Annotating Irony in a Novel Italian Corpus for Sentiment Analysis

This is the author's manuscript

Original Citation:
Annotating Irony in a Novel Italian Corpus for Sentiment Analysis / Andrea Gianti; Cristina Bosco; Viviana Patti; Andrea Bolioli; Luigi Di Caro. - STAMPA. - (2012), pp. 1-7. ((Intervento presentato al convegno 4th International Workshop on Corpora for Research on EMOTION SENTIMENT & SOCIAL SIGNALS ES³ 2012 tenutosi a Istanbul (Turchia) nel 26 maggio 2012.

Availability:
This version is available http://hdl.handle.net/2318/102177 since 2018-01-26T11:23:13Z

Publisher:
ELRA

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Annotating Irony in a Novel Italian Corpus for Sentiment Analysis

Andrea Gianti*, Cristina Bosco*, Viviana Patti*, Andrea Bolioli*, Luigi Di Caro*

* Dipartimento di Informatica, Università di Torino
Corso Svizzera, 195, 10149, Torino
andreagianti@gmail.com, {bosco,dicaro,patti}@di.unito.it

* CELI srl Torino
Via San Quintino 31, 10121, Torino
abolioli@celi.it

Abstract

In this paper we describe our current work on Sentiment–TUT, a novel Italian corpus for sentiment analysis. This resource includes annotations concerning both sentiment and morpho-syntactic features, in order to make available several possibilities of further exploitation related to sentiment analysis. For what concerns the annotation at sentiment level, we focus on irony and we selected therefore texts on politics from a social media, namely Twitter, where irony is usually applied by humans. Our aim is to add a new sentiment dimension, which explicitly accounts for irony, to a sentiment analysis classification framework based on polarity annotation.

The paper describes the data set, the features of the annotation both at sentiment and morpho-syntactic level, the procedures and tools applied in the annotation process. Finally, it shows the preliminary experiments we are carrying on in order to validate the annotation work.

Keywords: Irony, Sentiment analysis, Corpus annotation, Social media, Italian

1. Introduction and Motivation

In this paper we describe an ongoing project for the development of an Italian corpus annotated for sentiment analysis. We concentrate our attention on irony, a hard nut that is still to be cracked in the sentiment analysis context, and on a specific topic for texts where irony is usually applied by humans: politics.

Irony is recognized in literature as a specific phenomenon which can harm sentiment analysis and opinion mining systems (Pang and Lee, 2008; Davidov et al., 2011; Tsur et al., 2010). The rhetorical tradition treated irony as the figure of speech in which the meaning is the opposite of the literal meaning, so that an ironist’s primary intention is to communicate the opposite of what he/she says. Modern Greco pragmatic theory has not departed radically from this view (Grice, 1975). Another interesting account of irony, the one proposed within relevance theory (Sperber and Wilson, 1986), suggests that irony is a variety of echoic use of language. This approach accounts for cases of “echoic irony”, where ironical utterances can be viewed as echoic mentions, in which usually the communicator dissociates herself from the opinion echoed.

The literature on irony and its interpretation is very extensive, however most of the proposals aim at explaining the fact that in an ironic sentence the explicit meaning is different or opposite from the real intended meaning. Therefore, in a sentiment analysis setting the presence of ironic devices in a text can work as an unexpected “polarity reverser”, by undermining the accuracy of the systems, especially in application contexts focused on monitoring political sentiment, where blogs or social media provide the data sources. Recently, such application contexts gained popularity, since message content from social media (microblogging like Twitter1 especially) turned out to be a powerful real-time indicator of political sentiment. Microblogging messages, like “tweets” or Facebook messages, emerged as a very valuable information data not only in politics, but in a variety of NLP application domains, ranging from the extraction of critical information during times of mass emergency (Verma et al., 2011) to the sentiment analysis for the stock market prediction (Bollen et al., 2010).

