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The ALICE Collaboration reports the measurement of the relative J/ψ yield as a function of charged
particle pseudorapidity density dNch/dη in pp collisions at

√
s = 7 TeV at the LHC. J/ψ particles

are detected for pt > 0, in the rapidity interval |y| < 0.9 via decay into e+e−, and in the interval
2.5 < y < 4.0 via decay into μ+μ− pairs. An approximately linear increase of the J/ψ yields normalized
to their event average (dNJ/ψ/dy)/〈dNJ/ψ/dy〉 with (dNch/dη)/〈dNch/dη〉 is observed in both rapidity
ranges, where dNch/dη is measured within |η| < 1 and pt > 0. In the highest multiplicity interval
with 〈dNch/dη(bin)〉 = 24.1, corresponding to four times the minimum bias multiplicity density, an
enhancement relative to the minimum bias J/ψ yield by a factor of about 5 at 2.5 < y < 4 (8 at |y| < 0.9)
is observed.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
Understanding the production mechanism of quarkonium states
in hadronic collisions is still a challenge due to its sensitivity to
perturbative and non-perturbative aspects of Quantum Chromo-
dynamics (QCD). While the primary production of heavy quark–
antiquark (qq̄) pairs is generally treated as a hard process which
can be calculated within perturbative QCD, the subsequent forma-
tion of a bound colorless qq̄ pair is inherently non-perturbative
and difficult to treat. The models developed to describe quarko-
nium production in high energy hadron collisions consequently
follow various approaches, mainly differing in the relative contri-
bution of the intermediate color singlet and color octet qq̄ states
[1,2]. Recent theoretical work tries to describe consistently [3–5]
the measured production cross section and polarization, in partic-
ular in light of recent measurements at the LHC [6–11].

It is also important to consider that a high energy proton–
proton collision can have a substantial contribution from Multi-
Parton Interactions (MPI) [12,13]. In this case several interactions
on the parton level can occur in a single pp collision, which
can introduce a dependence of particle production on the total
event multiplicity [14–16]. If MPI were mainly affecting processes
involving only light quarks and gluons, as implemented e.g. in
PYTHIA 6.4, processes like J/ψ and open heavy flavor production
should not be influenced and their rates are expected to be in-
dependent of the overall event multiplicity. However, at the high
center-of-mass energies reached at the LHC, there might be a sub-
stantial contribution of MPI on a harder scale which can also in-
duce a correlation between the yield of quarkonia and the total
charged particle multiplicity [17]. An early study that relates open

✩ © CERN for the benefit of the ALICE Collaboration.

charm production and underlying event properties was performed
by the NA27 experiment for pp collisions at

√
s = 27 GeV, with

the result that charged particle multiplicity distributions in events
with open charm production have a mean that is higher by ∼ 20%
than the ones without [18].

In [19,20] it has been argued that, due to the spatial distribu-
tion of partons in the transverse plane (as described in generalized
parton distributions), the density of partons in pp collisions will
be strongly impact parameter dependent. Therefore, the probability
for MPI to occur will increase towards smaller impact parameters.
This effect might be further enhanced by quantum-mechanical
fluctuations of the small Bjørken-x gluon densities.

The charged particle multiplicities measured in high-multipli-
city pp collisions at LHC energies reach values that are of the same
order as those measured in heavy-ion collisions at lower energies
(e.g. they are well above the ones observed at RHIC for peripheral
Cu–Cu collisions at

√
sNN = 200 GeV [21]). Therefore, it is a valid

question whether pp collisions also exhibit any kind of collective
behavior as seen in these heavy-ion collisions. An indication for
this might be the observation of long range, near-side angular cor-
relations (ridge) in pp collisions at

√
s = 0.9, 2.36 and 7 TeV with

charged particle multiplicities above four times the mean multi-
plicity [22,23]. Since quarkonium yields in heavy-ion reactions are
expected to be modified relative to minimum bias pp collisions
[24–26], one might ask whether their production rates in high-
multiplicity pp collisions are already exhibiting any effect like J/ψ
suppression.

In this Letter, we report the first measurement of relative J/ψ
production yields (dNJ/ψ/dy)/〈dNJ/ψ/dy〉 at mid-rapidity (|y| <

0.9) and at forward rapidity (2.5 < y < 4) as a function of the
relative charged particle multiplicity density (dNch/dη)/〈dNch/dη〉
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as determined in |η| < 1 for pp collisions at
√

s = 7 TeV at
the LHC.

The data discussed here are measured in two complementary
parts of the experimental setup of ALICE [27]: the central barrel
(|η| < 0.9) for the J/ψ detection in the di-electron channel and
the muon spectrometer (−4 < η < −2.5)1 for J/ψ → μ+μ− mea-
surements.

