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SUMMARY

Random probability measures are the main tool for Bayesian nonparametric inference, with
their laws acting as prior distributions. Many well-known priors used in practice admit different,
though equivalent, representations. In terms of computational convenience, stick-breaking
representations stand out. In this paper we focus on the normalized inverse Gaussian process
and provide a completely explicit stick-breaking representation for it. This result is of interest
both from a theoretical viewpoint and for statistical practice.

Some key words: Bayesian nonparametric inference; Dirichlet process; Normalized inverse Gaussian process; Random
probability measure; Stick-breaking representation.

1. INTRODUCTION

1·1. Bayesian nonparametrics and the stick-breaking construction

Bayesian nonparametric inference has recently undergone strong development. See Hjort et al.
(2010) for an up-to-date review. At the heart of the approach lies the concept of random proba-
bility measure, whose law acts as a prior for Bayesian nonparametric inference, the most notable
example being the Dirichlet process (Ferguson, 1973). There exist different representations for
a number of nonparametric priors, which, although equivalent in distribution, may serve differ-
ent purposes. For example, representations based on completely random measures allow one
to study analytically their properties (Lijoi & Prünster, 2010), whereas stick-breaking repre-
sentations have displayed great potential in addressing modelling and computational issues.
The main result of this paper is a stick-breaking representation of the normalized inverse
Gaussian process (Lijoi et al., 2005), a tractable alternative to the Dirichlet process. Our result
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is of interest from a theoretical point of view since it is the first representation of a random
probability measure in terms of dependent and non-beta distributed stick-breaking weights
and it completes the study of the normalized inverse Gaussian process, for which a stick-
breaking representation was missing. From a modelling and computational point of view it
paves the way for the definition of complex models based on the normalized inverse Gaus-
sian process by replacing the stick-breaking constructed Dirichlet process, most notably within
dependent models for nonparametric regression, and it allows extensions of recent simula-
tion algorithms, based on stick-breaking constructions, to the normalized inverse Gaussian
process.

There are several different ways to define the Dirichlet process, each highlighting one of
its aspects. The original definition of Ferguson (1973) constructs the Dirichlet process Dc,P0 ,
with parameter α = cP0 and P0 a probability measure, in terms of a consistent family of finite-
dimensional Dirichlet distributions. An alternative definition, also due to Ferguson (1973), relies
on the idea of normalizing a gamma process. A third construction is based on a stick-breaking
procedure that follows from a result in J. W. McCloskey’s 1965 PhD thesis at Michigan State
University, recalled as Theorem 1 in Pitman (1996) under the assumption of nonatomic P0, and
that has been extended to any P0 in Sethuraman (1994). Let (Vi )i�1 be a sequence of independent
and identically distributed random variables, with Vi ∼ Be(1, c) and c > 0, and define random
probability weights ( p̃ j ) j�1 as

p̃1 = V1, p̃ j = Vj

j−1∏
i=1

(1 − Vi ) ( j = 2, 3, . . .). (1)

If (Yi )i�1 is a sequence of independent and identically distributed random variables, independent
of the p̃i and whose common probability distribution is P0, then

∑
j�1 p̃ j δY j ( · ) = Dc,P0( · ) in

distribution, where δa denotes the unit point mass at a.
Another prominent nonparametric prior is the two-parameter Poisson–Dirichlet process

(Perman et al., 1992), also known, according to terminology introduced in Ishwaran & James
(2001), as the Pitman–Yor process. This admits a simple stick-breaking representation: let
(Vi )i�1 be independent random variables with Vi ∼ Be(1−σ, θ + iσ), σ∈(0, 1) and θ>−σ ,
and define the random probability masses as in (1) and (Yi )i�1 as above, except that we require
a nonatomic P0. The resulting discrete random probability

∑
j�1 p̃ jδY j ( · ) coincides, in distri-

bution, with the two-parameter Poisson–Dirichlet process. See Pitman (2006) for an exhaus-
tive account. Bayesian nonparametric applications include mixtures (Ishwaran & James, 2001),
linguistics (Teh, 2006), species sampling (Lijoi et al., 2007) and survival analysis (Jara et al.,
2010).

