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Abstract

Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic
nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV,
namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the
stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum.
Comparisons have been made also with synthetic data generated from different physiologically based models showing the
plausibility of the Gaussian mixture parameters.
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Introduction

Heart rate variability (HRV), the amount of fluctuations around

the mean heart rate, is a valuable tool to investigate the

sympathetic and parasympathetic functions of the autonomic

nervous system, see, for instance [1] and references therein. In

addition, heart rate variability is a key indicator of an individual

cardiovascular condition and a prognostic index in the course of

myocardial infarction, heart failure, diabetic neuropathy, essential

hypertension, etc. [2], [3], [4]. Thus is not surprising that it has

been the object of much research and that a variety of approaches

have been applied to its analysis.

The normal rhythm of the heart is controlled by processes of the

sinoatrial node (SA) modulated by innervations from both the

sympathetic and parasymphatetic (vagal) divisions of the auto-

nomic nervous system (ANS, a part of the nervous system that

non-voluntarily controls organs and system body). ANS has central

nuclei located in the brain stem and peripheral components

accessing internal organs. Symphatetic and parasymphatetic

systems that work as antagonists in their effect on target organs,

via chemical mediators: the acetylcholine released by parasympa-

thetic terminals slows the rate of the SA node, whereas the

norepinephrine released by sympathetic terminals speeds up the

SA node rhythm. The relative roles of the two systems can be

determined by blocking their activity with a pharmacologic

antagonist: sympathetic blockade can be obtained with guaneth-

idine or pronethalol, parasympathetic blockade with atropine.

The statistical behaviour of the heart rate can be analyzed by

replacing the complex waveform of an individual heartbeat

recorded with the time occurrence of the contraction (the time

of the peak of wave named QRS complex), which is a single

number. Mathematically, the heartbeat sequence is modeled by a

unmarked point process that reduces the computational complex-

ity of the problem and allows its analysis by well known methods.

Thus, the occurrence of a contraction at time ti is represented by

an impulse d(t{ti) so that the heartbeat sequence can be

expressed as

h(t)~
X

i

d(t{ti):

From this sequence the time intervals (R{R intervals) dtij~ti{tj ,

tiwtj between two successive peaks can be determined, as a

function of time t; thus a new time sequence is obtained and HRV

is precisely the variation of R{R intervals. Finally time intervals

are converted in beats per minute (bpm), an example is presented

in Fig. 1.

In general HRV has been studied by considering statistics of

R{R intervals (time domain analysis) or by spectral analysis of an

array of R{R intervals (frequency domain analysis) [5], [3], [6].

Time domain statistics use linear models to calculate the overall

variance or the variability between successive interbeat intervals:

typically they produce short-term variability (STV) indices

representing fast changes in heart rate and long-term variability

(LTV) indices taking into account slower fluctuations (fewer than 6
per minute). The time domain methods are computationally

simple, but are not able to discriminate between sympathetic and

para-sympathetic contributions of HRV that are known to operate

on HR in different frequency bands.

In fact, experiments of electrical stimulation of the vagus nerve

in dogs showed that vagal regulation modulates the HR up to

1:0 Hz, whereas symphatetic cardiac control operates only below

0:15 Hz [7]. In humans the parasymphatetic blockade eliminates

most HR fluctuations above 0:15 Hz, whereas the symphatetic

blockade reduces HR fluctuations below 0:15 Hz leaving those at

high frequency largely unaffected. Hence, HRV at high frequency

(HF) components is a satisfactory, partly incomplete, index of the

cardiac control, whereas low frequency (LF) components reflect

both symphatetic and parasymphatetic modulation [8].

Furthermore, extensive statistical studies [6] have shown that

the use of normalization of LF powers by total variance, or of the

LF/HF power ratio, increases the reliability of spectral parameters

(measured by the Spearman correlation) in reflecting sympathetic
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cardiac modulation, particularly when the cardiac sympathetic

drive is activated [6]; for an in-depth discussion, see [9].

Because of this experimental evidence spectral analysis has

become an increasingly popular method to investigate heart rate

variability because it provides the basic information of how power

distributes as a function of frequency. Spectral analysis enables to

identify and measure the principal rhythmical fluctuations that

characterise the R{R time series and contain physiological

information; further, it has has been proven to provide important

and accurate information on sympathetic and vagal modulation of

sinus node in normal subjects and in patients with a variety of

organic heart diseases, see, for instance, [1].

