3; CavPrx R1:5'-
TGTGTGAGCACCCGATAAAG-3’; CavPrxF2:5-ACCTCCATTCCCTICCTGT-3'; CavPrxR2:5'-
CCTCCATTAACCTTCTTACAGTCC-3') were designed on theavPrx expressed sequence and used for
amplification on DNA extracted from mature styldsDGdL. DNA was extracted using the protocol byoffas

et al. [26] with some modifications. PCR reactiorere performed in a total volume of gDcontaining 1x PCR
buffer, 2.5 mM MgC), 20 uM dNTPs, 0.5uM of each primer, 1U of Taq polymerase (Bioline)dan
approximately 50 ng of template DNA. Reactions weagied out with the following steps: 1 cycle &€ for

3 min, 30 cycles of 95°C for 30 s, 54°C for 45 27Q for 1 min 30 s, followed by one final elongatistep of
72°C for 10 min. Fragments were run on 1.2% agage$eexcised, cloned and sequenced as descrife:be
Sequences obtained were aligned with the expresseduence and analyzed by FgeneSH
(http://mendel.cs.rhul.ac.uk/mendel.php?topic=fgeniylentify the introns.

Bioinformatics and phylogenetic analysis

The amino acid sequence of the isolated full-lerddNA was generated by software freely availablehat
ExPASYy proteomics server of the Swiss Institut®ioinformatics (http://www.expasy.org/). BLASTp MCBI
was used for identification of the isolated seqeenc

Functional and conserved domains typical of clals peroxidases were predicted by ProSite [27]
(http://www.expasy.ch/prosite/), while peptide <sgn was individuated by SignalP v3.0 [28]
(http://www.cbs.dtu.dk/services/SignalP/).

A BLASTp in PeroxiBase (http://peroxibase.isb-sificdex.php) [29] was used for the collection of
phylogenetically related sequences. Sequences aligmeed using MEGA version 3.1 [30]. Phylogenetieet
was generated with MEGA version 3.1, using defaettings, except for bootstrap calculations thateveet at
2000 resampling iterations.

Results



Isolation of a gene sequence predominantly expdesseature styles

The Differential Display technique was chosen testigate genes expressed in female flowers ofiinaizand
related to the development of the reproductive mrga

cDNAs from immature and mature styles of hazelneteranalyzed.

Several fragments generated by Differential DispR@R resulted differentially expressed in maturdest
compared with immature styles. One of the fragmemtsdominantly expressed in the mature styles was
identified as being from a putative peroxidase gimae was fully characterised. The original fragineas 260
bp long and was obtained by PCR with H-AP34 pritRAimage Kit 4, GenHunter Corporation) and the
oligo(dT) primer H-T,A. It showed a Poly A tail, with a T nucleotide tqgem, as we expected using HA
oligo(dT) primer.

After alignment with sequences deposited in NCBaHbase, the fragment showed a high level of ide(85%)
and similarity (92%) with the gene AtPrx53 encodiiog a class Il peroxidase &&. thalianaexpressed in
flower tissues [31].

Isolation of CavPrx full-length cDNA

Specific forward and reverse primers (F-GSP andIRJGvere designed on the fragment sequence andased
perform a PCR on cDNA in order to check the acoumitthe product and to have a preliminary exp@ssi
profile. On agarose gel a single band of 104 bp el#ained, as predicted by primer design. It waseabin
leaves and catkins, while it was present in bottn@ture and mature styles. Yet, the band was mddemvin
the mature style than in the immature one, sugugstidifferent level of expression between the $tages.

In order to obtain the full-length cDNA, a 5’-RAGKas performed on cDNA from mature styles. A sirggad

of about 1100 bp was obtained, cloned and sequehiedeotide sequence alignment of this produch lie
fragment obtained by Differential Display PCR shdwi00% identity in the overlapping regions. The-ful
length cDNA obtained was translated in amino aeiquence and analyzed by BLASTp search; it revealed
high level of identity with sequences of class pkroxidises, including AtPrx53 (75% identity and%86
similarity). Consequently, the sequence was calladPrx Corylus avellangeroxidase).