However, Twitter communications include a high percentage of ironic and sarcastic messages (Davidov et al., 2011; Tumasjan et al., 2011), and platforms monitoring the sentiment in Twitter messages experimented the problem to classify as positive many posts which instead express ironic non-positive judgments or opinions. As an example, let us consider the following tweet2:

TWSPINO-1160
‘Alemanno: “Questa mattina sembra tutto funzionante”.
Gli hanno spiegato come funziona la pala’
(Alemanno: “This morning everything seems to be working properly.” They’ve showed him how the shovel works)

In absence of irony recognition, such tweet it is classified as positive, while it clearly expresses a criticism w.r.t. the Rome’s mayor ability to deal with the snow emergency in Winter 2011-20122. In our tweets, we observed the presence of the well-known lexical devices and features that characterize humorous

---

1 http://twitter.com
2 In February 2012, Rome’s mayor, Gianni Alemanno, was widely criticised in Italy for failing to activate an emergency plan after an exceptionally heavy snowfall.
3 English translations of the Italian examples are mainly literal and so may sometimes appear awkward in English.
texts, like linguistic ambiguity, the use of affective terms, and so on, i.e. the tweet TWSPINO-32: ‘Marchionne presenta la nuova Panda. Il timore è che si diffonda tra la popolazione’ (Marchionne has presented the new Panda. It is feared that it may spread throughout the population). Moreover, we observed many cases of “echoic mentions” (Sperber and Wilson, 1986) among our ironic tweets. For instance in tweet TWNEWS-570 ‘Governo Monti: la rassicurante conferma che in Italia non esistono Tecnocrati, che non siano Gerontocrati. Non è un Paese per giovani’ (Monti’s government: the reassuring confirmation that in Italy do not exist Technocrats which are not Gerontocrats. No country for young men.) the sentence ‘non è un paese per giovani’ (no country for young men) is a case of echoic mention, with a clear reference to the title of the movie ‘Non è un Paese per Vecchi’ (No Country for Old Men). The main aim of this project is to add a new sentiment dimension, which explicitly accounts for irony, to a sentiment analysis classification framework based on polarity annotation. To the best of our knowledge, existing sentiment analysis frameworks consider the following dimensions: subjectivity and objectivity; (positive or negative) polarity; emotional categories; opinions about entities. Accordingly, corpora that are manually annotated for subjectivity, polarity, or emotion, are available in many languages. Nowadays, with few exceptions (Esuli et al., 2008), Italian is among the less-resourced languages with respect to sentiment analysis. For what concerns English, let us mention the MPQA Opinion Corpus², which contains news articles from a wide variety of news sources manually annotated for opinions and other private states (like emotions, sentiments, etc.). A multilingual dataset³, automatically annotated for subjectivity, in English, Arabic, French, German, Romanian, and Spanish, is the result of the work described in (Banea et al., 2010), while the multilingual corpus (Spanish, Italian and English) of blog posts in (Boldrini et al., 2010) is annotated according to the Emotiblog annotation schema.

In the last years the authors gained experience both in sentiment analysis applied to social media (CELI and MeSource, 2009), and in ontology-driven sentiment analysis applied to socially tagged resources (Baldoni et al., 2012), with a focus on the Italian language. Moreover, some among them are actively involved from more than ten years in both the development of linguistic resources morphosyntactically annotated, namely the treebank TUT (Bosco et al., 2000) (see Section 2.2.), and the exploitation of annotated data in several contexts for training and evaluation of NLP tools, see e.g. (Bosco and Mazzei, 2012b) and (Bosco and Mazzei, 2012a). On this line, we are now working to make available a novel Italian corpus for sentiment analysis, that we call Senti–TUT, which includes sentiment annotations concerning irony and consists in a collection of texts from social media. Such kind of resource is currently missing in particular for Italian. Moreover, we are carrying on some preliminary experiments in classification of our data in order to validate the annotation work. The paper is organized as follows. In the next section we describe the corpus and the annotation we applied on it. Then, we discuss the preliminary experiments performed for the validation of data. The last section outlines some directions for future work.

2. Data

In this section we describe the data collected for the Senti–TUT project and the annotation we are applying on them. All the data related to the project and the information about download can be found in the Senti–TUT web site: http://www.di.unito.it/~tutreeb/sentiutt.html.