The main algorithm used to calculate the power spectral

distribution are the fast fourier transform on uniformly resampled

data and the lomb periodogram based on non uniform sampling.

However the latter is not a consistent statistical estimator [10].

These methods are limited by implicit assumption of linearity

and stationarity. Biological oscillators rarely meet these require-

ments and then it is difficult, in certain conditions, discriminate the

two branches of the autonomic nervous system in a clear manner.

In this paper we argue that useful information on the role of

these two systems can be gained by decomposing the signal in

elementary components in the time domain, and that this can be

done by determining, via some statistical procedure (namely, a

greedy expectation maximization algorithm), the combination of

Gaussians that best approximate the data.

Mixture of Gaussians have been used previously in an

automatic classifier for electrocardiogram (ECG) based cardiac

abnormality detection [11] and in frequency domain to generate

realistic synthetic electrocardiogram signals [12]. Here, in a

different vein, we exploit them to appropriately represent and

characterize the multimodal marginal distribution of HRV series,

a feature arising from non linear correlations of the time series

that, in turn, are related to the peculiar physiological aspects of the

neuroautonomic control of the heart rate.

Mixture modelling of heart rate measurements
Consider a time series of heart rate measurements

x~fx1,x2, � � � ,xTg, T being the number of time points in the

series, such as that represented in Fig. 1. Due to fluctuations of

various origin [5], it can be considered as generated from a

random process, where each xt is an instance, or realization, of a

random variable X . In the most simple case, one could assume

that the time series is a sequence of samples xt independently

drawn from one known distribution p(X~xtDh), e.g. Normal or

Poisson; then, the parameters h of such distribution could be easily

estimated from the observed samples. Unfortunately, this is not the

case as it can be simply noticed by inspecting the shape of the data

histogram (the empirical distribution representing the unknown

p(X Dh)), which is clearly multimodal.

Multimodality occurs because of non linear correlations of the

time series and, most important, due to the multi-component

structure of the physical process that originated the data [13].

To gain some insight on this issue, it is more convenient to

generally describe time series models as statistical models that

specify a structure of conditional dependencies on the joint

distribution p(X ,Z), where Z is a latent variable or hidden state

variable.

Conventional time series models are global models. They can be

linear, assuming that the next value xtz1 is a linear superposition

of preceding values [14], or they can be nonlinear. For instance,

Figure 1. A typical 24 hour heart rate time series. Beats per minutes are shown as a function of time.
doi:10.1371/journal.pone.0037731.g001
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nonlinear autoregressive processes (NLAR) have been widely used

[15], [16]; these models assume, in the simplest case (first order

model) that it is possible to generate xt at time t by taking into

account its conditional dependence on the previous value xt{1 and

on current state zt, namely xt is sampled as xt*p(xtDxt{1,zt)
where zt*p(ztDzt{1), the latter specifying the Markov dynamics of

state transitions. Such single, global, and traditionally univariate

models are well suited to problems with stationary dynamics.

However, the assumption of stationarity is violated in many real-

world time series, such as HRV series. An important sub-class of

nonstationarity is piece-wise stationarity (also called stationarity by

parts and multi-stationarity) where the series switches between

different regimes; in this case, state-space models with switching

dynamics (multiprocess dynamic linear models) can be exploited.

Typically, in switching models a discrete switching random

variable S is introduced, so that the state dynamics zt{1?zt

depends on the sampled regime, for instance zt*p(ztDzt{1,st)
where st*p(stDst{1).

Different variations can be constructed from this basic models

(see [13], for detailed discussion). But what is interesting, from the

standpoint of this work, is that both nonlinear autoregressive

processes and switching state-space models give rise to joint

distributions of lagged data, p(Xt,Xt{d), d being the time lag,

whose marginal distribution p(Xt)~
P

Xt{d
p(Xt,Xt{d) is a

multimodal distribution. An example is provided in Fig. 2 in

terms of empirical joint density distribution (bivariate histogram) of

a HRV time series at lag d~10.

