
08 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Replanning Algorithm for a Reactive Agent Architecture

Publisher:

Published version:

DOI:10.1007/3-540-46148-5_19

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

SPRINGER-VERLAG

This is the author's manuscript

This version is available http://hdl.handle.net/2318/112588 since 2016-11-30T23:47:54Z

A Replanning Algorithm for a Reactive Agent
Architecture

Guido Boella and Rossana Damiano

Dipartimento di Informatica
Cso Svizzera 185 Torino ITALY

email: guido@di.unito.it

Keywords: Planning, Agent architectures

Abstract. We present an algorithm for replanning in a reactive agent architecture
which incorporates decision-theoretic notions to drive the planning and meta-
deliberation process. The deliberation component relies on a refinement planner
which produces plans with optimal expected utility. The replanning algorithm
we propose exploits the planner’s ability to provide an approximate evaluation
of partial plans: it starts from a fully refined plan and makes it more partial until
it finds a more partial plan which subsumes more promising refinements; at that
point, the planning process is restarted from the current partial plan.

1 Introduction

In this paper we present a replanning algorithm developed for a reactive agent archi-
tecture which incorporates decision-theoretic notions to determine the agent’s commit-
ment. The agent architecture is based on the planning paradigm proposed by [Haddawy and Hanks, 1998],
which combines decision-theoretic refinement planning with a sound notion of action
abstraction ([Ha and Haddawy,]): given a goal and a state of the world, the planner is
invoked on a partial plan (i.e. a plan in which some actions are abstract) and iteratively
refines it by returning one or more plans which maximize the expected utility according
to the agent’s preferences, modelled by a multi-attribute utility function.

The decision-theoretic planning paradigm extends the classical goal satisfaction
paradigm by allowing partial goal satisfaction and the trade-off of goal satisfaction
against resource consumption. Moreover, it accounts for uncertainty and non deter-
minism, which provide the conceptual instruments for dealing with uncertain world
knowledge and actions having non-deterministic effects. These features make decision-
theoretic planning especially suitable for modelling agents who are situated in dynami-
cally changing, non deterministic environments, and have incomplete knowledge about
the environment.

However, decision-theoretic planning frameworks based on plan refinement ([Haddawy and Hanks, 1998])
do not lend themselves to reactive agent architectures, as they do not include any sup-
port for reactive replanning. In this paper, we try to overcome this gap, by proposing an
algorithm for replanning for a reactive agent architecture based on decision-theoretic
notions.

Since optimal plans are computed with reference to a certain world state, if the
world state changes, the selected plan may not be appropriate anymore. Instead of plan-
ning an alternative solution from the scratch, by re-starting the planning process from
the goal, the agent tries to perform replanning on its current plan.
The replanning algorithm is based on apartialization process: it proceeds by mak-
ing the current solution more partial and then starting the refinement process again.
This process is repeated until a new feasible plan is found or the partialization process
reaches the topmost action in the plan library (in this case, it coincides with the standard
planning process).

We take advantage of the decision-theoretic approach on which the planner is based
not only for improving the quality of the replanned solution, but also for guiding the
replanning process. In particular, the planner ability to evaluate the expected utility of
partial plans provides a way to decide whether to continue the partialization process
or to re-start refinement: for each partial plan produced in the partialization step, it is
possible to make an approximate estimate of whether and with what utility the primitive
plans it subsumes achieve the agent’s goal.
Then, the pruning heuristic used during the standard planning process to discard sub-
optimal plans can be used in the same way during the replanning process to reduce its
complexity.

2 The agent architecture

The architecture is composed of adeliberation module, an execution module, and a
sensing module, and relies on ameta-deliberationmodule to evaluate the need for
re-deliberation, following [Wooldridge and Parsons, 1999]. The agent is a BDI agent
([Rao and Georgeff, 1991]), in that its internal state of the agent is defined by its beliefs
about the current world, its goals, and the intentions (plans) it has formed in order to
achieve a subset of these goals . The agent’s deliberation and redeliberation are based
on decision-theoretic notions: the agent is driven by the overall goal of maximizing its
utility based on a set of preferences which are encoded in a utility function.

The agent is situated in a dynamic environment, i.e. the world can change indepen-
dently from the agent’s actions, and actions can have non-deterministic effects, i.e., an
action can result in a set of alternative effects. Moreover, there is no perfect correspon-
dence between the environment actual state and the agent’s representation of it.