The central barrel provides momentum measurement for char-
ged particles with pt > 100 MeV/c and particle identification up to
pt ≈ 10 GeV/c. Its detectors are all located inside a large solenoidal
magnet with a field strength of 0.5 T. Used in this analysis are
the Inner Tracking System (ITS) and the Time Projection Chamber
(TPC). The ITS [28] consists of six layers of silicon detectors sur-
rounding the beam pipe at radial positions between 3.9 cm and
43.0 cm. Silicon Pixel Detectors (SPD) are used for its innermost
two layers and allow a precise reconstruction of the interaction
vertex. The TPC [29] is a large cylindrical drift volume covering
the range along the beam axis relative to the Interaction Point (IP)
between −250 < z < 250 cm and extending in the radial direction
from 85 cm to 247 cm. It is the main tracking device in the central
barrel and is also used for particle identification via a measure-
ment of the specific ionization (dE/dx) in the detector gas with a
resolution of about 5% [27].

The muon spectrometer consists of a frontal absorber followed
by a 3 T m dipole magnet, coupled to tracking and triggering de-
tectors. Muons are filtered by the 10 interaction length (λI) thick
absorber placed between 0.9 m and 5.0 m from the nominal posi-
tion of the IP along the beam axis. Muon tracking is performed by
five tracking stations, positioned between 5.2 m and 14.4 m from
the IP, each consisting of two planes of cathode pad chambers.
The muon triggering system consists of two stations positioned at
16.1 m and 17.1 m from the IP, each equipped with two planes of
resistive plate chambers. It is located downstream of a 1.2 m thick
iron wall (7.2λI) which absorbs hadrons penetrating the frontal
absorber, secondary hadrons escaping the absorber material, and
low-momentum muons (p < 4 GeV/c). A conical absorber sur-
rounding the beam pipe provides protection against secondary par-
ticles throughout the full length of the muon spectrometer. These
particles result from interactions not associated with the primary
vertex and are mainly due to beam–gas interactions.

Two VZERO detectors are used for triggering on inelastic pp
interactions and for the rejection of beam–gas events. They con-
sist of scintillator arrays and are positioned at z = −90 cm and
z = +340 cm, covering the pseudorapidity ranges −3.7 < η < −1.7
and 2.8 < η < 5.1. The minimum bias (MB) pp trigger uses the in-
formation of the VZERO detectors and the SPD. It is defined as
the logical OR between two conditions: (i) a signal in at least one
of the two VZERO detectors has been measured; (ii) at least one
readout chip in the SPD fires. It has to be in coincidence with the
arrival of proton bunches from both sides of the interaction re-
gion. The efficiency of the MB trigger to record inelastic collisions
was evaluated by Monte Carlo studies and is 86.4% [30]. For the
di-muon analysis, a more restrictive trigger is used (μ-MB). It re-
quires the detection of at least one muon above a threshold of
ptrig

t > 0.5 GeV/c in the muon trigger chambers in addition to the
MB trigger requirement.

The results presented in this Letter are obtained by analyz-
ing pp collisions at

√
s = 7 TeV recorded in 2010. For the J/ψ

measurement in the di-electron (di-muon) channel a sample of
3.5×108 minimum bias events (6.75×106 μ-MB triggered events)

1 In the ALICE reference frame the muon spectrometer is located at negative z
positions and thus negative (pseudo-)rapidities. Since pp collisions are symmetric
relative to y = 0, we have dropped the minus sign when rapidities are quoted.

is analyzed, corresponding to an integrated luminosity of 5.6 nb−1

(7.7 nb−1). The relative normalization between the number of
μ-MB and minimum bias triggers needed to extract the integrated
luminosity in the di-muon case is calculated using the ratio of the
number of corresponding single muons with pt > 1 GeV/c. The
luminosity at the ALICE interaction point was kept between 0.6
and 2.0 × 1029 cm−2 s−1 for all the data used in this analysis. This
ensures a collision pile-up rate not larger than 4% in each bunch
crossing. In the case of the di-muon analysis the interaction vertex
is reconstructed using tracklets which are defined as combinations
of two hits in the SPD layers of the ITS, one hit in the inner layer
and one in the outer. Since for MB trigger used in the di-electron
analysis the full information of the central barrel detectors is avail-
able (μ-MB triggered events only include SPD information), tracks
measured with ITS and TPC are used in this case to locate the
interaction vertex. This results in a resolution in z direction of
σz ≈ 600/N0.7

trk μm, where Ntrk is the multiplicity measured via
SPD tracklets. For the vertices reconstructed using SPD tracklets
only, this resolution is worse by 35% for high (Ntrk = 40) and 50%
for low (Ntrk = 10) multiplicities. Events that do not have an inter-
action vertex within |zvtx| < 10 cm are rejected, where zvtx is the
reconstructed z position of the vertex. The rms of the vertex dis-
tributions along z is for all running conditions below 6.6 cm and
no significant dependence on dNch/dη is found for the multiplicity
intervals studied here.

Pile-up events are identified by the presence of two interaction
vertices reconstructed with the SPD. They are rejected if the dis-
tance along the beam axis between the two vertices is larger than
0.8 cm, and if both vertices have at least three associated tracklets.
This removes 48% of the pile-up events. In the remaining cases two
events can be merged into a single one, thus yielding a biased mul-
tiplicity estimation. A simulation assuming a Gaussian distribution
for the vertex z position results in a probability for the occurrence
of two vertices closer than 0.8 cm of 7%. Combined with the pile-
up rate of 4%, this gives an overall probability that two piled-up
events are merged into a single event of ≈ 0.3%, which is a negli-
gible contribution in the multiplicity ranges considered here.