The extreme flexibility of stick-breaking representations has originated a vast literature con-
cerning both modelling and computation. In terms of modelling, the dependent processes, ini-
tiated by MacEachern (1999), heavily rely on a stick-breaking construction and have proved
to be effective prior specifications in regression problems. See Hjort et al. (2010) for a review
of recent contributions. From a computational point of view significant progress, especially
in designing efficient simulation algorithms for hierarchical mixtures, has been made using
such representations. Among the most relevant contributions, which devise algorithms that
work in principle for any random probability measure with an explicit stick-breaking repre-
sentation, are the blocked Gibbs sampler (Ishwaran & James, 2001), the retrospective sampler
(Papaspiliopoulos & Roberts, 2008), the slice sampler (Walker, 2007) and a very efficient syn-
thesis (Yau et al., 2011) of these last two.
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Stick-breaking representation of Gaussian priors 665

1·2. General remarks and motivation

Starting from the stick-breaking representations of the Dirichlet and the two-parameter
Poisson–Dirichlet processes, a general class of stick-breaking priors can be defined by allow-
ing independent stick-breaking weights Vi with an arbitrary distribution on (0, 1). This issue
is addressed in Ishwaran & James (2001) limited to beta distributed Vi . However, their results
also hold for general distributions. One might wonder whether, besides the Dirichlet and two-
parameter Poisson–Dirichlet processes, there are other members of this large class that share
a similar degree of mathematical tractability, allowing the investigation of some of their prop-
erties, such as the prediction rules, the posterior distribution or the distribution of the random
partition they induce. Unfortunately, no other instances are known, and this clearly limits their
appeal in terms of modelling and applications beyond the Dirichlet and two-parameter Poisson–
Dirichlet cases. The reason for the poor tractability may be traced back to a distributional con-
cept originated in population genetics, which is termed invariance under size-biased permutation
and is recalled in § 2. Here it is enough to note that such an invariance property implies sig-
nificant mathematical simplifications when working out distributional properties of a random
probability measure. In particular, as shown in McCloskey’s PhD thesis, the Dirichlet process is
the only random probability measure admitting a stick-breaking representation with independent
and identically distributed weights Vi which is invariant under size-biased permutation. On the
other hand, the two-parameter Poisson–Dirichlet process is essentially the only random probabil-
ity measure invariant under size-biased permutation that admits a stick-breaking representation
with independent weights Vi (Pitman, 1996). These considerations suggest that if one would
like to identify further random probability measures both enjoying sufficient tractability and
admitting a simple stick-breaking representation one has to focus on dependent stick-breaking
weights Vi .

Here we consider the normalized inverse Gaussian process (Lijoi et al., 2005). By now many
of its properties are known (Lijoi et al., 2005; James et al., 2006, 2009). In some sense, for
any distributional property of the Dirichlet process, an analogous property of the normalized
inverse Gaussian process is known, with the notable exception of a stick-breaking representa-
tion. Our main result fills this gap. It is important to anticipate that the stick-breaking weights
Vi will be dependent: this is not surprising and actually is necessary. To see why, first note
that any discrete random probability measure admits a stick-breaking representation if one
allows any possible distribution and form of dependence for the Vi (Pitman, 1996). More-
over, from Perman et al. (1992) it is immediate that the normalized inverse Gaussian process,
and more generally any homogeneous normalized random measure with independent incre-
ments (Regazzini et al., 2003; James et al., 2006), is invariant under size-biased permutation.
Therefore, by the above-mentioned characterizations provided in McCloskey’s PhD thesis and
in Pitman (1996), none of them can admit stick-breaking representation with independent, and
a fortiori independent and identically distributed, weights Vi . Hence, the weights Vi must be
dependent. In this respect, the stick-breaking representation for the normalized inverse Gaussian
process represents the first case of a tractable prior with explicit stick-breaking representation
based on dependent weights. To avoid misunderstandings it is to be stressed that, in princi-
ple, one can define random probability measures by writing down a stick-breaking represen-
tation with either independent or dependent weights: the key point is, however, obtaining a
measure whose properties can be analysed in more or less explicit form. If not, an arbitrary
stick-breaking representation is essentially a vacuous object since the construction itself is not
able to provide, on its own, intuition and understanding of the behaviour of the resulting random
probability.
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1·3. The stick-breaking representation of the normalized inverse Gaussian process