In this architecture, intentions are not static, and can be modified as a result of re-
deliberation: if the agent detects a significant mismatch between the initially expected
and the currently expected utility brought about by a plan, the agent revises its intentions
by performing re-deliberation. As a result, the agent is likely to become committed to
different plans along time, each constituted of a different sequence of actions. However,
while the intention to execute a certain plan remains the same until it is dropped or sat-
isfied, the commitment to execute single actions evolves continuously as a consequence
of both execution and re-deliberation.

In order to represent dynamic intentions, separate structures for representing plan-
level commitment and action-level commitment have been introduced in the architec-
ture. So, intentions are stored in two kind of structures:plans, representing goal-level

commitment, andaction-executions, representing action-level commitment. New in-
stances of theplanstructure follow one another in time as a consequence of the agent’s
re-deliberation; on the contrary, the action-level commitment of an agent is recorded
in a unitary instance of theaction-executionstructure, calledexecution record, whose
temporal extent coincides with the agent’s commitment to a goal and which is updated
at every cycle.

META
DELIBERATION

goals intentions

EXECUTION

SENSING

PLANNING

REPLANNING

subjective
world

e
x
e
c
u
t
i
o
n
-
m
o
n
i
t
o
r
i
n
g

W
O
R
L
D

Fig. 1. The structure of the agent ar-
chitecture. Dashed lines represent data
flow, solid lines represent control flow.

The behavior of the agent is controlled by an
execution-sensing loop with a meta-level delib-
eration step (see figure 1). When this loop is first
entered, the deliberation module is invoked on
the initial goal; the goal is matched against the
plan schemata contained in the library, and when
a plan schema is found, it is passed to the plan-
ner for refinement. This plan becomes the agent’s
current intention, and the agent starts executing
it. After executing each action in the plan, the
sensing module monitors the effects of the action
execution, and updates the agent’s representation
of the world. Then, the meta-deliberation module
evaluates the updated representation by means of
an execution-monitoring function: if the world
meets the agent’s expectations, there is no need
for re-deliberation, and the execution is resumed;
otherwise, if the agent’s intentions are not ade-
quate anymore to the new environment, then the
deliberation module is assigned the task of mod-
ifying them.

Due to the agent’s uncertainty about the outcome of the plan, the initial plan is
associated to an expected utility interval, but this interval may vary as the execution of
the plan proceeds. More specifically, after the execution of a non-deterministic action
(or a conditional action, if the agent did not know at deliberation time what conditional
effect would apply), the new expected utility interval is either the same as the one that
preceded the execution, or a different one. If it is different, the new upper bound of the
expected utility can be the same as the previous one, or it can be higher or lower - that
is, an effect which is more or less advantageous than expected has taken place.

The execution-monitoring function, which constitutes the core of the meta-deliberation
module, relies on the agent’s subjective expectations about the utility of a certain plan:
this function computes the expected utility of the course of action constituted by the re-
maining plan steps in the updated representation of the world. The new expected utility
is compared to the previously expected one, and the difference is calculated: replanning
is performed only if there is a significant difference.

If new deliberation is not necessary, the meta-deliberation module simply updates
the execution record and releases the control to the execution module, which executes
the next action. On the contrary, if new deliberation is necessary, the deliberation mod-
ule is given the control and invokes itsreplanning componenton the current plan with

the task of finding a better plan; the functioning of the replanning component is inspired
to the notion of persistence of intentions ([Bratman et al., 1988]), in that it tries to per-
form the most local replanning which allows the expected utility to be brought back to
an acceptable difference with the previously expected one.

3 The planning algorithm

The action library is organised along twoabstractionhierarchies. Thesequential ab-
stractionhierarchy is a task decomposition hierarchy: an action type in this hierarchy
is a macro-operator which the planner can substitute with a sequence of (primitive or
non-primitive) action types. Thespecification hierarchyis composed of abstract action
types which subsume more specific ones.
The specification hierarchy is obtained byinheritance abstraction, a technique for
grouping together conditional probabilistic action operators in abstract classes based
on their outcomes which is characterized by the common features of all elements of the
class ([Haddawy and Suwandi, 1994]), while the decomposition hierarchy is obtained
by sequential abstraction, i.e., by gathering stereotypical sequences of action types into
complex action types ([Sacerdoti, 1977]). In the following, for simplicity, we will refer
to sequentially abstractactions ascomplexactions and to actions in the specification
hierarchy asabstractactions.