The charged particle density dNch/dη is calculated using the
number of tracklets Ntrk reconstructed from hits in the SPD detec-
tor, because the SPD is the only central barrel detector that is read
out for all of the μ-MB trigger. The tracklets are required to point
to the reconstructed interaction vertex within ±1 cm in radial and
±3 cm in z direction [31,32]. Using simulated events, it is verified
that Ntrk is proportional to dNch/dη. For a good geometrical cover-
age, only tracklets within |η| < 1 from events with |zvtx| < 10 cm
are considered. Since the pseudorapidity coverage of the SPD
changes with the interaction vertex z position and also with time,
due to the varying number of dead channels, a correction to the
measured Ntrk is applied event-by-event. This correction Ctrk(zvtx)

is determined from measured data as a function of zvtx by cal-
culating the ratio of the number of tracklets reconstructed for a
given zvtx, Ntrk(zvtx), to the Ntrk value measured for the zvtx posi-
tion with the maximal acceptance: Ctrk(zvtx) = Nmax

trk /Ntrk(zvtx). It
is found to be smaller than 10% for |zvtx| < 5 cm and smaller than
25% for |zvtx| < 10 cm. Fig. 1 shows the resulting distribution of
the relative charged particle density (dNch/dη)/〈dNch/dη〉, where
〈dNch/dη〉 = 6.01 ± 0.01(stat.)+0.20

−0.12(syst.) as measured for inelastic
pp collisions with at least one charged particle in |η| < 1 [32]. The
use of relative quantities was chosen in order to facilitate the com-
parison to other experiments and to theoretical models, as well as
to minimize systematic uncertainties. The definition of the charged
particle multiplicity intervals used in this analysis is given in Ta-
ble 1, together with the corresponding mean values of dNch/dη.
The present statistics allows one to cover charged particle densi-
ties up to four times the minimum bias value.



ALICE Collaboration / Physics Letters B 712 (2012) 165–175 167

Fig. 1. The distribution of the relative charged particle density (dNch/dη)/〈dNch/dη〉
reconstructed around mid-rapidity (|η| < 1.0) after correction for SPD inefficiencies.
The vertical lines indicate the boundaries of the multiplicity intervals used in this
analysis.

For the J/ψ measurement in the di-electron channel tracks are
selected by requiring a minimum pt of 1 GeV/c, a pseudorapidity
range of |η| < 0.9, at least 70 out of possible 159 points recon-
structed in the TPC and an upper limit on the χ2/n.d.f. from
the momentum fit of 2.0. Furthermore, tracks that are not point-
ing back to the primary interaction vertex within 1.0 cm in the
transverse plane and within 3.0 cm in z direction are discarded.
To further reduce the background from conversion electrons a hit
in at least one of the four innermost ITS layers is also required.
Particle identification is performed by measuring the specific ion-
ization dE/dx in the TPC. All tracks within ±3σ around the ex-
pected dE/dx signal for electrons and at the same time outside
±3σ (±3.5σ ) around the expectation for protons (pions) are ac-
cepted as electron and positron candidates. e+ and e− candidates
that form a pair with any other candidate with an invariant mass
below 0.1 GeV/c2 are discarded to reduce the amount of electrons
coming from γ conversions or π0 Dalitz decays as well as their
contribution to the combinatorial background in the di-electron in-
variant mass spectrum.

The invariant mass distributions of the e+e− pairs are recorded
in intervals of the charged particle multiplicity as measured using
the SPD tracklets. As an example, the lowest and highest multi-
plicity intervals are shown in the two left panels of Fig. 2. The
combinatorial background in each multiplicity interval is well de-
scribed by the track rotation method, which consists in rotating
one of the tracks of a e+e− pair measured in a given event around
the z axis by a random φ-angle in order to remove any correla-
tions. After subtracting the background, the uncorrected J/ψ yields
are obtained by integrating the distribution in the mass range
2.92–3.16 GeV/c2. This range was chosen in order to maximize

the significance of the J/ψ signal. A fit to the invariant mass dis-
tribution for the sum of all multiplicity intervals after background
subtraction with a Crystal Ball function [33] gives a mass resolu-
tion of 28.3 ± 1.8 MeV/c2. It was verified that the measured line
shape is reproduced by the Monte Carlo simulation (see Fig. 2 in
Ref. [8]). Alternatively, the combinatorial background is estimated
by like-sign distributions, N++ + N−− . These are scaled to match
the integral of the opposite-sign distributions in the mass range
above the J/ψ signal (3.2 < minv < 4.9 GeV/c2) in order to also ac-
count for correlated background contributions, which mainly orig-
inates from semi-leptonic charm decays. Both methods provide a
good description of the combinatorial background and their com-
parison is used to evaluate the systematic uncertainty on the J/ψ
signal.