CavPrx sequence when translated, revealed a pu@2iy amino acid protein with typical charactecstf plant
peroxidases. Protein sequence contained eight causeysteine residues (C35, C68, C73, C116, CC2P]1,
C233, C324), which vyielded four disulfide bridges36-C116, C68-C73, C122-C324, C201-C233). It also
contained active site residues (57-68: GAslIIRLhFHD®roximal heme-ligand signature (186-196:
DLVALSGAHTF) and two conserved calcium binding sit@groupl: D67, V70, G72, D74, S76; group2: T195,
D246, T249, D254). S121, D124, G147 and R148 redsdueported as being important to form a saddw®i
motif in all peroxidases [32], resulted conservedhie sequence isolated. Other amino acid resithatsare
considered of importance for the integrity of pintstructure were present (Fig. 2) [5]. All thebaracteristics
are common to most class Il peroxidases.

Analysis of CavPrx sequence with SignalP v3.0 safenidentified a putative 24 amino acid signal joepf{1-

24: MGSPTSLAVATIFVAVIMLYESNA) cleaved between A24hd Q25 and located at the start of the mature
protein (Fig. 2). The presence of the signal pepsidggested that CavPrx could be a secreted protein

As well as HRPC (Horseradish peroxidase C), Caulrealed 13 alpha-helices (A:A38-S52; B:156-C68;
C:F102-S115; D:C122-S137; D:Q156-S162; E:L170-A17AT184-L190; F:1205-L208; F":N222-Q231;
G:G256-Q262; H:Q272-S276; 1:V283-S291; J:Q293-M3@Bmmon to most of class Ill peroxidases in plants
(Fig. 2).

To study the expression level of CavPrx in deiReal-Time PCR analysis was performed on ‘TGdaveés,
three different stages of developmental catkinsnature styles and mature styles not pollinated @oitihated
with compatible or incompatible pollen. The expresslevel of CavPrx in mature styles was 3-fold eor
abundant than that of immature styles, while it aisost absent in leaves and catkins. Moreoveexipeession
level was comparable in mature not pollinated styed in styles pollinated with incompatible pollarile it
was significantly higher (almost 25%) in styles lp@ted with compatible pollen (Fig. 3). The fragme
amplified with the primers used for Real Time PC&wequenced and confirmed to be from CavPrx.

PCR amplifications of genomic DNA produced a segeeof 2190 bp with a classical class Ill gene $tmgc
four exons (213, 195, 166 and 419 bp) separatetireg introns. The first and the second intronsevézt and
89 bp in length, while the third one was 801 bplon

Phylogenetic analysis of CavPrx

In order to analyze the relationship between CawPick other class Il peroxidases, a phylogenetatyais was
performed using MEGA version 3.1 with Neighbourning method. Two thousand bootstrap replicates were



carried out. Sequences of other hazelnut peroxddase not available in the databases, consequédmly
analysis was performed considering the class libxidases with the greatest sequence similaritCawPrx,
after alignment with BLASTp using the PeroxiBasetatlase. For these peroxidases, information about
expression pattern and localization in plants vgetefrom literature or from the PeroxiBase datal{dsble 1).
Five major groups (A, B, C, D, E), with two of thativided in two sub-groups (Al and A2; E1 and B2¢re
resolved. It can be noticed that peroxidases frloensame species did not always cluster in the same; at
the same way peroxidases with similar plant loedilim or function were not always grouped toge(féy. 4).
CavPrx clustered in the group B: the other permsédaof the group B were not expressed in the flptuatrin
other organs, such as roots, leaves, stems and {itable 1). The other peroxidases in the phylegertree
with some degree of expression in flowers were Y&Brof A. thalianain sub-group A2, NtPrx09a dfl.
tabacumin group D, VvPrx17 o¥. vinifera GhPrx10 ofG. hirsutumand CsPrx05, CsPrx12 and CsPrx1@of
sinensisn sub-group E2.