Thus, by modelling the multimodal marginal distribution p(X )
of HRV data, it is possible to achieve useful insights on the process

that generated the data. For example, a similar approach has been

addressed in the field of solar radiation models [13], where the two

modes in the distribution of the radiation time series were shown

to be produced by cloudy times, when radiation is indirect, and

cloud-free times, when radiation is direct. In the same vein, a

similar application has been reported in [17] to distinguish

physical regimes underlying equatorial Pacific sea surface temper-

ature data, and for modelling BOLD signals in fMRI [18].

For modelling complex multimodal probability distributions,

mixture models are widely used. Taking a generative view, a data

sequence xt,t~1, � � � ,T can be sampled from a mixture model by

iterating the following two steps:

1. sample which component ẑzt among the K available is going to

generate the data:

ẑzt*p(zt); ð1Þ

2. sample the actual data xt

xt*p(xtDẑzt) ð2Þ

Here p(zt) and p(xtDzt) are Multinomial distributions, respectively;

by using a 1-of-K representation for the state variable zt, namely

zt~fztkgK
k~1 and ztk[f0,1g, that is ztk~1 indicates that xt has

been generated from the k-th mixture component,

p(zt)~ P
K

k~1
p

ztk
k , ð3Þ

with pk~p(zt~k)~p(ztk~1) representing the prior probability

of choosing the k-th component and

Figure 2. A bivariate histogram computed from the HRV time series, which approximates the joint density P(Xt,Xt{d), where d is the
time lag (in the example d~10). The univariate histogram on the left stands for the marginal distribution P(Xt).
doi:10.1371/journal.pone.0037731.g002
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p(xtDzt)~ P
k

k~1
p(xtDhk)ztk , ð4Þ

where p(xtDhk)~p(xtDh,ztk~1) is the k-th component distribution

characterized by parameters hk.

It is easily seen that the marginal distribution p(xt) can be

written in terms of the linear combination of some number K of

simpler, component distributions by marginalizing the joint

distribution p(xt,zt) over all possible states of zt:

p(xt)~
X

zt

p(zt)p(xtDzt)~
XK

k~1

pkp(xtDhk) ð5Þ

where probabilities p~fpkgK
k~1 are named in this linear

superposition representation the mixing coefficients, satisfing

0ƒpkƒ1 and
PK

k~1 pk~1.

In particular, for modelling arbitrary multimodal marginal

distributions, Gaussian or normal components have been widely

used:

p(xtDmk,sk)~N (xtDmk,sk)~
1ffiffiffiffiffiffi

2p
p

sk

exp({
(x{mk)2

2s2
k

) ð6Þ

here parameters hk~fmk,skg, in case of univariate components,

denote the mean and the variance of the k-th Gaussian

component, respectively.

Learning the mixture, namely, estimating the weights pk and

the parameters hk of each component, can in principle be carried

out through maximisation of the likelihood with respect to such

parameters, or more conveniently by maximizing the log-

likelihood

L~
XT

t~1

log
XK

k~1

pkN (xtDmk,sk); ð7Þ

the latter is difficult to optimize because it contains the logarithm

function of the sum. A suitable method to perform log-likelihood

maximization of a mixture is the Expectation-Maximization (EM)

algorithm [19].

The EM algorithm is simple to implement although it suffers

from known limitations: there is no widely accepted good method

for initializing the parameters; due to its local nature, it can get

trapped in local maxima of the likelihood function; further, it

assumes a known number K of mixing components, an

assumption that does not hold for the work presented here.

To overcome the model selection problem one could resort to

conventional approaches based on cross-validation that are

computationally expensive, are wasteful of data, and give noisy

estimates for the optimal number of components. A fully Bayesian

treatment, based on Markov chain Monte Carlo methods for

instance, will return a posterior distribution over the number of

components. More viable solutions are variants of the Variational

Bayes Expectation-Maximization algorithm [20] that require the

introduction of continuous hyper-parameters whose values are

chosen to maximize the marginal likelihood, or more complex

procedures currently under study in the field of nonparametric

Bayesian methods such as Dirichlet Process Mixtures under the

assumption of an infinite mixture model [21], [22].

More simply, we have adopted a greedy variant of the EM

algorithm [23]; [24]. An important benefit of the greedy method,

compared to the previous ones, is the production of a sequence of

mixtures, which resolves the sensitivity to initialization of state-of-

the-art methods, and has running time linear in the number of

data points and quadratic in the final number of mixture

components; also, it facilitates model selection.