2.1. The corpus

As confirmed by various references (Davidov et al., 2011) and (Tumasjan et al., 2011) social media, such as Facebook or Twitter, includes a high percentage of ironic and sarcastic messages and can mirror offline political sentiment, as they did for instance in the recent USA and German elections. Our linguistic data are therefore mainly collected by Twitter. As far as the text style is concerned, in general, Twitter communications are composed by messages called “tweets”, each of which is shorter than 140 characters and can be composed by one or more sentences. In our Italian corpus of messages most of tweets are composed by two short sentences or simple noun phrases, and very rarely by wb-sentences. The typical structure of a tweet is shown in the following post⁸:

TWSPINO-107
‘Napolitano: “Attenti a toccare la Costituzione”. Bisogna aspettare il medico legale.’
(Napolitano: “Be careful you don’t touch the Constitution”. We have to wait for the forensic surgeon to arrive first.)

With respect to the composition and size of the data set, it is organized in two subcorpora, namely TWNEWS and TWSPINO. The former is currently composed of around three thousands of tweets, published in the weeks after the new Italian prime minister Mario Monti announced his Cabinet (from October 2011 the 16th to February 2012 the third). The latter is instead composed of more than one thousand tweets extracted from the Twitter section of Spinoza, published from July 2009 to February 2012. Spinoza⁹, is a very popular collective Italian blog which includes a high percentage of posts with sharp satire on politics, which is published on Twitter since 2009. This subcorpus has been therefore added in order to enlarge our data set with texts where various forms of irony are involved. The collection of all the data has been done by exploiting a collaborative annotation tool, which is part of the Blogmeter social media monitoring platform (CELI and MeSource,

---

²Marchionne is CEO of the Italian automotive group Fiat. Panda is the name of a Fiat city car.


²http://www.cs.pitt.edu/mpqa/

²http://www.csie.unt.edu/~tada/downloads.html#msa

⁸Giorgio Napolitano is the current President of the Italian Republic.

⁹http://www.spinoza.it/
The labeling of the edges of the dependency tree for each node is represented according to the `˜` format. A tweet from our corpus is represented as follows:

```
1 La (IL ART DEF F SING) [7;VERB-SUBJ]
2 spazzatura (SPAZZATURA NOUN COMMON F SING) [1;DET+DEF-ARG]
3 di (DI PREP MONO) [2;PREP-RMOD]
4 Napoli (NAPOLEON NOUN PROPER F SING) [3;PREP-ARG]
5 si (SI PRON REFLEX-IMPERSONAL SING) [4;OBJ]
6 sta (STARE VERB AUX INFIN TRANS INTRANS 3 SING) [5;AUX]
7 decomponendo (DECOMPORRE VERB MAIN GERUND PRES TRANS) [0;TOP-VERB]
8 . (PUNCT) [7;END]
```

Figure 1: The tweet 216 from the Spinoza corpus (TWSPINO-216) as annotated in TUT format.

2.2. The annotation

The project for the development of the Senti–TUT involves the annotation of the linguistic data with respect to two distinguished levels. While the first one includes morphological and syntactic tags as usual e.g. in treebanks, the second refers instead to concepts typical of sentiment analysis.

2.2.1. Morphological and syntactic annotation

For what concerns the morphological and syntactic annotation, this is done according to the format developed and applied in the Turin University Treebank (henceforth TUT) project (Bosco et al., 2000). This treebank is a freely available resource developed by the Natural Language Processing group of the University of Turin (for more details and examples see http://www.di.unito.it/~tutreeb) including 102,150 annotated tokens (around 3,500 sentences), which has been successfully exploited as testbed in various evaluation campaigns for Italian parsing (http://www.evalita.it/, (Bosco and Mazzei, 2012b) and (Bosco and Mazzei, 2012a)). We selected this format for two main reasons: the reliability of TUT format for the involved language and the availability of a variety of tools implemented within TUT project, first of all the Turin University Linguistic Environment (TULE, http://www.tule.di.unito.it/, (Lesmo, 2007) and (Lesmo, 2009)), whose pipeline includes tokenization, morphological and syntactic analysis.

In figure 1 and 2, a post extracted from our tweet corpus is represented according to TUT format: TWSPINO-216 ‘La spazzatura di Napoli si sta decomponendo. Concorrerà al Nobel per la chimica.’ (The garbage of Naples is becoming rotten. It will apply for the chemistry Nobel prize.). In particular, we can observe that TUT format is featured by a very detailed morphological tag set, which is useful for the description of a language with a rich inflection, and by a large inventory of grammatical relations exploited in the labeling of the edges of the dependency trees. For each word, the lemma, the morphological category and related features are annotated together with the index of the father in the dependency tree and the relation linking the word with the father itself. Moreover, in order to offer an explicit representation of all the elements involved in the predicate argument structure, e.g. the subject which is often dropped in Italian, TUT format includes also null elements, see e.g. the annotation of the node 1.10 (t) which is the subject of the second sentence of the tweet represented in the figures.