A plan (see section 2) is a sequence of action instances and has associated the goal
the plan has been planned to achieve. A plan can be partial both in the sense that some
steps are complex actions and in the sense that some are abstract actions. Each plan
is associated with the derivation tree (including both abstract and complex actions)
which has been built during the planning process and that will be used for driving the
replanning phase.

Before refining a partial plan, the agent does not know which plan (or plans) - among
those subsumed by that partial plan - is the most advantageous according to its prefer-
ences. Hence, the expected utility of the abstract action isuncertain: it is expressed as
an interval having as upper and lower bounds the expected utility of the best and the
worst outcomes produced by substituting in the plan the abstract action with all the
more specific actions it subsumes. This property is a key one for the planning process
as it makes it possible to compare partial plans which contain abstract actions.

The planning process starts from the topmost action in the hierarchy which achieves
the given goal. If there is no time bound, it proceeds refining the current plan(s) by
substituting complex actions with the associated decomposition and abstract actions
with all the more specific actions they subsume, until it obtains a set of plans which are
composed of primitive actions.

At each cycle the planning algorithm re-starts from a less partial plan: at the be-
ginning this plan coincides with the topmost action which achieves the goal, in the
subsequent refinement phases it is constituted by a sequence of actions; this feature is
relevant for replanning, as it make it possible to use the planner for refining any partial
plan, no matter how it has been generated.

At each refinement step, the expected utility of each plan is computed by projecting
it from the current world state. Then, apruning heuristic is applied by discarding the
plans identified as suboptimal, i.e., plans whose expected utility upper bound is lower

procedure plan replan(plan p, world w){
/* find the first action which will fail */

action a := find-focused-action(p,w);
mark a; //set a as the FA
plan p’ := p;
plan p’’ := p;

/* while a solution or the root are not found */
while (not(achieve(p’’,w, goal(p’’)))

and has-father(a)){
/* look for a partial plan with better utility */

while (not (promising(p’, w, p))
and has-father(a)){

p’ := partialize(p’);
project(p’,w); } //evaluate the action in w

/* restart planning on the partial plan */
p’’ := refine(p’,w);}
return p’’;}

Fig. 2. The main procedure of the replanning algorithm,replan

than the lower bound of some other planp. The suboptimality of a planp′ with respect
to p means that all possible refinements ofp have an expected utility which dominates
the utility of p′, and, as a consequence, dominates the utility of all refinements ofp′:
consequently, suboptimal plans can be discarded without further refining them. On the
contrary, plans which have overlapping utilities need further refinement before the agent
makes any choice. At each step of refinement theexpected utility intervalof a plan
tends to become narrower, since it subsumes a reduced number of plans (in fact, the
plan appears deeper in the hierarchy of plans).

4 The replanning algorithm

If a replanning phase is entered, then it means that the current plan does not reach the
agent’s goal, or that it reaches it with a very low utility compared with the initial expec-
tations. But it is possible that the current plan is ‘close’ to a similar feasible solution,
where closeness is represented by the fact that both the current solution and a new fea-
sible one are subsumed by a common partial plan at some level of the action abstraction
hierarchy.

The key idea of the replanning algorithm is then to make the current plan more
partial by traversing the abstraction hierarchies in a upsidedown manner, until a more
promising abstract plan is found. The abstraction and the decomposition hierarchy play
complementary roles in the algorithm: the abstraction hierarchy determines the alter-
natives for substituting the actions in the plan, while the decomposition hierarchy is
exploited to focus the substitution process on a portion of the plan.
A partial plan can be identified as promising by observing its expected utility interval,
since this interval includes not only the utility of the (unfeasible) current plan but also
the utility of the new solution. So, during the replanning process, it is possible to use
this estimate in order to compare the new plan with the expected utility of the more
specific plan from which it has been obtained: if it is not promising it is discarded.

function plan partialize(plan p){
action a := marked-action(p); /* a is the FA of p */
/* if it is subsumed by a partial action */
if (abstract(father(a))){

delete(a, p); /* delete a from the tree */
return p;}

/* no more abstract parents: we are in a decomposition */
else if (complex(father(a)){

a1 := find-sibling(a,p);
if (null(a1)){

/* there is no FA in the decomposition */
mark(father(a)) //set the FA

//delete the decomposition
delete(descendant(father(a)),p);
return p;}

else { //change the current FA
unmark(a);
mark(a1);}}}

Fig. 3. The procedure for making a plan more abstract,partialize.