The basic idea is straightforward: instead of starting with a

random configuration of all components and improve upon this

configuration with EM, the mixture is built from one initial

component by iteratively adding new components obtained

through a splitting of older components. More precisely, by

starting with the optimal one-component mixture (K~1), whose

parameters are trivially computed, following steps are repeated

until a stopping criterion is met: 1) find a new optimal component

N (xtDhKz1) and the corresponding mixing parameter pKz1 so

that the log-likelihood embedding the Kz1 components

L~
XT

t~1

log pKz1N (xtDhKz1)z(1{pKz1)
XK

k~1

pkN (xtDhk)

" #
ð8Þ

is maximized with respect to parameters hKz1,pKz1; 2) set the

new mixture as

p(xtDp,h)~pKz1N (xtDhKz1)z(1{pKz1)
XK

k~1

pkN (xtDhk) ð9Þ

and let K~Kz1; 3) update the new mixture p(xtDp,h) of Kz1
components using EM;

In step 2), dealing with the insertion of a new component, the

method constructs a fixed number of candidates per existing

mixture component; the candidate that maximizes the log-

likelihood when mixed into the existing mixture is retained (for

details see [24]).

The method stops the partial updates if the change in log-

likelihood of the resulting (Kz1)-component mixtures drops

below some threshold or if some maximal number of iterations is

reached, or if a desired number of components Kmax is obtained

(for instance, along experiments we set Kmax~10, which was in

practice never reached).

Clearly, the stopping criterion could be any model complexity

selection criterion (like Minimum Description Length, Akaike

Information Criterion, Cross Validation, etc.), so that the optimal

number K of components is automatically determined. However,

an advantage of the greedy method is that it produces a sequence

of mixtures that can be used to perform model complexity

selection as the mixtures are learned. In particular a kurtosis-based

selection criterion, like the one in [25], can be used here.

Results

Experiments have been conducted on both real data and

synthetic data. Real data analysis was performed on ECG

recordings collected with the procedure described in the section

on material and methods. Analysis of synthetic data generated by

using well known models of physiological aspects of the

neuroautonomic control of the heart rate, [26–27], has been

aimed to further verify the physiological plausibility of the

Gaussian mixture parameters learned via the Greedy EM

algorithm. The rationale behind this analysis is that synthetic

data obtained from models governed by such parameters should

be consistent with the experimental ones.

Gaussian Mixture Model of Heart Rate Variability
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Real data
A typical time series of heart signals is displayed in Fig. 1 and

the corresponding histogram is shown in Fig. 3.

Finally Fig. 4 presents the results of the analysis, where each

gaussian is multiplied by its weight: here only four components are

shown, three with weights larger than 0:1, the fourth being less

than 0:044. It is apparent from the figure that just the first three

components are important in determining the mixture.

It should be noted that heart rate is positive definite, whereas

Gaussians may assume negative values: however, by inspection of

the location of the data from the marginal distribution and the

related fitting obtained through the Gaussian mixture model

learned from HRV data, the probability of generating negative

data is negligible.

The relevance of just three weights is not limited to individual

recordings, but it is confirmed by the averages, over all subjects, of

weights values, shown, in decreasing order of magnitude, in Fig. 5.

Further information on the structure of R{R signals can be

gained by considering mean and variances of the Gaussians. The

trend of the means plotted in the order of decreasing weights is

almost monotonically increasing, see Fig. 6, the first three

components of the mixture having the smallest mean values. This

shows that components with beat/minute values larger than 80
play no significant role in the determination of R{R intervals.

Variances do not show a definite trend, see Fig. 7, but it should

be noted that the first component has by far the largest variance

(almost by a factor 2). That means that its values extend on a large

part of the rate interval and therefore it gives (by far) the largest

contribution to the power spectrum of the signal.

As a test, we have computed the power spectrum of the time

series, averaged of all subjects: it shows, in the range 0:05{0:3 Hz

the well known 1=f trend that has been observed in several studies

and has been ascribed to complex mechanisms such as intermit-

tency [28] and self-organized criticality [29], see Fig. 8.

The same trend can be obtained from the power spectrum of a

time series of R{R signals generated by applying the sampling

procedure specified via Eqns. (1), (2), (3) and (4) and by using just

the three most relevant Gaussians as derived from the data.

In conclusion, heart rate variability can be explained by a

mixture of just three Gaussians; what remains to be investigated is

the relation between the Gaussian components and the action of

sympathetic and parasympathetic systems.