For the J/ψ analysis in the di-muon channel muon candidates
are selected using the tracks measured in the tracking chambers
behind the frontal absorber and requiring that at least one of
the two tracks matches a trigger track reconstructed from at least
three hits in the trigger chambers. This efficiently rejects hadrons
produced in the frontal absorber and then absorbed by the iron
wall positioned in front of the trigger chambers. Furthermore, a
cut Rabs > 17.5 cm is applied, where Rabs is the radial coordi-
nate of the track at the downstream end of the frontal absorber
(z = −5.03 m). Such a cut removes muons produced at small an-
gles that have crossed a significant fraction of the conical absorber
surrounding the beam pipe. Finally, a cut on the pair rapidity
(2.5 < y < 4) is applied to reject events very close to the edge
of the spectrometer acceptance.

The number of J/ψ in each multiplicity interval is obtained by
fitting the corresponding di-muon invariant mass distribution in
the range 2 < minv < 5 GeV/c2. The line shapes of the J/ψ and
ψ (2S) are parametrized using Crystal Ball functions [33], while the
underlying continuum is fitted with the sum of two exponential
functions. The parameters of the Crystal Ball functions are adjusted
to the mass distribution of a Monte Carlo signal sample, obtained
by generating J/ψ and ψ (2S) events with realistic phase space dis-
tributions [8]. Apart from the J/ψ and ψ (2S) signal normalization,
only the position of the J/ψ mass pole, as well as its width, are
kept as free parameters in the fit. Due to the small statistics, the
ψ(2S) mass and width are tied to those of the J/ψ , imposing the
mass difference between the two states to be equal to the one
given by the Particle Data Group (PDG) [34], and the ratio of the
resonance widths to be equal to the one obtained by analyzing re-
constructed Monte Carlo events. Details on the fit technique can
be found in [8]. The width of the J/ψ signal as obtained by fitting
the Crystal Ball function to the invariant mass distribution for the
sum of all multiplicity intervals is σJ/ψ = 83 ± 3 MeV/c2. The two
right panels of Fig. 2 show the measured di-muon invariant mass
distributions together with the results of the fit procedure for the
lowest and highest multiplicity intervals.

The results are presented as the ratios of the J/ψ yield in a
given multiplicity interval relative to the minimum bias yield. By
performing simulation studies in intervals of dNch/dη it was veri-
Table 1
The boundaries of the used charged particle multiplicity intervals as defined via the number of SPD tracklets Ntrk , the corresponding charged particle density ranges and

mean values 〈dNch/dη(bin)〉, as well as the number of analyzed minimum bias triggered events in the di-electron (Ne+e−
evt. ) and the di-muon channel (Nμ+μ−

eq.evt. ). In the latter
case this is the equivalent number of events, derived from the number of μ-MB triggered events.

Multiplicity interval Ntrk interval dNch/dη range 〈dNch/dη(bin)〉 Ne+e−
evt. × 106 Nμ+μ−

eq.evt. × 106

1 [1, 8] 0.7–5.9 2.7 164.6 262.0
2 [9, 13] 5.9–9.2 7.1 51.1 79.5
3 [14, 19] 9.2–13.2 10.7 35.7 55.4
4 [20, 30] 13.2–20.4 15.8 28.5 44.4
5 [31, 49] 20.4–32.9 24.1 9.7 15.3
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Fig. 2. Opposite sign invariant mass spectra of the selected electron [(a) + (c)] and muon [(b) + (d)] pairs (filled symbols) for the lowest [(a) + (b)] and highest [(c) + (d)]
multiplicity intervals. Also shown are the estimates of the combinatorial background which are based on a fit to the μ+μ− pair distributions (solid line), and on like-sign
pairs (open circles), as well as track rotation (open squares), in the e+e− case. The number of events quoted in the figures refer to the corresponding minimum bias triggered
events.
fied that the geometrical acceptances, as well as the reconstruction
efficiencies and the J/ψ line shapes, do not depend on dNch/dη in
the range under consideration here (dNch/dη < 32.9). Therefore,
these corrections and their corresponding systematic uncertainties
cancel in the ratio (dNJ/ψ/dy)/〈dNJ/ψ/dy〉 and only the uncor-
rected signal counts have to be divided. The number of events used
for the normalization of 〈dNJ/ψ/dy〉 is corrected for the fraction of
inelastic events not seen by the MB trigger condition. After ap-
plying acceptance and efficiency corrections these values are in
agreement with those that can be obtained from the numbers
quoted in [8]: 〈dNJ/ψ/dy〉 = (8.2 ± 0.8(stat.) ± 1.2(syst.)) × 10−5

for J/ψ → e+e− in |y| < 0.9, and 〈dNJ/ψ/dy〉 = (5.8 ± 0.2(stat.) ±
0.6(syst.)) × 10−5 for J/ψ → μ+μ− in 2.5 < y < 4. In the case of
the J/ψ yields measured in a given multiplicity interval, no trigger-
related correction is needed, since the trigger efficiency is 100% for
Ntrk � 1.