Let us first fix some notation and display the distributions that play a key role in the con-
struction. Let X be a generalized inverse Gaussian random variable with parameters a, b > 0 and
p ∈R, in symbols X ∼ GIG(a, b, p), whose probability density function is

fX (x) = (a/b)p/2

2K p{(ab)1/2} x p−1 exp

{
−1

2

(
ax + b

x

)}
(x > 0), (2)

with Kν indicating the modified Bessel function of the third type. Moreover, let Z be a positive
1/2-stable random variable with scale parameter b > 0, Z ∼ St1/2(b), whose density is

fZ (z) = b1/2

(2π)1/2
z−3/2 exp

(
−1

2

b

z

)
(z > 0).

Note that 1/2-stable random variables can also be seen as reciprocal gamma random variables
with shape parameter 1/2 and scale parameter b/2. Introduce a sequence (Zi )i�1 of indepen-
dent and identically distributed random variables with Zi ∼ St1/2(1) and define a sequence of
dependent (0, 1)-valued random variables (Vi )i�1 as follows

V1 = X1

X1 + Z1
, X1 ∼ GIG (τ1, 1, −1/2) , (3)

(Vi | V1, . . . , Vi−1) = Xi

Xi + Zi
, Xi ∼ GIG (τi , 1, −i/2) (i � 2),

where τ1 = a, τi = a/{∏i−1
j=1(1 − Vj )}, for i � 2, and the sequences (Xi )i�1 and (Zi )i�1 are

independent. Sampling the Vi is straightforward (Atkinson, 1982). It will be shown in § 2 that
the distribution of V1 and of Vi | V1, . . . , Vi−1, for i � 2, in (3), is a special case of normalized
generalized inverse Gaussian distribution and admits closed form density, for v ∈ (0, 1),

fV1(v) = a1/4v−1/2 (1 − v)−1

(2π)1/2K−1/2
(
a1/2
)K−1

{(
a

1 − v

)1/2
}

, (4)

f(Vi |V1,...,Vi−1)(v) = τ
1/4
i v−1/2 (1 − v)−5/4+i/4

(2π)1/2 K−i/2

(
τ

1/2
i

) K−1/2−i/2

{(
τi

1 − v

)1/2
}

(i � 2).

Such a class of distributions is denoted as N-GIG∗(a, p), and (3) can be expressed as

V1 ∼ N-GIG∗ (a, −1/2) , (Vi | V1, . . . , Vi−1) ∼ N-GIG∗ (τi , −i/2) (i � 2). (5)

Finally, N-IGc,P0( · ) stands for a normalized inverse Gaussian process with parameter α = c P0.

PROPOSITION 1. Let (Vi )i�1 be a sequence of dependent random variables as in (3), or equiv-
alently (5), and define the random probability weights ( p̃ j ) j�1 via stick-breaking as in (1). Let
(Yi )i�1 be a sequence of independent and identically distributed random variables, independent
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Stick-breaking representation of Gaussian priors 667

of the p̃i and with nonatomic distribution P0. Then, for c = a1/2,∑
j�1

p̃ j δY j ( · ) = N-IGc,P0( · ).

The proof, together with the necessary background and auxiliary results, is given in § 2.