The starting point of the partialization process inside the plan is the first plan step
whosepreconditionsdo not hold, due to some event which changed the world or to some
failure of the preceding actions. In [Haddawy and Suwandi, 1994]’s planning frame-
work the Strips-like precondition/effect relation is not accounted for: instead, an action
is described as a set of conditional effects. The representation of an action includes both
the action intended effects, which are obtained when its ‘preconditions’ hold, and the
effects obtained when its ‘preconditions’ do not hold. For this reason, the notation of
the action has been augmented with the information about the action intended effect,
which makes it possible to identify its preconditions.1

The task of identifying the next action whose preconditions do not hold (the ‘fo-
cused action’) is accomplished by theFind-focused-actionfunction (see the main pro-
cedure in Figure 2);mark is the function which sets the current focused action of the
plan). Then, starting from the focused action (FA), the replanning algorithm partial-
izes the plan, following the derivation tree associated with the plan (see thepartializes
function in Figure 3).

If the action type of the FA is directly subsumed by an abstract action type in the
derivation tree, the focused action is deleted and the abstract action substitutes it in the
tree frontier which constitutes the plan. On the contrary, if FA appears in a decomposi-
tion (i.e., its father in the derivation tree is a sequentially abstract action) then two cases
are possible (see the find-sibling function in 4):

1. There is some action in the plan which is a descendant of a sibling of FA in the
decomposition and which has not been examined yet: this descendant of the sibling

1 Since it is possible that more than one condition-effect branch lead to the goal (maybe with
different satisfaction degrees), different sets of preconditions can be identified by selecting the
condition associated to successful effects.

function action find-sibling(a,p){
/* get the next action to be refined (in the same decomposition as a) */

action a0 := right-sibling(a,p);
action a1 := leftmost(descendant(a0,p));
while(not (null (a1))){

/* if it can be partialized */
if (not complex(father(a1))){

unmark(a); //change FA
mark(a1)
return a1;}

/* move to next action */
a0 := right-sibling(a0,p);
a1 := leftmost(descendant(a0,p));}

/* do the same on the left side of the plan */
action a1 := left-sibling(a,p);
action a1 := rightmost(descendant(a0,p));
while(not (null (a1))){

if (not complex(father(a1))){
unmark(a);
mark(a1)
return a1;}

action a1 := left-sibling(a,p);}

Fig. 4. The procedure for finding the new focused action.

becomes the current FA. The order according to which siblings are considered re-
flects the assumption that it is better to replan non-executed actions, when possible:
so, right siblings (from the focused action on) are given priority on left siblings.

2. All siblings in the decomposition have been already refined (i.e., no one has any
descendant): all the siblings of FA and FA itself are removed from the derivation
tree and replaced in the plan by the complex sequential action, which becomes the
current FA (see Figure 4).2

As discussed in the Introduction, the pruning process of the planner is applied in
the refinement process executed during the replanning phase. In this way, the difficulty
of finding a new solution from the current partial plan is alleviated by the fact that
suboptimal alternatives are discarded before their refinement.

Beside allowing the pruning heuristic, however, the abstraction mechanism has an-
other advantage. Remember that, by the definition of abstraction discussed in Section
2, it appears that, given a world state, the outcome of an abstract action includes the
outcomes of all the actions it subsumes.
Each time a planp is partialized, the resulting planp′ has an expected utility inter-
val that includes the utility interval ofp. Howeverp′ subsumes also other plans whose
outcomes are possibly different from the outcome ofp. At this point, two cases are pos-
sible: either the other plans are better thanp or not. In the first case, the utility ofp′ will

2 Since an action type may occur in multiple decompositions3, in order to understand which
decomposition the action instance appears into, it is not sufficient to use the action type library,
but it is necessary to use the derivation tree).

have an higher higher bound with respect top, since it includes all the outcomes of the
subsumed plans. In the second case, the utility ofp′ will not have a higher upper bound
thanp. Hence,p′ is not more promising than the less partial planp.
The algorithm exploits this property (see thepromisingcondition in the procedurere-
plan) to decide when the iteration of the partialization step must be stopped: when a
promising partial plan (i.e., a plan which subsumes better alternatives than the previous
one) is reached, the partialization process ends and the refinement process is restarted
on the current partial plan.