Discussion

The Differential Display technique was used to Btigate gene expression in the female flower ohag.
This technique was used also by Takayama et al. tf8B3dentify the male determinant of S| Brassica
campestrid.. and by Chen et al. [12] to isolate a flower-sfieclass Il peroxidase gene . hirsutum

Among the differential expressed sequences that wgefated, one was identified as being from atpugtalass
Ill peroxidase gene that was eventually fully clotgased. The presence of highly conserved amindsac
characterize the plant PRX protein sequences. Tistalime residues (distal and proximal histidinasp eight
cysteine residues are very important for the imtgwa with the heme group and the formation of ilikide
bridges, respectively. In particular the distaltidise is required for the catalytic activity. Othemino acid
residues are important to maintain the peroxidasetsire and function and to target it to the algsof plant
cell or to the vacuole. These proteins show a eoisholecular organization characterized by thegmee of 13
a-helices [32, 34]. The peroxidase sequence of hat@ontains eight conserved cysteine residuesservad
distal and proximal heme binding sites, two consérealcium binding sites and other active sitedueess, as
typical of class lll peroxidases family. It presedi0 alpha-helices common to the peroxidase supéyfand
also the three specific alpha-helices typical absllll peroxidases [34] (Fig. 2). In fact, it isdwn that protein
structure, amino acid residues and protein size@meerved in all class Il peroxidases [5, 35].

CavPrx showed a “three intron” structure that isomimon feature of the most of class Ill peroxidasesce
and Arabidopsis [2, 7].

This is the first class Il peroxidase isolatedCinavellanaand Real Time analysis showed that it is expressed
the styles, with a peak of expression in maturkestyn addition its level of expression increasgghificantly in
styles pollinated with compatible pollen. Despitestnof plant peroxidases are active in all parhef plant [5,
7] some example of localized peroxidases in pddictissue/organ exist in literature, as reportadthe
introduction. In particular, five peroxidases wedentified to be expressed in particular partstef flower:
GhPrx37 inG. hirsutumresulted expressed only in stamen and pollen [$8Prx01 inS. squaliduswas
demonstrated to be localized in the stigmatic fegiand expressed only in stigmas with maximal llete
anthesis [6]; AtPrx28, AtPrx39 and AtPrx58Anthalianaresulted expressed in stigmas [13, 14].
Phylogenetic analysis was carried out in orderrtdenstand the relation among CavPrx and other mlases
with the greatest sequence similarity. It was reatithat peroxidases of the same species not alohagtered
together. A high variability in peroxidase sequenegthin single plant species was thus highligrgatte total
amino acid sequence identity was sometimes loveaar 85% [36] (Fig. 4).

CavPrx clustered in the group B and resulted miastety related to the PpePrx89 If persica expressed in
buds, fruits and mesocarp (PeroxiBase databasan Ferature information, the other peroxidasethim group
B resulted expressed in vegetative tissues, rénoiiss, seeds and cell culture [37, PeroxiBase lzizga]. About
peroxidases with some degree of expression in flowethe phylogenetic tree, the most related ones w
AtPrx53 of A. thalianain sub-group A2 that shared 75% identity and 8&%larity with CavPrx. AtPrx53 was
described to be expressed in the stamen abscigsime by microarray analysis [31]. This peroxidasaot
flower-specific because it resulted expressed ials@scular bundles [35] and it could be putativielpolved in
lignification [3]. Other peroxidases expressedlowers were NtPrx09a dfl. tabacum(63% identity and 78%
similarity with CavPrx), VvPrx17 o¥. vinifera(67% identity and 80% similarity with CavPrx), GiPO of G.
hirsutum (62% identity and 74% similarity with CavPrx), Gg85 (64% identity and 76% similarity with
CavPrx), CsPrx12 (64% identity and 77% similaritythwCavPrx) and CsPrx10 (60% identity and 73%
similarity with CavPrx) ofC. sinensisTheir function is unknown except for VvPrx17 &bslPrx05 that could be
induced by senescence and insect damages, reghe(Beroxibase database).