The systematic uncertainties are estimated as follows. In case of
the di-electron analysis, the absolute differences between the re-
sulting (dNJ/ψ/dy)/〈dNJ/ψ/dy〉 values obtained by using the like-
sign and the track rotation methods define the uncertainty due to
the background subtraction. It is found to vary between 2% and
12% for the different multiplicity intervals. For the di-muon analy-
sis this uncertainty is evaluated by varying the functional form of
the background description (polynomial instead of sum of two ex-
ponential). It depends on the signal to background ratio and varies
between 3% and 4%. Since for the muon measurement it is not pos-
sible to associate a measured track to the interaction vertex, due to
the multiple scattering of the muons in the frontal absorber, an ad-
ditional systematic uncertainty arises from pile-up events. Among
the vertices inside these events always the one with the largest
number of associated tracks is chosen as main vertex. Therefore,
events with very low multiplicities are more likely to have a wrong
assignment and thus this uncertainty is largest in the first multi-
plicity interval (6%), while it is 3% in the others. Possible changes
of the pt spectra with event multiplicity can introduce a dNch/dη
dependence of the acceptance and efficiency correction, thus re-
sulting in an additional systematic uncertainty. This is estimated
by varying the 〈pt〉 of the J/ψ spectrum that is used as input
to the determination of the corrections via simulation between

2.6 and 3.2 GeV/c. A systematic effect of 1.5% (3.5%) is found for
the di-electron (di-muon) analysis. The total systematic error on
(dNJ/ψ/dy)/〈dNJ/ψ/dy〉 is given by the quadratic sum of the sep-
arated contributions and amounts to 2.5–12% depending on the
multiplicity interval for the di-electron result. In the case of the
di-muon analysis it varies between 8% in the first and 6% in the
last multiplicity interval. An additional global uncertainty of 1.5%
on the normalization of 〈dNJ/ψ/dy〉 is introduced by the correc-
tion of the trigger inefficiency for all inelastic collisions.

The systematic uncertainties on (dNch/dη)/〈dNch/dη〉 are due
to deviations from a linear dependence of dNch/dη on Ntrk and
variations in the Ntrk distributions which remain after the cor-
rection procedure. The latter are caused by changes in the SPD
acceptance for the different data taking periods. The first contribu-
tion is estimated to be 5%, while the second is ∼ 2%, as determined
by Monte Carlo studies. In addition, the systematic uncertainty of
the 〈dNch/dη〉 measurement (+3.3%

−2.0%) [32] is also included.
Fig. 3 shows the relative J/ψ yields measured at forward and at

mid-rapidity as a function of the relative charged particle density
around mid-rapidity. An approximately linear increase of the rela-
tive J/ψ yield (dNJ/ψ/dy)/〈dNJ/ψ/dy〉 with (dNch/dη)/〈dNch/dη〉
is observed in both rapidity ranges. The enhancement relative to
minimum bias J/ψ yield is a factor of approximately 5 at 2.5 <

y < 4 (8 at |y| < 0.9) for events with four times the minimum
bias charged particle multiplicity density.

An interpretation of the observed correlation between the J/ψ
yield and the charged particle multiplicity is that J/ψ production
is always accompanied by a strong hadronic activity, thus biasing
the dNch/dη distributions to higher values. Since this correlation
extends over the three units of rapidity between the mid-rapidity
dNch/dη and the forward rapidity J/ψ measurement, it would have
far reaching consequences on any model trying to describe J/ψ
production in pp collisions.

In order to illustrate that the observed behavior cannot be un-
derstood by a simple 2 → 2 hard partonic scattering scenario,
a prediction by PYTHIA 6.4.25 in the Perugia 2011 tune [35,36] is
shown in Fig. 4 as an example. Only J/ψ directly produced in hard
scatterings via the NRQCD framework [37] (MSEL = 63) are consid-
ered, whereas J/ψ resulting from the cluster formation processes
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Fig. 3. J/ψ yield dNJ/ψ /dy as a function of the charged particle multiplicity den-
sities at mid-rapidity dNch/dη. Both values are normalized by the corresponding
value for minimum bias pp collisions (〈dNJ/ψ /dy〉, 〈dNch/dη〉). Shown are mea-
surements at forward rapidities (J/ψ → μ+μ− , 2.5 < y < 4) and at mid-rapidity
(J/ψ → e+e− , |y| < 0.9). The error bars represent the statistical uncertainty on the
J/ψ yields, while the quadratic sum of the point-by-point systematic uncertainties
on the J/ψ yield as well as on dNch/dη is depicted as boxes.

Fig. 4. Relative J/ψ yield dNJ/ψ /dy as a function of relative charged particle mul-
tiplicity densities around mid-rapidity dNch/dη as calculated with PYTHIA 6.4 in
the Perugia 2011 tune [35,36]. Shown are results for directly produced J/ψ in hard
scatterings via the NRQCD framework at forward rapidities (2.5 < y < 4) and at
mid-rapidity (|y| < 0.9).

are ignored. A J/ψ cluster is a string formed by a cc̄ pair produced
via parton shower evolution which has an invariant mass that is
too low for the standard Lund string fragmentation procedure and
thus does not correspond to a well-defined hard scattering process.
The calculation shown in Fig. 4 is thus the ratio of the multiplic-
ity distributions generated for minimum bias events and events
containing J/ψ from hard scatterings. It exhibits a decrease of the
J/ψ multiplicity with respect to the event multiplicity, which in-
dicates that hard J/ψ production, as modeled by PYTHIA 6.4.25, is
not accompanied by an increase of the total hadronic activity. Fur-
ther studies with other models such as PYTHIA 8 [38] and Cascade
[39] are needed. It should be pointed out that our measurement
also includes J/ψ from the decay of beauty hadrons, which is not
part of the shown PYTHIA result. The fraction of J/ψ from feed
down can change with the event multiplicity and can therefore
contribute to the observed multiplicity dependence. However, since
this contribution is on the order of 10% [6,7,11] it might be only a
small contribution to the observed differences between model and
data.