2. BACKGROUND, AUXILIARY RESULTS AND PROOF

2·1. The normalized generalized inverse Gaussian distribution

We start by introducing a new distribution on (0, 1), which includes both the normal-
ized inverse Gaussian distribution and the distribution defining the stick-breaking weights (4)
as specific examples. To this end first recall that the parameter space of the distribu-
tion of a GIG(a, b, p) random variable admitting density (2) is given by 	 = 	1 ∪ 	2 ∪
	3 with 	1 = {(a, b, p) : a > 0, b > 0, p ∈R}, 	2 = {(a, b, p) : a > 0, b = 0, p > 0} and 	3 =
{(a, b, p) : a = 0, b > 0, p < 0}. Interesting special cases correspond to each subspace 	i (i =
1, 2, 3): from 	1, the case considered in § 1, one obtains the inverse Gaussian distributions,
p = −1/2, among others; 	2 corresponds to the class of gamma distributions; 	3 identifies
the class of reciprocal gamma distributions and hence, in particular, of the positive 1/2-stable
distribution, p = −1/2. An exhaustive account is provided in Jørgensen (1982).

DEFINITION 1. Let X1 and X2 be two independent random variables such that
X1 ∼ GIG(a1, b1, p1) and X2 ∼ GIG(a2, b2, p2). The random variable V = X1(X1 + X2)

−1,

taking values in (0, 1), is termed normalized generalized inverse Gaussian, V ∼
N-GIG(a1, b1, p1, a2, b2, p2), and admits density

fV (v) =
(

a1
b1

)p1/2 (
a2
b2

)p2/2

2K p1{(b1a1)1/2}K p2{(b2a2)1/2} v p1−1(1 − v)p2−1

{
b1
v

+ b2
1−v

a1v + a2(1 − v)

}(p1+p2)/2

× K p1+p2

([{
b1

v
+ b2

1 − v

}{
a1v + a2(1 − v)

}]1/2
)

, v ∈ (0, 1). (6)

The density displayed in (6) is obtained by application of a simple change of variable and
formula 3.471.9 in Gradshteyn & Ryzhik (2000). Given that generalized inverse Gaussian ran-
dom variables are infinitely divisible (Barndorff-Nielsen & Halgreen, 1977), the normalized gen-
eralized inverse Gaussian distribution represents another example of the class of normalized
infinitely divisible distributions studied in Favaro et al. (2011).

For our purposes, two special cases are of particular interest. The first is the
normalized inverse Gaussian distribution (Lijoi et al., 2005), which corresponds to a
N-GIG(1, b1, −1/2, 1, b2, −1/2) distribution or, in other terms, to (6) with X1 and X2 inverse
Gaussian. Its density simplifies to

fV (v) = (b1b2)
1/2 eb1

1/2+b2
1/2

π

K−1

{(
b1
v

+ b2
1−v

)1/2
}

v3/2(1 − v)3/2
(

b1
v

+ b2
1−v

)1/2 , v ∈ (0, 1), (7)

which is seen to coincide with equation (5) in Lijoi et al. (2005) by setting αi = bi
1/2, for i = 1, 2.

 at U
niversity of T

orino on June 30, 2014
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


668 S. FAVARO, A. LIJOI AND I. PRÜNSTER

The second subclass of Definition 1 to be considered corresponds to the random variable (5)
dictating the form of the stick-breaking weights in Proposition 1 and is denoted by N-GIG∗(a, p).
Specifically, one has N-GIG∗(a, p) = N-GIG(a, 1, p, 0, 1, −1/2) with density

fV (v) = a1/4

(2π)1/2K p(a1/2)
v−1/2 (1 − v)−5/4−p/2 K p− 1

2

{(
a

1 − v

)1/2
}

, v ∈ (0, 1),

which reduces to (4) when the parameters a and p are replaced by τi and pi = −i/2, respectively,
for i � 1.