It was not possible to find information in litersgu about expression pattern for all the peroxidases
phylogenetically analyzed. Despite of this, it seethat the peroxidase sequences analyzed are waysl
grouped together based on reported expressiorrpattdunction For instance, peroxidases expressed in roots,



flowers, xylem or involved in lignification and pettgen/stress disease are dispersed in the dendrolgrseems
that it is not possible to infer a putative role afperoxidase based on sequence similarity or gbyletic
position. This observation was highlighted in poaxd works. Delannoy et al. [38] carried out a molac
analysis on 12 peroxidases of cotton and, aftetogfeyetical analysis, four peroxidases (includingP&10)
with the same expression profile resulted dispensdble dendrogram. On the other hand an exterssivdy on
Arabidopsisperoxidases showed that very similar genes hawsimilar biological role or expression pattern [5,
8]. This could be due to translational regulatiombich peroxidases are subjected to, for regulatiregamount
of protein in a particular tissue/organ and saoaittvity [8, 39]. These observations indicate thahes could
have different roles and functions, even if closediated, and so it is difficult to predict role tlme base of
similarity or phylogenetical relations [3, 12]. #te same time genes with a similar expression yatieuld
have a low sequence similarity [40]. For instartbe, peroxidases &&. thaliana (AtPrx28, AtPrx39, AtPrx58)
andS. squalidugSsgPrx01) showed a low identity and similaritycenm them, even if they are all expressed in
stigma.

In order to understand where CavPrx expressionleasized, two specific primers, F-GSP and R-GSErew
designed on the fragment sequence obtained byrBiffial Display and used to perform PCR on cDNA of
catkins, leaves, mature and immature styles. Amoplibns were detected only in styles while no lzanere
evident in catkins and leaves. In addition, amgdifion in mature styles was higher than in immastyées. This
putative differential expression profile was befiterestigated by Real Time PCR on cDNA of leaveajure
and immature styles, styles pollinated with contgatand incompatible pollen and catkins. CavPrxresgion
in mature styles was 3-fold more abundant thamimature styles and almost absent in leaves anthsgtkig.
3). This temporal regulation could be noticed d®0SsgPrx01 of. squaliduswhich expression was absent in
small buds and increased with flower developmezdching a maximum level in mature stigmas, receptv
pollen [6]. Moreover the expression level of Cavirstyles pollinated with compatible pollen wa$2%igher
than in styles not pollinated or pollinated witlt@mpatible pollen: this level of expression suggespossible
involvement in pollination events.

One of the possible role of peroxidases in theegmeditigma interaction could be the promotion oflg@oltube
penetration and growth within the stigma, by loasgrstigma cell wall components [41]. Microarraya@rsis
carried out by Tung et al. [14] in stigmas and sraitting tracts ofA. thalianarevealed the presence of a
consistent group of genes predicted to encode ipsoteith N-terminal signal peptides, as found iaverx.
Among these, three peroxidases (AtPrx28, AtPrx39 AitPrx58) were identified as putative cell walt#dized
enzymes that could have a role for the stigmattcaerllular matrix modification during pollinaticand pollen
tube penetration. These proteins could act in Veaisening by generating hydroxyl radicals for ttedl evall
polysaccharides degradation [42]. Their implicatinonwall loosening is also underlined by the linktWeen
stigma receptivity and presence of stigma surfazexpdases in several species [44].

It is well-known that the expression of peroxidagsesreases with flower development, reaching a peak
mature and receptive styles [41, 43]. Moreoversikinown that principal ROS (reactive oxygen spgcies
stigmas is HO, [41] but its function is yet unknown. This contemngry presence of high level of,&, and
peroxidases in the mature styles suggests thatdbelg interact, even if the course of action il shknown
[41].

Stigmatic peroxidases could be important for reudalevels of HO, in stigmas, either by degradation or
generation of KO, [44]. In tobacco Potocky et al. [45] demonstratieat HO, and other ROS were implied in
maintenance of polarization during pollen tube growhile Foreman et al. [46] individuated®} as a positive
regulator of cell growth in root hairs, which el@gd by tip growth, like pollen tube.