The morpho-syntactic annotation of the Senti–TUT corpus is automatically performed by TULE and then semi-automatically corrected by exploiting the tools developed within the TUT project. Nevertheless, the application of these tools, TULE especially, to the Senti–TUT corpus shows that, in order to achieve reliable annotations, the integration in the parsing process of various patterns typical of the social media language is needed. These patterns vary from the use of several citations from the Web to the words and phrases not formal or literary. Twitter, and social media in general, represent in fact a text genre different from those previously analyzed by exploiting TULE, e.g. newspaper or legal, which has never been analyzed in our knowledge for Italian. It is known in literature that in order to obtain a reliable morphological and syntactic analysis of a specific text genre, the parsing systems should be carefully tuned on the basis of it (Gildea, 2001). This is clearly showed by the current performance scores of TULE parser, which are far from those obtained on the text genres included in TUT, in particular with respect to the syntactic analysis. Nevertheless, the Evalita experiences showed evidences that TULE and other parsing systems for Italian can achieve, if trained and tuned, performances close to the state of the art for English for various text genres.

2.2.2. Annotation for sentiment analysis

As far as the annotation at the level useful for sentiment analysis is concerned, the data are currently annotated at tweet level, since one sentiment tag is applied to each tweet (considering that a tweet can be composed by more than one sentence). Nevertheless, even if, for the present time,
the focus of the Senti–TUT is mainly the annotation at
tweet level, the resource we are currently developing has
to be seen in the wider framework of a project for senti-
ment analysis and opinion mining. And within this context
it should be considered also the availability of the morpho-
syntactic annotation on the same data, which allows in the
future for the application of other more fine-grained anno-
tations and analysis related to sentiment analysis. For in-
stance, the availability of Part of Speech tags and lemmas
for words allows for investigations that relate morphologi-
cal and sentiment features, e.g. adjective which are carried
on sentimental meaning. As in (Tsur et al., 2010) syntactic
features can be useful in the identification of irony, e.g. the
use of punctuation.
In the table below the sentiment tags used for the annotation
of Senti–TUT are described.

<table>
<thead>
<tr>
<th>Sentiment tag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS</td>
<td>positive</td>
</tr>
<tr>
<td>NEG</td>
<td>negative</td>
</tr>
<tr>
<td>HUM</td>
<td>ironic</td>
</tr>
<tr>
<td>NONE</td>
<td>objective (none of the above)</td>
</tr>
<tr>
<td>MIXED</td>
<td>POS and NEG both</td>
</tr>
</tbody>
</table>

Table 1: The sentiment tags applied in Senti–TUT.

The following are examples of the annotation of tweets with
the above mentioned sentiment tags.

TWSPINO-30 (tagged as HUM)
‘C’è così tanta crisi che Babbo Natale invece delle letterine riceve curriculum.’
(The economic crisis is so hard that Santa Claus receives curricula vitae instead of letters.)

TWNEWS-123 (tagged as NONE)
‘Mario Monti premier? Tutte le indiscrezioni.’
(Mario Monti premier? All the gossips.)

TWNEWS-24 (tagged as POS)
‘Marc Lazar: “Napolitano? L’Europa lo ammira. Mario

Monti? Può salvare l’Italia”’
(Marc Lazar: “Napolitano? Europe admires him. Mario
Monti? He can save Italy”)

TWNEWS-124 (tagged as NEG)
‘Monti e’ un uomo dei poteri che stanno affondando il nostro paese.’
(Monti is a man of the powers that are sinking our country.)