2·2. The normalized inverse Gaussian process

The normalized inverse Gaussian process (Lijoi et al., 2005) enjoys mathematical tractability
and it is particularly effective when drawing inference on the clustering structure featured by
data. Its original definition was given in terms of a consistent system of finite-dimensional dis-
tributions. Consider n independent inverse Gaussian random variables Xi , which admit a density
as in (2) with p = −1/2. For our purposes we can take a = 1 without loss of generality and write
Xi ∼ IG(1, bi ), for i = 1, . . . , n. As one defines the Dirichlet distribution via normalization of
independent gamma random variables, one can construct the normalized inverse Gaussian dis-
tribution with parameter (b1, . . . , bn) as the distribution of the random vector (W1, . . . , Wn),
where Wi = Xi/(

∑n
j=1 X j ) for i = 1, . . . , n, which admits density on the (n − 1)-dimensional

simplex 
n−1, with respect to the Lebesgue measure on Rn−1, coinciding with

f (w1, . . . , wn−1) = exp(
∑n

i=1 bi
1/2)
∏n

i=1 bi
1/2

2n/2−1πn/2
w

−3/2
1 · · ·w−3/2

n−1

(
1 −

n−1∑
i=1

wi

)−3/2

× {An(w1, . . . , wn−1)
}−n/4

K− n
2

[{An(w1, . . . , wn−1)
}1/2

]
, (8)

where An(w1, . . . , wn−1) =∑n−1
i=1 (bi/wi ) + bn/(1 −∑n−1

j=1 w j ). Clearly, (8) reduces to the
marginal distribution (7) if n = 2. In Lijoi et al. (2005) it is shown that there exists a random
probability measure P , termed a normalized inverse Gaussian process with parameter mea-
sure α = c P0 and denoted as N-IGc, P0( · ), with (8) defining its family of finite-dimensional
distributions.

The second construction of a normalized inverse Gaussian process we will need is obtained via
normalization of an inverse Gaussian process, which corresponds to the definition of a Dirichlet
process as a normalized gamma process (Ferguson, 1973). To this end recall the concept of a
completely random measure (Kingman, 1993): suppose μ is a random measure on some complete
and separable metric space X such that for any measurable A1, . . . , An , with Ai ∩ A j = ∅ for
i |= j , the random variables μ(A1), . . . , μ(An) are mutually independent. Then, μ is termed a
completely random measure. A completely random measure μ, without jumps at fixed points
of discontinuity, is uniquely identified by its Lévy intensity ν by means of its Lévy–Khintchine
representation

E

[
exp

{
−
∫

X

f (x)μ(dx)

}]
= exp

[
−
∫

R+×X

{
1 − e−s f (y)

}
ν(ds, dy)

]

for any measurable R-valued function such that
∫ | f | dμ < ∞ almost surely. Another property

to recall is the almost sure discreteness of completely random measures, which implies that any
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such measure μ is representable as μ(·) =∑ j�1 J jδY j (·). For our purposes it is enough to focus
on completely random measures μ such that μ(X) < ∞ almost surely and the locations Y j are
independent of the nonnegative jumps J j . Moreover, without loss of generality, the locations
(Y j ) j�1 can be assumed to be independent and identically distributed from a nonatomic P0. This
is equivalent to saying that the Lévy intensity factorizes as ν(ds, dy) = ρ(ds)P0(dy) so that the
corresponding completely random measure μ is homogeneous. If ρ has infinite total mass then
μ is strictly positive, so the normalization we are going to carry out is admissible. On the other
hand, homogeneity is motivated by mere technical convenience.

We now recall the definition of homogeneous normalized random measures with independent
increments (Regazzini et al., 2003; James et al., 2006), which contain the Dirichlet and normal-
ized inverse Gaussian processes as special cases. In fact, starting from a completely random mea-
sure satisfying the above conditions one can always define a homogeneous normalized random
measure with independent increments as

P(·) = T −1 μ(·) =
∑
j�1

p jδY j (·), (9)

with T = μ(X) =∑ j�1 J j and p j = J j/T for any j � 1.
To define the normalized inverse Gaussian process via normalization consider an inverse

Gaussian completely random measure, which is characterized by the Lévy intensity

ρ(ds)P0(dy) = b1/2

(2π)1/2
s−3/2e−1/2 a s ds P0(dy) (s > 0, y ∈ X, b > 0), (10)

where, without loss of generality for our scope, we can set a = 1. One then obtains the
N-IGb1/2,P0

( · ) process as a homogeneous normalized random measure with independent incre-
ments (9) characterized by the Lévy intensity (10) with a = 1. The Dirichlet process is obtained
by replacing the inverse Gaussian completely random measure with a gamma completely random
measure or, in other terms, (10) with ρ(ds)P0(dy) = a s−1e−s ds P0(dy) for any a > 0.