Recent studies on cellular localization of ROSdproductive tissues during flower development @fen[47]
showed maintenance of high level of®4 during the early stages of development until tregunity of styles,
then the level started to decrease when stigmetieptivity to pollen results enhanced. This decremé H,0,
levels could be related to the raising of perox@édastivity that occurs in Angiosperm stigmas aturitit [48], in
order to allow pollination. High level of ROS4H, in the stigma in fact could be dangerous for poieain and
pollen tube growth, but further studies will be @sgary to understand if this decrement of RQS{Hevels is a
common feature of Angiosperm stigmas.

Another hypothesis could be the possible role ignsd-specific peroxidases in the defence of stigigainst
pathogen attack. In literature it is known that sgmeroxidases are involved in defence responsedugction or
up-regulation in relation to stress and hypersemsitesponse [1]. For instance, a peroxidaseéCapsicum
annumL. CaPrx02 resulted expressed during response stgaathogen attack regulating®j levels [49], while

a research in almond demonstrated the expressigemixidases in the pistil in relation with pathogsis
response [50], enforcing the idea of a putative ajlstigma-specific peroxidases in defence meshasiwhen
the pistil is able to receive pollen. Another resharevealed that GhPrx37, a floral-specific petasies ofG.
hirsutum was predominantly expressed during pollen devetynand it could be important for the correct
development of male reproductive organs, becausis plitative role in defence against stress [kRhddition,
high level of HO,, produced by a superoxide dismutase were detéutadctar, with the aim of protecting it



from microbial infections [51]. In the same way thleundant presence oL@} in the stigmas and the almost
total absence of pathogen attack on stigmas cogdave the hypothesis about a possible interadistween
stigma-specific peroxidases anddd with a defence role [6].

In conclusion, CavPrx represents a first putatitignga-specific peroxidase of hazelnut, whose exioes
profile changes during flower development, with aximum level in mature stigmas pollinated with catiiple
pollen. Further studies may carry out a time coarsaysis of pollinated stigmas during pollen geration and
afterwards to highlight more in details the diffece between the expression patterns of compatibte a
incompatible interactions. The identification ofstimew putative stigmatic peroxidases in hazelaw further
opportunity to analyze and understand the spefeifiction of stigma-specific class Ill peroxidases @heir role

in flower fertility.
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Table and figur e captions