TWNEWS (tagged as MIXED)
‘Brindo alle dimissioni di Berlusconi ma sul governo Monti non mi faccio illusioni’
(I drink a toast to the Berlusconi’s resignation, but I have no illusion about the Monti’s government)

We also used the tag UN in order to mark tweets which are not classifiable, e.g. tweets containing incomplete or
meaningless sentences, which are therefore discarded. The distribution of the tags can be seen by observing a prelimi-
ary data set composed by around 1,500 tweets: around a
third is classified as NONE, 400 as NEG, 300 as HUM, 250
as POS, and the remaining as MIXED or UN.
While the morpho-syntactic annotation is automatically
performed by TUL, the annotation of the sentiment tags
at the tweet level is currently manually performed by ex-
ploring a collaborative annotation tool, which is part of
the Blogmeter social media monitoring platform (CELI and
Me-Source, 2009). Among the utilities made available by
Blogmeter we applied, in particular, those related to filter-
ing out the non relevant data, e.g. the re-tweets (i.e. the
forwarded tweets).
Five human skilled annotators have been involved until now
in this annotation task producing for each tweet not less
than two independent annotations. This manual anno-
tation helped by Blogmeter has been followed by an inter-
annotator agreement check, as usual in the development
of linguistic resources. In order to solve the disagreement,
which can be referred to about 25% of the data, the in-
dependent annotation of a third human has been applied to the
ambiguous tweets (i.e. those where each of the two annota-
tors selected a tag different from the other annotator). The
cases where the disagreement persists (i.e. tweets where
each of the three annotators selected a tag different from
the others), which are around 3%, have been then discarded
since considered as too ambiguous to be classified.

3. Preliminary experiments

We are carrying on some preliminary experiments in classi-
ﬁcation of our data in order to validate the annotation work.
These experiments are based on a portion of the Senti–TUT
corpus and more precisely on about 1,550 annotated tweets
from TWEETNEWS with a balanced tagging of the four above
indicated sentiment labels.

Starting from the promising results for other languages
(Strapparava et al., 2011; Davidov et al., 2011), we are
setting up a framework where irony recognition in our
tweets can be formulated as a classiﬁcation task and ma-
cine learning algorithms can be applied.

Making use of a simple evaluation scheme for classiﬁcation-based tasks called Confusion Matrix
(Stehman, 1997), it is possible to look at the existing
overlapping among the classes, i.e., how much one class
is misclassiﬁed as another one. This mechanism usually
gives some hint on the lexical overlapping between the
texts of two different classes. In our case, we noticed
a signiﬁcant lap between humorous texts and negative
ones, while the same does not happen when comparing
humorous with positive texts. This somehow conﬁrms
what already discovered by (Mihalcea and Pulman, 2007).

Another interesting point of analysis concerns the discrimi-
native power of the words within the classiﬁcation proce-
dure. This can be easily done by calculating the Informa-
tion Gain (or Kullback-Leibler divergence (Kullback and
Leibler, 1951)) of the terms with respect to the class labels.
In case of comparisons between texts sharing both tempo-
ral and domain characteristics, it helps to discover current
targets of humor. For instance, using our recent tweets talk-
ing about Italian politics, terms like ‘Monti’ and ‘Passera’
resulted to be highly relevant during classiﬁcation (the ﬁrst
one refers to the current Italian prime minister Mario Monti,
whereas the second is the Italian minister of economy and
development Corrado Passera). Notice that both ‘monti’
and ‘passera’ are words of the Italian vocabulary (e.g. the
word ‘monti’ means ‘mountains’, while ‘passera’ means
‘hen sparrow’ but it is also used in adult slang as masculin-
ist metaphor), and many jokes in our tweets exploit such
forms of ambiguity.

As a second result, this tool allows to individuate those
recurrent patterns that are strictly related to the informa-
tion sources. In our scenario, the token “http” usu-
ally indicates the presence of news instead of humor-
ous texts. This is due to the shortness nature of Twit-
ter that obliges the users to be concise. Indeed, most of
non-humorous and informative tweets contain few words
followed by one hyperlink (e.g. TWEETNEWS-186: ‘Chi è
Mario Monti?’ http://t.co/BZewchZ2’ (Who is Mario Monti?
http://t.co/BZewchZ2).

Still, Information Gain can be used to mine those linguis-
tic expressions, rather than single words, that can be use-
ful to identify the humorous nature of the text. For example,
meaningful terms that turn out to be important in this
sense are “speriamo” (i.e., “we wish”) and “bene” (“good”),
which refer to the Italian expression “speriamo bene” (“ﬁng-
gers crossed”). Other highly-scored terms include “fiducia”
(“trust”), “ﬁnalmente” (finally), and so forth. One next step
in this direction would be to evaluate such discriminatory
power with respect to each one of the classes.