2·3. Size-biased permutations

Consider any discrete random probability measure P =∑ j�1 p jδY j , the only constraint being
that the locations (Y j ) j�1, which are independent and identically distributed from a nonatomic
probability measure P0, are independent of the random probabilities (p j ) j�1. Homogeneous
normalized random measures with independent increments defined in § 2·2 fit into this gen-
eral framework. An interesting rearrangement of the elements of (p j ) j�1 can be obtained by
the so-called size-biased permutation, a concept originated in population genetics and defined
by the following procedure. Consider an exchangeable sequence (Xn)n�1 directed by the dis-
crete random probability measure P . Correspondingly, define (Ni )i�1 as the successive times at
which new values of the sequence (Xn)n�1 appear, namely N1 = 1 and N j = inf{i > N j−1 : Xi 
∈
(X1, . . . , Xi−1)} for any j � 2. Note that pr(Nn > n) > 0 since, due to the discreteness of P , ties
will be recorded with positive probability. Moreover, let (ξi )i�1 be an integer-valued sequence
such that pr{ξi = n | (p j ) j�1} = pn and pr{Xn = Yξn | (p j ) j�1, (Y j ) j�1, (ξi )i�1} = 1. Hence ξn

identifies the specific location Xn coincides with and this clearly entails that ξNi |= ξN
if i |= .

Finally, set

p̃i = pξNi
(i � 1), (11)
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with the convention p̃i = 0 if there are fewer than i distinct values in (Xn)n�1. The sequence
( p̃ j ) j�1 is termed a size-biased permutation of (p j ) j�1. Moreover, (p j ) j�1, or the correspond-
ing random probability measure P , is termed invariant under size-biased permutation if ( p̃ j ) j�1,
whose coordinates are defined according to (11), has the same finite-dimensional distributions
as (p j ) j�1. See Pitman (1996) and references therein for details.

The importance of invariance under size-biased permutation is best illustrated by the following
considerations. Clearly stick-breaking priors can be defined whatever the choice of [0, 1]-valued
random weights (Vi )i�1 provided they ensure

∑
i�1 pi = 1, almost surely, in (1). Nonetheless for

the investigation of certain distributional properties of P , which are of interest in statistical appli-
cations, invariance under size-biased permutation is essential. Indeed, if one wishes to analyse
the clustering structure induced by P or to make predictions about the outcomes of future obser-
vations, one needs an expression for the exchangeable partition probability function and this can
hardly be derived unless P is invariant under size-biased permutation. To make this point clear,
let X1, . . . , Xn be a sample from an exchangeable sequence (Xi )i�1, directed by P , that features
Kn � n distinct values: these, in turn, define a partition into Kn clusters with respective frequen-
cies N1,n, . . . , NKn,n . Hence, the exchangeable partition probability function is the probability
distribution of the random vector (Kn, N1,n, . . . , NKn,n), that is

p(n)
k (n1, . . . , nk) = pr(Kn = k, N1,n = n1, . . . , NKn,n = nk)

=
∑

i1 |=··· |= ik

E(pn1
i j

· · · pnk
ik

). (12)