The abstraction hierarchy has also a further role. The assumption underlying our
strategy is that a plan failure can often be resolvedlocally, within the subtree the fo-
cused action appears into. Not all failures, however, can be resolved locally, but these
cases are taken into account by the algorithm as well: after the current subtree has been
completely partialized, a wider subtree in the derivation tree will be considered, until
the topmost root action is reached: in this case, the root of the derivation tree becomes
the FA and the planning process is restarted from scratch.
In case of non-local causal dependencies among actions (i.e., a precondition of the FA
is enabled by the effect of an action which does not appear in the local context of FA),
the algorithm takes advantage from the fact that the current partial plan isprojected
onto its final state and its expected utility is computed: provided that the definition of
abstract action operators is sufficiently accurate to make casual dependencies explicit, it
is likely that invalid dependencies will be reflected in the expected utility of the current
partial plan, and, as a consequence, it will be pruned during refinement without being
further expanded.

A

B C

D E

B’ B’’

C’

E’ E’’

F G

C’’

G’ G’’

Fig. 5. A generic action hierarchy. Ab-
straction relations are represented by
dashed lines.

Finally, the movement of the FA is a
critical point of the algorithm. Here we
presentedfind-sibling as a simple pro-
cess which follows the local structure of
the tree. However, some improvements
are possible to take advantage from the
cases in which non local dependencies
are known. Hence, thefind-siblingproce-
dure should be modified in order to use
in deeper way the structure of the plans
and, in particular, the implicit enablement
links among actions for choosing the next
FA.

For the sake of brevity, in order to
illustrate how the replanning algorithm
works, we will resort to a generic action
hierarchy (see fig. 5), which abstracts out
the details of the domains we used to test the implementation.
In the following, we will examine the replanning process that the algorithm would per-
form, given the initial plan composed of the stepsB′ - D - E′ (see fig. 6).

1. Assume that, at the beginning of the replanning process, the focused step is action
D (1). D is examined first, but an alternative instantiation of it cannot be found (as

A

B C

D E

B’ B’’

C’

focused step

E’ E’’

F G

C’’

G’ G’’

A

B C

B’ B’’

focused step
C’

A

B

B’ B’’

C

E

E’ E’’

G

C’’

G’

D

focused step
C’

E

E’ E’’

G

C’’

G’

DF F

G’’ G’’

(1) (2) (3)

Fig. 6. A graphical representation of the plan replanning process on the generic action library
introduced in 5. Black nodes represent the siblings of the focused action node, while the grey
nodes represent the local decomposition context. (1)-(2)-(3) represent the phases of the replanning
process.

its immediate parent is not an abstract action). The find-siblings function returns
the right sibling ofD, E.

2. The planner is given as input the partial planB′ - D - E. Assuming that a feasible
plan is not found (i.e.,B′ - D - E′′, the only possible alternative to the original
plan, does not work), the replanning process is started again after collapsing the
sub-plan (D − E) on its father, the complex nodeC ′ (no siblings left).

3. Given the new input planB′ - C ′, the focused step now isC ′ (2). The focused step
is examined first, and the more abstract father nodeC is found;C ′ is replaced by
C in the plan and the planner is invoked on the new partial planB′-C.

4. Again, assuming that a new feasible plan has not been found by refiningB′-C, the
replanning process continues by examiningB, the only sibling of the focused action
C (3). Before the candidate plan is collapsed on its root (A), the replanning process
gives the planner as input the plan obtained by substituting the more abstract node
B for B′ in the current partial plan, obtainingB - C.

5. Finally, if the refinement of the partial planB - C does not yield a feasible plan,
the plan is collapsed on the its fatherA. If a feasible plan is not found by refining
the plan constituted by the root alone, the plan replanning algorithm fails.

In the previous version of the algorithm, thefind-sibling step proceeds not only
from left to right (towards actions yet to be executed), but also in a backward manner:
at a certain point it is possible that the focused point is shifted to an already executed
actions. In order to overcome this problem, we propose that the projection rule should
is changed to include in the projection the actions that must be executed again (possibly
in an alternative way). In this case, the FA would be moved incrementally to the left,
and would become the reference point for starting the projection of the current partial
plan.