Table 1 References for sequence and expression data pdserrig. 4

Label Entry ID PeroxiBase  Organs of expression RRelees
A.rusticana AruPrx04 298 Root [52]
A.thaliana AtPrx53 219 Whole plant [35]
Stamen [31, 53]
Leaf [53]
A.thaliana AtPrx54 220 Callus, hypocotyl, root PeroxiBase database
B.napus BnPrx54-1 6603 Not determed PeroxiBase database
B.rapa BrPrx53 6921 Root UniGen .ncbi
nlm.nih.gov)
C.avellana CavPrx Style This study
C.sinensis CsPrx05 1373 Flower, fruit, meristem, vegetative PeroxiBase database
tissues, whole plant
C.sinensis CsPrx10 1378 Callus, flower, fruit, ovarie, root, PeroxiBase database
seedling, shoot merisytem
C.sinensis CsPrx12 1380 Ovarie PeroxiBase database
C.sinensis CsPrx17 1385 Seedling [54]
E.grandis EgrPrx48 8165 Not determed PeroxiBase database
E.grandis EgrPrx49 8100 Not determed PeroxiBase database
E.grandis EgrPrx51 8097 Not determed PeroxiBase database
G.hirsutum GhPrx10 145 Cotiledon, leaf, flower, root, stem [38]
G.hirsutum GhPrx22 439 Not determed PeroxiBase database
G.max GmPrx38 529 Seedling, stem PeroxiBase database
G.max GmPrx71 570 Root PeroxiBase database
H.brasiliensis HbPrx01 3452 Leaf [55]
|.batatas IbPrx05 3807 Cell culture, root, stem [56]
|.batatas IbPrx15 296 Root [57]
L.esculentum LePrx05 276 Leaf [58]
L.esculentum LePrx35 633 Cell culture, fruit, seed PeroxiBase database
L.japonicus LjPrx44 695 Pod [59]
M.domestica MdPrx08 7125 Leaf PeroxiBase database
M.truncatula MtPrx23 349 Pod PeroxiBase database
N.tabacum NtPrx04a 1864 Cell culture PeroxiBase database
N.tabacum NtPrx09a 3701 Cell culture, flower, leave, stem PeroxiBaatmabase
N.tabacum NtPrx09b 1 Cell culture [60]
N.tomentosiformis 2142 Not determed PeroxiBase database
NtoPrx01
P.alba PalPrx05 4055 Bark, leaf, petiole, shoot, stem, [37]
xylem
P.kitakamiensis PkPrx01 323 Not determed PeroxiBase database
P kitakamiensis PkPrx03 54 Xylem [61]
P.persica PpePrx89 2045 Bud, fruit, mesocarp PeroxiBase database
P.taeda PtaPrx14 2050 Root, xylem PeroxiBase database
P.trichocarpa PtPrx01 907 Xylem [62]
P.trichocarpa PtPrx72 3164 Stem, leaf PeroxiBase database
P.trichocarpa PtPrx102 3249 Not determed PeroxiBase database
P.vulgaris PvPrx05 272 Root, stem, leaf [63]
S.tuberosum StPrx09 1912 Leaf, petiole, sprouting eye, stolon, PeroxiBase database
tuber
S.tuberosum StPrx20 1923 Leaf, sprouting eye PeroxiBase database
V.vinifera VvPrx05 297 Berry PeroxiBase database
V.vinifera VvPrx17 774 Berry, flower, mixed tissues PeroxiBase databas
V.vinifera VvPrx36 5119 Not determed PeroxiBase database
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Fig. 1 Physiological stages of styles used for RNA exioac bud before the red-dot stage (a) and relatiykes
not exposed yet (b); bud at flowering time (c) amdative mature fully expanded styles (d) (Source:
Arboriculture Department of University of Turin)
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Fig. 2 cDNA sequence and translation of CavPrx. The & @3nUTR are in lower case and the stop codon is
represented by a bold asterisk. The eight cyst&isielues conserved in class Il peroxidases aiedtet bym.

The putative signal peptide is underlined. The eorexd peroxidase active site signature and theipabheme-
ligand signature are in bold type. Position of el alpha-helices, based on consensus with HRPC
(Horseradish peroxidase C), are in grey (A: 388:256-68; C: 102-115; D: 122-137; D": 156-162; H01179;

F: 184-190; F': 205-208; F": 222-231; G: 256-262; 272-276; |: 283-291; J: 293-307). Intron pogigoare
indicated by arrows. Residues involved in calciunding are indicated by, salt bridge residues are indicated
by A and other highly conserved residues importaninfi@grity of peroxidase structure are indicatedby
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Fig. 3 mRNA abundance of CavPrx in catkins (1:stagedta®e II, 3:stage Ill), leaves (4) and styles ofdLG
hazelnut cultivar (5:immature styles, 6:mature estyhot pollinated, 7:mature styles pollinated vatimpatible
pollen, 8:mature styles pollinated with incompatilplollen). Relative expression of peroxidase geneatkins,
leaves and mature styles is calculated by companigth the reference sample (immature styles) usingt
method, after normalization with housekeeping gahnddbiquitinl andVvACT1 Data represent the average of
three technical replicates (xSD)
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Fig. 4 Phylogenetic relationship between CavPrx peroxdasl class Il peroxidases with the highest sezpien
similarity. The tree is constructed in MEGA versi8rl and is based on sequence alignments of peeldict
protein sequences. Node values indicate bootstrapost (2000 replicates). The main groups and suag are
indicated by letters and numbers. The expressaiteqm is represented by filled quadrants indicatiitoral,
root, vegetative tissues (leaf or stem) and fryjiression. The hypothetical role is representedilleg circles:
stress-induced, lignification and other functiolmdnlation, senescence). For accession numbersefer:nces
of the sequences used to establish the phylogemneticsee Table 1
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