As remarked in the Introduction, there is an ample evidence

that the dynamics of sympathetic and parasympathetic systems

occurs in different frequency bands. Now, if a specific Gaussian

captures the action of one of the two systems, keeping in mind that

the spectrum (PSD, power spectral distribution) represents the

contribution to variance of the different frequency bands [30] one

should expect a correlation of the PSD at the three bands of very

low, low and high frequency with the variance of three gaussians

calculated for the time series of each subject.

The results, reported in table 1, show significant correlations

(pv0:05) between the variance of the first two gaussian and the

power spectrum of the low and high frequency bands, respectively.

This suggest that the two gaussians with the largest weights are

related to the activation of the symphatetic and parasymphatetic

component of the autonomic system.

Synthetic data
The fact that just three Gaussian components of the signal are

enough to explain most of the variability of heart rate, suggests

that they may correspond to the three major inputs, namely those

coming from the sinoatrial node, responsible for the initiation of

each heart beat, and from the parasympathetic and sympathetic

branches of the autonomous nervous system. If this is the case our

results should be reproduced by models that make variability of

heart rate to depend on the activity of only these three inputs.

Such is the case, for instance, when a simple model is used

adapted from the well know class of integral pulse and frequency

modulation models (IPFM) [31]. In IPFM the input signal is

integrated until a threshold R is reached at which a pulse is

generated at time tk; the integrator is then set to zero and the

process is repeated. The general form of the IPFM model is

ðtk

tk{1

m0zm(t)ð Þdt~R, k~1, . . . K , ð10Þ

where it is assumed that m0 is a term accounting for the sinoatrial

node and m(t) is the input signal representing the autonomic

activity, described as

m(t)~cs sin(vst)zcp sin(vpt)zg ð11Þ

where vs and vp are the frequencies of the oscillators describing

the sympathetic and para-sympathetic branches of the ANS, cs cp

are weights and g is Gaussian noise. We have used this model to

simulate large samples of HRV records and these synthetic data

have been eventually analyzed with the same algorithm used for

the experimental data.

Gaussian mixture modelling produced just three Gaussians with

weights larger than 0:05; furthermore their values and those

obtained from experimental data are not significantly different (t-
test, df ~9,t~{:13,pw0:32).

These results may be not surprising since the model contains

explicitly neural oscillators, thus as a further test, we have used a

quite different type of model proposed in [27] and [32], where

changes in the interbeat interval t are described by:

t(nz1){t(n)~I0(n,t0)zIz(n,tz)z
XN

j~1

I j
{(n,tj

{), ð12Þ

where I0, Iz and I{ are inputs coming the sinoatrial node, the

Figure 3. An histogram of a 24 hour heart rate time series,
showing the number of occurences of bpm values.
doi:10.1371/journal.pone.0037731.g003
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Figure 4. Gaussian Mixture Model of a 24 hour heart rate. Here the components corresponding to the 4 largest weights are presented. Note
that the fourth weight is much smaller than the others (v0:005). The red lines represent the gaussians multiplied by their weights and the black
curve the result of the mixture.
doi:10.1371/journal.pone.0037731.g004

Figure 5. Values, averaged over time series from 120 subjects,
of the weights as determined by the algorithm, in decreasing
order of magnitude. Bars indicate the standard deviation of the
mean (error bars).
doi:10.1371/journal.pone.0037731.g005

Figure 6. Averages, over time series from 120 subjects, of
mean values of gaussians, as a function of the order of the
weights. Bars are the error bars.
doi:10.1371/journal.pone.0037731.g006
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parasympathetic and sympathetic fibres, respectively, whereas

t0,tz,t{ are time constants.

Each of the inputs in (12) is given the form

Ik(n)~
wk(1zg), if t(n)vtk,

{wk(1zg), if t(n)§tk,

�
ð13Þ

where wk is the strength of the feedback input biasing t to return a

preferred level tk, and g represents uncorrelated noise. In turn tk

are random step-like function of time drawn from an uniform

distribution and constrained within a certain interval. (see [32],

[27] for further details). From a statistical standpoint, this model

can be seen as a state-space model with switching dynamics (see

discussion in Section 2).

Statistical analysis on large samples of simulated data shows

again that the Gaussian decomposition yields just three weights

larger than 0:05, and that there is not significant difference from

those obtained from the empirical data (t-test, (df ~9,
t~{:120,pw0:9).