5 Related Work and Conclusions

[Hanks and Weld, 1995] has proposed a similar algorithm for an SNLP planner. The
algorithm searches for a plan similar to known ones first by retracting refinements: i.e.,
actions, constraints and causal links. In order to remove the refinements in the right

order, [Hanks and Weld, 1995] add to the plan an history of ‘reasons’ explaining why
each new element has been inserted.
In a similar way, our algorithm adapts the failed plan to the new situation by retracting
refinements, even if in the sense of more specific actions and decompositions. The same
role played by ‘reasons’ is embodied in the derivation tree associated to the plan which
explains the structure of the current plan and guides the partialization process.

As it has been remarked on by ([Nebel and Koehler, 1993]), reusing existing plans
raises complexity issues. They show that modifying existing plans is advantageous only
under some conditions: in particular, when, as in our proposal, it is employed in a re-
planning context (instead of a general plan-reuse approach to planning) in which it is
crucial to retain as many steps as possible of the plan the agent is committed to. Second,
when the complexity of generating plans from the scratch is hard, as in the case of our
decision-theoretic planner.

For what concerns the complexity issues, it must be noticed that the replanning
algorithm works in a similar way as theiterative deepeningalgorithm. At each stage,
the height of the tree of the state space examined increases. The difference with the
standard search algorithm is that, instead of starting the search from the tree root and
stopping at a certain depth, we start from a leaf of the plan space and, at each step, we
select a higher tree which rooted by one of the ancestors of the leaf.
In the worst case, the order of complexity of the replanning algorithm is the same as the
standard planning algorithm. However, two facts that reduce the actual work performed
by the replanning algorithm must be taken into account: first, if the assumption that a
feasible solution is “close” to the current plan is true, then the height of the tree which
includes both plans is lower than the height of root of the whole state space. Second, the
pruning heuristics is used to prevent the refinement of some of the intermediate plans
in the search space, reducing the number of refinement runs performed.

Finally, it is worth mentioning that the replanning algorithm we propose is complete,
in that it finds the solution if one exists, but it does not necessarily finds the optimal
solution: the desirability of an optimal solution, in fact, is subordinated to the notions
of resource-boundedness and to the persistence of intentions, which tend to privilege
conservative options.

References

[Bratman et al., 1988]Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988). Plans and
resource-bounded practical reasoning.Computational Intelligence, 4:349–355.

[Ha and Haddawy,]Ha, V. and Haddawy, P. Theoretical foundations for abstraction-based prob-
abilistic planning. InTwelfth Conference on Uncertainty in Artificial Intelligence, pages 291–
298, Portland.

[Haddawy and Hanks, 1998]Haddawy, P. and Hanks, S. (1998). Utility models for goal-
directed, decision-theoretic planners.Computational Intelligence, 14:392–429.

[Haddawy and Suwandi, 1994]Haddawy, P. and Suwandi, M. (1994). Decision-theoretic refine-
ment planning using inheritance abstraction. InProc. of 2nd AIPS Int. Conf., pages 266–271,
Menlo Park, CA.

[Hanks and Weld, 1995]Hanks, S. and Weld, D. S. (1995). A domain-independent algorithm
for plan adaptation.Journal of Artificial Intelligence Research, 2:319–360.

[Nebel and Koehler, 1993]Nebel, B. and Koehler, J. (1993). Plan modification versus plan gen-
eration: A complexity-theoretic perspective. InProceedings of of the 13th International Joint
Conference on Artificial Intelligence, pages 1436–1441, Chambery, France.

[Rao and Georgeff, 1991]Rao, A. and Georgeff, M. P. (1991). Modeling rational agents within
a BDI-architecture. InProc. 2th Int. Conf. Principles of Knowledge Representation and Rea-
soning (KR:91), pages 473–484, Cambridge, MA.

[Sacerdoti, 1977]Sacerdoti, E. D. (1977).A Structure for Plans and Behavior. American Else-
vier, New York.

[Wooldridge and Parsons, 1999]Wooldridge, M. and Parsons, S. (1999). Intention reconsider-
ation reconsidered. In M̈uller, J., Singh, M. P., and Rao, A. S., editors,Proc. of ATAL-98),
volume 1555, pages 63–80. Springer-Verlag.