In future works, we aim at using linguistic resources to pre-
process the input texts in order to remove noise and uninforma-
tive terms. Then, the “use of data morpho-syntactically
annotated could be crucial in the identiﬁcation of whole
syntactic structures (e.g., “bank director”) as well as lin-
guistic expressions. Finally, the time and the mood of verbs
can be another way of studying linguistic differences be-
 tween humorous and objective texts.

All the above points only represent some issues that came
out from our ﬁrst experiments, thus they are to be consid-
ered as preliminary results.

4. Conclusion and future work

In this paper we described our current work on Senti–TUT,
a novel Italian corpus for sentiment analysis which includes
sentiment annotations concerning irony and consists in a
collection of texts from Twitter.

For what concerns issues arising in the manual annota-
tion of the sentiment of our tweets, useful guidelines were
found in (Wiebe et al., 2005), where a general annotation
scheme to distinguish subjective information from material
presented as fact is deﬁned. Tweets in our corpus often ex-
press opinion about news entities while reporting on recent
events (Godbole et al., 2007), or report opinions of news
entities (e.g. politicians) about the breaking news. Follow-
 ing (Wiebe et al., 2005) in both cases we considered the
tweets as subjective (with a positive or negative polarity).

Concerning the speciﬁc issue of determining if a tweet is
ironic, this is not an easy task, mainly due to the fact
that irony is very subjective and personal appreciation can
lead to different perceptions. We mainly recognized the
following features in our tweets: frequent use of adult
slang and dirty words, use of echoic irony, language jokes,
which often exploit ambiguities involving the politicians’
proper nouns, as conﬁrmed by ﬁrst experiments. More-
over, we observed many cases of quotation or explicit ref-
 erence to popular, Italian or international, television ses-
 sies, see e.g. the following tweet referring to the Ameri-
can reality television series Jersey Shore: TWEETNEWS-844
‘@mtvitaly ma è vero che Mario Monti parteciperà a Jer-
sy Shore?’ http://t.co/d0H1Kmp6’ (@mtvitaly Is it true
that Mario Monti will be a cast member of Jersey Shore?
http://t.co/d0H1Kmp6). Therefore, a problem that needs to
be taken into account is that sometimes in our context the
recognition of irony can be hard, because strongly depends
not only to the annotator knowledge about the Italian polit-
ical situation but also to his/her degree of “addiction” to tv
shows.

Since the perception of irony can vary from a subject to
another, different annotators could consider a given post
ironic or sarcastic “to some degree”. In order to face this
issue, it would be useful to assign scores to ironic anno-
tations, as suggested in (Davidov et al., 2011). Moreover,
we are also considering to extend the annotation framework
by adding a more ﬁne-grained annotation where the entire
text is divided in pieces (or fragments) representing both the facts under discussion and the expressions about the judgement. In such richer setting, it will be possible to evaluate the system at different levels of granularity and to use the information to measure different degree of irony. Moreover, during the annotation work, we have observed many different typologies of ironic statements, as for instance sarcastic tweets, conveying bitter or cutting expressions or remarks, hilarious or facetious tweets, aimed at producing a comic effect, language jokes, and so on. In order to tackle this issue, as future work we aim at studying a more sophisticated classification of ironic tweets, where different ways of expressing irony can be distinguished (and possibly organized in a taxonomy) and tweets can be annotated accordingly. In this framework it will be also interesting to test the results of enabling multi-value-annotations.

5. Acknowledgements
The work reported in this paper was partly carried out in the framework of the project PARLI ("Portal for the Access to the Linguistic Resources for Italian") benefitting from a research funding PRIN-2008 from the Ministry of Public Instruction and University.

The authors thank all the persons who supported the work. We are grateful to our annotators, in particular to Gianna Cernuschi and Andrea Marchetti and to CELI Torino for providing the facilities offered by the Blogmeter social media monitoring platform.

6. References


Leonardo Lesmo. 2007. The rule-based parser of the NLP group of the University of Torino. Intelligenza artificiale, 2:46–47.