On the other hand, the increase of the J/ψ production with
event multiplicity, as reported here, might be due to MPI. In this
scenario the multiplicity of charged particles is a direct measure-

ment of the number of partonic interactions in the pp events. If
the effect of MPI extends into the regime of hard processes, also
the J/ψ yield should scale with the number of partonic collisions
and the observed correlation will result. It has even been conjec-
tured in [40] that the increase of the J/ψ yield with dNch/dη and
the ridge phenomenon observed in high-multiplicity pp collisions
[23] could be related. They might both be caused by the lateral ex-
tent of the gluon distributions, in combination with fluctuations of
the gluon density. The presence of these fluctuations could signifi-
cantly increase the probability for MPI and thus cause the observed
rise of the J/ψ yield.

The multiplicity dependence measured here will allow a di-
rect comparison of the J/ψ production in pp to the one observed
in heavy-ion collisions. With a mean value of dNch/dη of 24.1,
the highest multiplicity interval shown in Fig. 3, for instance,
corresponds roughly to 45–50% centrality for Cu–Cu collisions at√

sNN = 200 GeV [21]. In order to establish whether any evidence
for a J/ψ suppression is observed already in pp, a proper normal-
ization is needed. This could be provided by a measurement of
open charm production in the same multiplicity bins. Correspond-
ing studies are currently ongoing.

In summary, relative J/ψ yields are measured for the first time
in pp collisions as a function of the charged particle multiplic-
ity density dNch/dη. J/ψ mesons are detected at mid-rapidity
(|y| < 0.9) and forward rapidity (2.5 < y < 4), while dNch/dη is
determined at mid-rapidity (|η| < 1). An approximately linear in-
crease of the J/ψ yields with the charged particle multiplicity is
observed. The increase is similar at forward and mid-rapidity, ex-
hibiting an enhancement relative to minimum bias J/ψ yield by a
factor of about 5 at 2.5 < y < 4 (8 at |y| < 0.9) for events with
four times the minimum bias charged particle multiplicity. Our re-
sult might either indicate that J/ψ production in pp collisions is
always connected with a strong hadronic activity, or that multi-
parton interactions could also affect the harder momentum scales
relevant for quarkonia production. Further studies of charged parti-
cle multiplicity dependence of J/ψ , Υ , and open charm production,
also as a function of pt, will shed more light on the nature of the
observed effect.
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Federal Agency of Science of the Ministry of Education and Sci-

ence of Russian Federation, International Science and Technology
Center, Russian Academy of Sciences, Russian Federal Agency of
Atomic Energy, Russian Federal Agency for Science and Innovations
and CERN-INTAS;

Ministry of Education of Slovakia;
Department of Science and Technology, South Africa;
CIEMAT, EELA, Ministerio de Educación y Ciencia of Spain,

Xunta de Galicia (Consellería de Educación), CEADEN, Cubaenergía,
Cuba, and IAEA (International Atomic Energy Agency);

Swedish Research Council (VR) and Knut & Alice Wallenberg
Foundation (KAW);

Ukraine Ministry of Education and Science;
United Kingdom Science and Technology Facilities Council

(STFC);
The United States Department of Energy, the United States Na-

tional Science Foundation, the State of Texas, and the State of Ohio.

Open access

This article is published Open Access at sciencedirect.com. It
is distributed under the terms of the Creative Commons Attribu-
tion License 3.0, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original authors and
source are credited.

References

[1] N. Brambilla, et al., Eur. Phys. J. C 71 (2011) 1534.
[2] J.P. Lansberg, Eur. Phys. J. C 61 (2009) 693.
[3] Y. Ma, K. Wang, K. Chao, Phys. Rev. Lett. 106 (2011) 042002.
[4] M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 106 (2011) 022003.
[5] M. Butenschoen, B.A. Kniehl, arXiv:1201.1872.
[6] G. Aad, et al., ATLAS Collaboration, Nucl. Phys. B 850 (2011) 387.
[7] R. Aaij, et al., LHCb Collaboration, Eur. Phys. J. C 71 (2011) 1645.
[8] K. Aamodt, et al., ALICE Collaboration, Phys. Lett. B 704 (2011) 442.
[9] B. Abelev, et al., ALICE Collaboration, Phys. Rev. Lett. 108 (2012) 082001.