From an operational standpoint the expression in (12) is not useful: for certain specifications
of the stick-breaking random probabilities pi one may be able to compute the expected value
E(pn1

i j
· · · pnk

ik
), but the sum over the indices i1, . . . , ik cannot be evaluated explicitly. Even

numerically it is a highly demanding task already for moderately small values of k. Importantly,
(12) can be re-expressed in much simpler form in terms of the size-biased permutation ( p̃i )i�1
of the sequence (pi )i�1, namely

p(n)
k (n1, . . . , nk) = E

⎧⎨
⎩

k∏
i=1

p̃ni
i

k−1∏
j=1

⎛
⎝1 −

j∑
r=1

p̃r

⎞
⎠
⎫⎬
⎭ ; (13)

see equation (8) in Pitman (1996). Now, if and only if P is invariant under size-biased
permutation, the p̃i s in (13) can be replaced by the stick-breaking random probabilities pi s.
Consequently, p(n)

k can be more easily evaluated by using (13), instead of (12), with the simple
stick-breaking pi s in place of their size-biased permutations, whose distribution, unless invari-
ance holds, is typically very complicated or not known. For instance, in the Dirichlet case one
then immediately obtains from (13) the Ewens sampling formula

p(n)
k (n1, . . . , nk) = ck

(c)n

k∏
i=1

(ni − 1)!

with (c)n = c(c + 1) · · · (c + n − 1) denoting the ascending factorial. Similarly one obtains the
Pitman sampling formula in the two-parameter Poisson–Dirichlet case. In light of the above
considerations it is apparent why no exchangeable partition probability function is known for
stick-breaking priors other than those invariant under size-biased permutation. Now consider
the class of homogeneous normalized random measures with independent increments (9) and
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denote by (J( j)) j�1 the sequence of jumps of μ rearranged in decreasing order. The corre-
sponding sequence of random probability weights is then given by p( j) = J( j)/T for any j � 1.
Perman et al. (1992) generalized the result in McCloskey’s PhD thesis. Indeed, they derived a
stick-breaking characterization for the size-biased permutation ( p̃ j ) j�1 of the sequence of ranked
random probabilities (p( j)) j�1 by providing a detailed description of the distribution of the
sequence (Vi )i�1 within (1) in terms of the measure ρ and the distribution of the total mass
T . Now focus on the random probability measures. Since the locations (Y j ) j�1 are assumed to
be independent and identically distributed from a nonatomic probability measure P0 indepen-
dent of the random probabilities (p j ) j�1 and given that the sequences (p( j)) j�1 and ( p̃ j ) j�1
represent two specific rearrangements of the original sequence (p j ) j�1, one has

P(·) =
∑
j�1

p( j)δY j (·) =
∑
j�1

p̃ jδY j (·) (14)

in distribution. By combining this with the definition of the Dirichlet process as a normalized
gamma process and the identity (14), one recovers the stick-breaking representation. The same
strategy is followed for the derivation of the stick-breaking representation in the normalized
inverse Gaussian case.

2·4. Proof

Given the material provided in the previous sections, the proof of Proposition 1 is now a quite
straightforward application of Theorem 2.1 in Perman et al. (1992). Consider an inverse Gaussian
completely random measure: let fT be the density function of the corresponding total mass T ,

fT (t) = eb1/2
b1/2

(2π)1/2
t−3/2 exp

{
−1

2

(
t + b

t

)}
(t, b > 0), (15)

and denote by λ the density function of ρ in (10) given by

λ(s) = b1/2

(2π)1/2
s−3/2 exp

(
−1

2
s

)
(s > 0). (16)

The normalized inverse Gaussian process, by the identity in (14) and its construction via normal-
ization P = μ/T recalled in § 2·2, can be represented as

P(·) =
∑
j�1

p̃ jδY j (·) (17)

where ( p̃ j ) j�1 is the size-biased permutation of the ranked random probabilities of P and
(Y j ) j�1 is a sequence of independent and identically distributed random variables, which are
independent of the p̃ j and whose common probability distribution P0 is nonatomic.