It is well known that there exist several factors affecting heart

rate, for example see [9], but what these models show is that in

HRV data the main component derived by the gaussian mixture

can be well described by the three major inputs that influence the

heart rate: symphatetic and pharasymphatetic control plus the

oscillation of the sinoatrial node.

Figure 7. Variances of Gaussians, averaged over time series
from 120 subjects, as a function of the order of the weights.
Bars indicate the standard deviation of the mean (error bars).
doi:10.1371/journal.pone.0037731.g007

Figure 8. Power spectrum, averaged over 120 subjects, of the heart rate time series, over 24 hours records. The scale is log-log. The
slope, b~{1:84 is computed in the range ½0:05,0:3�.
doi:10.1371/journal.pone.0037731.g008

Table 1. Correlation analysis results.

Measures LF HF

s2
1

0.37 n.s

s2
2

n.s 0.25

Significant correlations (pv0:05) between the variance of the first two Gaussian
and the PSD of the low and high frequency bands.
doi:10.1371/journal.pone.0037731.t001

Gaussian Mixture Model of Heart Rate Variability
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Thus our results further support the evidence of a major role of

these three components in producing the variability observed

experimentally.

Discussion

In this paper we have presented a novel method to analyze

heart rate variability, based on a Gaussian mixture decomposition

of the signal. This approach presents several advantages: first,

given enough Gaussian components, mixtures can approximate

arbitrary complex distributions and the mixture model covers the

data well (dominant patterns in the data are captured by

component distributions).

Furthermore, the use of gaussians allow a straightforward

interpretation of the properties exhibited by the power spectrum.

In addition well-studied statistical inference techniques are

available to determine the parameters of the mixture, that here

have been learned via maximum likelihood in a greedy fashion,

namely, by incrementally adding components to the mixture up to

a desired number of components K .

Results show that just three Gaussians (i.e., K~3) are enough to

predict heart rate variability, and that the mean and variance

values of the relevant components are coherent with physiological

measurements.

Means of the main components provide a lower bound of the

beat/minute values relevant in the formation of R{R time series,

while variances supply a link with frequency structure of the signal.

This link has been used in a correlation analysis whose results

suggest a possible identification of the activity of the different

branches of the ANS with the components of the Gaussian

mixtures.

Finally we have also found that the decreasing trend 1=f ,

observed in the data, can be derived by using the learned Gaussian

mixtures as a generative model. This result is relevant because it is

a further evidence that this approach indeed extracts the relevant

structure of the process.

Most often probabilistic models cannot explain by themselves

the physical processes generating the data, one exception being the

kinetic-molecular movement within a gas. Indeed the physics of

the phenomenon under study can be accounted for by models

involving solution of the appropriate governing equations.

In this perspective, we have investigated the relation of this

probabilistic model with well known models used in the literature

[26–27] to simulate the action of sinoatrial cells, and sympathetic

and parasympathetic systems. The results show that the parameter

learned from the data when plugged in dynamic model produce

synthetic data consisten with real ones.

Materials and Methods

Participants
A hundred healthy volunteers, 50 males and 50 females, (age

range 18–40, average 24.73, SD 4.35), took part in the recording

session. They had no history of cardiac injury or psychological

diseases and all took part voluntary and gave an informed consent.

Prior to the studies, they were acclimated to the settings, and

practiced with the apparatus. They refrained from alcohol or

caffeine intake and strenuous physical activity for 12 h preceding

the study sessions. All of the participants gave their informed

written consent, in line with the Declaration of Helsinki, and the

study was approved by the Ethic Committee of the Department of

Psychology, Turin University.

Procedure
Electrocardiogram recordings were obtained using a Holter

Lifecard CF (Del Mar Reynolds Medical Ltd.). Each participant

was asked to wear the Holter for 24 hours and to come back the

following day at between 5 and 6 p.m. to return the device. During

debriefing, a researcher checked the apparatus and asked further

questions as necessary.

Data reduction
The QRS detection and arrhythmia analysis were performed

using a DelMar Avionics arrhythmia analyzer (Impresario). No

arrhythmia was detected in the data analyzed. The presence of

artifacts was checked manually, although no abnormalities were

found in any subject. The R{R intervals were then calculated as

the time interval between two consecutive R-waves.
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