[10] V. Khachatryan, et al., CMS Collaboration, Eur. Phys. J. C 71 (2011) 1575.
[11] S. Chatrchyan, et al., CMS Collaboration, JHEP 1202 (2012) 011.
[12] T. Sjöstrand, M. van Zijl, Phys. Rev. D 36 (1987) 2019.
[13] P. Bartalini, et al., arXiv:1003.4220.
[14] D. Acosta, et al., CDF Collaboration, Phys. Rev. D 70 (2004) 072002.
[15] V. Khachatryan, et al., CMS Collaboration, Eur. Phys. J C 70 (2010) 555.
[16] G. Aad, et al., ATLAS Collaboration, arXiv:1012.0791.
[17] S. Porteboeuf, R. Granier de Cassagnac, Nucl. Phys. B (Proc. Suppl.) 214 (2011)

181.
[18] M. Aguilar-Benitez, et al., NA27 Collaboration, Z. Phys. C 41 (1988) 191.
[19] L. Frankfurt, M. Strikman, D. Treleani, C. Weiss, Phys. Rev. Lett. 101 (2008)

202003.
[20] M. Strikman, Prog. Theor. Phys. Suppl. 187 (2011) 289.

[21] B. Alver, et al., PHOBOS Collaboration, Phys. Rev. C 83 (2011) 024913.
[22] W. Li, et al., CMS Collaboration, J. Phys. G 38 (2011) 124027.
[23] V. Khachatryan, et al., CMS Collaboration, JHEP 1009 (2010) 091.
[24] T. Matsui, H. Satz, Phys. Lett. B 178 (1986) 416.
[25] A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 571 (2003)

36.
[26] C. Miao, A. Mocsy, P. Petreczky, Nucl. Phys. A 855 (2011) 125.
[27] K. Aamodt, et al., ALICE Collaboration, JINST 3 (2008) S08002.
[28] K. Aamodt, et al., ALICE Collaboration, JINST 5 (2010) P03003.
[29] J. Alme, et al., Nucl. Instrum. Meth. A 622 (2010) 316.
[30] K. Aamodt, et al., ALICE Collaboration, Measurement of inelastic, single and

double diffraction cross sections in proton–proton collisions at LHC with ALICE,
in preparation.

[31] K. Aamodt, et al., ALICE Collaboration, Eur. Phys. J. C 68 (2010) 89.
[32] K. Aamodt, et al., ALICE Collaboration, Eur. Phys. J. C 68 (2010) 345.
[33] J.E. Gaiser, PhD thesis, SLAC-R-255, 1982.
[34] K. Nakamura, et al., Particle Data Group, J. Phys. G 37 (2010) 075021.
[35] P.Z. Skands, Phys. Rev. D 82 (2010) 074018.
[36] T. Sjöstrand, S. Mrenna, P.Z. Skands, JHEP 0605 (2006) 026.
[37] G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51 (1995) 1125.
[38] T. Sjöstrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178 (2008) 852.
[39] H. Jung, Comput. Phys. Commun. 143 (2002) 100.
[40] M. Strikman, Phys. Rev. D 84 (2011) 011501(R).

ALICE Collaboration

B. Abelev 68, J. Adam 33, D. Adamová 73, A.M. Adare 120, M.M. Aggarwal 77, G. Aglieri Rinella 29,
A.G. Agocs 60, A. Agostinelli 21, S. Aguilar Salazar 56, Z. Ahammed 116, A. Ahmad Masoodi 13, N. Ahmad 13,
S.U. Ahn 63,36, A. Akindinov 46, D. Aleksandrov 88, B. Alessandro 94, R. Alfaro Molina 56, A. Alici 97,9,
A. Alkin 2, E. Almaráz Aviña 56, J. Alme 31, T. Alt 35, V. Altini 27, S. Altinpinar 14, I. Altsybeev 117,
C. Andrei 70, A. Andronic 85, V. Anguelov 82, J. Anielski 54, C. Anson 15, T. Antičić 86, F. Antinori 93,
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P. Kaliňák 47, M. Kalisky 54, T. Kalliokoski 37, A. Kalweit 53, K. Kanaki 14, J.H. Kang 123, V. Kaplin 69,
A. Karasu Uysal 29,122, O. Karavichev 44, T. Karavicheva 44, E. Karpechev 44, A. Kazantsev 88,
U. Kebschull 51, R. Keidel 124, S.A. Khan 116, M.M. Khan 13, P. Khan 89, A. Khanzadeev 75, Y. Kharlov 43,
B. Kileng 31, M. Kim 123, T. Kim 123, S. Kim 16, D.J. Kim 37, J.H. Kim 16, J.S. Kim 36, S.H. Kim 36, D.W. Kim 36,
B. Kim 123, S. Kirsch 35,29, I. Kisel 35, S. Kiselev 46, A. Kisiel 29,118, J.L. Klay 4, J. Klein 82, C. Klein-Bösing 54,