By Theorem 2.1 in Perman et al. (1992), the sequence ( p̃ j ) j�1 in (17) has stick-breaking rep-
resentation in terms of some sequence of dependent random variables (Vi )i�1. In particular, they
provide a structural expression for the joint distribution of the random variables (V1, . . . , Vi ), for
any i � 1, in terms of the density functions fT and λ. We start by deriving the distribution of V1.
According to equation (2.d) in Perman et al. (1992), the density function of the random variable
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V1 is of the form

fV1(v1) = v1

∫ +∞

0
tλ(v1t) fT {(1 − v1)t} dt

= eb1/2
b1/2

2π
v

−1/2
1 (1 − v1)

−3/2
∫ +∞

0
t−1−1 exp

(
− b

2t (1 − v1)
− t

2

)
dt v1 ∈ (0, 1),

where the second identity is obtained by inserting (15) and (16). The density displayed in (4) is
obtained by combining the identity K−1/2(b1/2) = π1/2(2b)−1/2e−b1/2

with Formula 3.471.9 in
Gradshteyn & Ryzhik (2000) and setting b = a. The representation in (3), or (5), follows from
the definition of normalized generalized inverse Gaussian distribution given in Definition 1
and the corresponding density (6). Now consider the case i = 2: according to equation (2.d) in
Perman et al. (1992), the joint density function of the random variables (V1, V2) is

fV1,V2(v1, v2) = v1v2(1 − v1)

∫ +∞

0
t2λ(v1t)λ{v2(1 − v1)t} fT {(1 − v1)(1 − v2)t} dt

= eb1/2
b

(2π)3/2
v

−1/2
1 (1 − v1)

−2v
−1/2
2 (1 − v2)

−3/2

×
∫ +∞

0
t−3/2−1 exp

{
b

2t (1 − v1)(1 − v2)
− t

2

}
dt v1, v2 ∈ (0, 1),

where the second identity is obtained by inserting (15) and (16). The density of (V2 | V1) in (4)
is obtained by using formula 3.471.9 in Gradshteyn & Ryzhik (2000) and by dividing by the
marginal density of V1, provided a in (4) is set equal to b appearing in the expression above. The
representations in (3) or (5) follow again by Definition 1. Proceeding along the same lines one
obtains the density of (Vi | V1, . . . , Vi−1) displayed in (4) for any i � 3.

3. CONCLUDING REMARKS

The knowledge of a posterior representation of the random probability is not necessary for
drawing posterior inferences in complex models based on some stick-breaking prior. Nonethe-
less, the derivation of a posterior representation is important for understanding the distributional
structure of the model conditional on observed data. Here we provide such a structural description
starting from the general result provided in Theorem 1 in James et al. (2009), and show how the
stick-breaking construction as well as the normalized generalized inverse gaussian distribution
appear in it.

Consider a N-IGb1/2,P0
( · ) prior, suppose that the observed sample X1, . . . , Xn has displayed

k distinct values X∗
1, . . . , X∗

k with respective frequencies n1, . . . , nk , and introduce a latent ran-
dom variable Un whose density function, conditionally on X1, . . . , Xn , is such that fUn (u) ∝
un−1(u + 1/2)k/2−n exp[−{b(1 + 2u)}1/2] with u > 0. It can be shown that conditionally on
X1, . . . , Xn and on Un the N-IGb1/2,P0

( · ) process coincides in distribution with

w0,u Pu +
k∑

i=1

wi,u δX∗
i
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where Pu = μu/Tu is a N-IG{b(1+2u)}1/2, P0
( · ) random probability measure. Hence, the stick-

breaking weights giving rise to Pu are identified by a dependent sequence (Vi,u)i�1 such that

V1,u ∼ N-GIG∗
(

τ1,u, −1

2

)
,

Vi,u | V1,u, . . . , Vi−1,u ∼ N-GIG∗
(

τi,u, − i

2

)
(i � 2),

where τ1,u = b(1 + 2u) and τi,u = b(1 + 2u)/{∏i−1
j=1(1 − Vj,u)}, for i � 2. Note, further, that

w0,u = Tu

Tu +∑k
i=1 Ji

, w j,u = J j

Tu +∑k
i=1 Ji

( j � 1),

where Ji , for i = 1, . . . , k, and Tu are independent and Ji ∼ Ga(ni − 1/2, u + 1/2).
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LIJOI, A., MENA, R. H. & PRÜNSTER, I. (2005). Hierarchical mixture modelling with normalized inverse Gaussian

priors. J. Am. Statist. Assoc. 100, 1278–91.
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