172 ALICE Collaboration / Physics Letters B 712 (2012) 165–175

M. Kliemant 52, A. Kluge 29, M.L. Knichel 85, A.G. Knospe 105, K. Koch 82, M.K. Köhler 85, A. Kolojvari 117,
V. Kondratiev 117, N. Kondratyeva 69, A. Konevskikh 44, A. Korneev 87, C. Kottachchi Kankanamge Don 119,
R. Kour 90, M. Kowalski 104, S. Kox 64, G. Koyithatta Meethaleveedu 40, J. Kral 37, I. Králik 47, F. Kramer 52,
I. Kraus 85, T. Krawutschke 82,30, M. Krelina 33, M. Kretz 35, M. Krivda 90,47, F. Krizek 37, M. Krus 33,
E. Kryshen 75, M. Krzewicki 72,85, Y. Kucheriaev 88, C. Kuhn 58, P.G. Kuijer 72, P. Kurashvili 100,
A.B. Kurepin 44, A. Kurepin 44, A. Kuryakin 87, V. Kushpil 73, S. Kushpil 73, H. Kvaerno 17, M.J. Kweon 82,
Y. Kwon 123, P. Ladrón de Guevara 55, I. Lakomov 42,117, R. Langoy 14, C. Lara 51, A. Lardeux 102,
P. La Rocca 23, C. Lazzeroni 90, R. Lea 20, Y. Le Bornec 42, K.S. Lee 36, S.C. Lee 36, F. Lefèvre 102, J. Lehnert 52,
L. Leistam 29, M. Lenhardt 102, V. Lenti 98, H. León 56, I. León Monzón 106, H. León Vargas 52, P. Lévai 60,
J. Lien 14, R. Lietava 90, S. Lindal 17, V. Lindenstruth 35, C. Lippmann 85,29, M.A. Lisa 15, L. Liu 14,
P.I. Loenne 14, V.R. Loggins 119, V. Loginov 69, S. Lohn 29, D. Lohner 82, C. Loizides 67, K.K. Loo 37,
X. Lopez 63, E. López Torres 6, G. Løvhøiden 17, X.-G. Lu 82, P. Luettig 52, M. Lunardon 19, J. Luo 39,
G. Luparello 45, L. Luquin 102, C. Luzzi 29, K. Ma 39, R. Ma 120, D.M. Madagodahettige-Don 110,
A. Maevskaya 44, M. Mager 53,29, D.P. Mahapatra 48, A. Maire 58, M. Malaev 75, I. Maldonado Cervantes 55,
L. Malinina 59,i, D. Mal’Kevich 46, P. Malzacher 85, A. Mamonov 87, L. Manceau 94, L. Mangotra 80,
V. Manko 88, F. Manso 63, V. Manzari 98, Y. Mao 64,39, M. Marchisone 63,25, J. Mareš 49,
G.V. Margagliotti 20,92, A. Margotti 97, A. Marín 85, C.A. Marin Tobon 29, C. Markert 105, I. Martashvili 112,
P. Martinengo 29, M.I. Martínez 1, A. Martínez Davalos 56, G. Martínez García 102, Y. Martynov 2,
A. Mas 102, S. Masciocchi 85, M. Masera 25, A. Masoni 96, L. Massacrier 109,102, M. Mastromarco 98,
A. Mastroserio 27,29, Z.L. Matthews 90, A. Matyja 104,102, D. Mayani 55, C. Mayer 104, J. Mazer 112,
M.A. Mazzoni 95, F. Meddi 22, A. Menchaca-Rocha 56, J. Mercado Pérez 82, M. Meres 32, Y. Miake 114,
L. Milano 25, J. Milosevic 17,ii, A. Mischke 45, A.N. Mishra 81, D. Miśkowiec 85,29, C. Mitu 50, J. Mlynarz 119,
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S. Pochybova 60, P.L.M. Podesta-Lerma 106, M.G. Poghosyan 29,25, K. Polák 49, B. Polichtchouk 43, A. Pop 70,
S. Porteboeuf-Houssais 63, V. Pospíšil 33, B. Potukuchi 80, S.K. Prasad 119, R. Preghenella 97,9, F. Prino 94,
C.A. Pruneau 119, I. Pshenichnov 44, S. Puchagin 87, G. Puddu 18, J. Pujol Teixido 51, A. Pulvirenti 23,29,
V. Punin 87, M. Putiš 34, J. Putschke 119,120, E. Quercigh 29, H. Qvigstad 17, A. Rachevski 92,
A. Rademakers 29, S. Radomski 82, T.S. Räihä 37, J. Rak 37, A. Rakotozafindrabe 11, L. Ramello 26,
A. Ramírez Reyes 8, S. Raniwala 81, R. Raniwala 81, S.S. Räsänen 37, B.T. Rascanu 52, D. Rathee 77,
K.F. Read 112, J.S. Real 64, K. Redlich 100,57, P. Reichelt 52, M. Reicher 45, R. Renfordt 52, A.R. Reolon 65,
A. Reshetin 44, F. Rettig 35, J.-P. Revol 29, K. Reygers 82, L. Riccati 94, R.A. Ricci 66, T. Richert 28, M. Richter 17,
P. Riedler 29, W. Riegler 29, F. Riggi 23,99, M. Rodríguez Cahuantzi 1, K. Røed 14, D. Rohr 35, D. Röhrich 14,
R. Romita 85, F. Ronchetti 65, P. Rosnet 63, S. Rossegger 29, A. Rossi 19, F. Roukoutakis 78, C. Roy 58, P. Roy 89,
A.J. Rubio Montero 7, R. Rui 20, E. Ryabinkin 88, A. Rybicki 104, S. Sadovsky 43, K. Šafařík 29, R. Sahoo 41,
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