UHWERSITA
| DEGLI STUDI
DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Matching Constraints for the Lambda Calculus of Objects

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/116886 since 2015-10-09T16:07:15Z
Publisher:
Springer-Verlag
Published version:
DOI:10.1007/3-540-62688-3_28
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

26 November 2024

Matching Constraints for the Lambda Calculus of Objects

Viviana Bono
Dipartimento di Informatica, Universita di Torino
C.so Svizzera 185, 1-10149 Torino, Italy

e-mail: bono@di.unito.it

Michele Bugliesi
Dipartimento di Matematica, Universita di Padova
Via Belzoni 7, I-35131 Padova, Italy
e-mail: michele@math.unipd.it

Abstract. We present a new type system for the Lambda Calculus of
Objects [16], based on matching. The new system retains the property of
type safety of the original system, while using implicit match-bounded
quantification over type variables instead of implicit quantification over
row schemes (as in [16]) to capture Mytype polymorphic types for meth-
ods. Type soundness for the new system is proved as a direct corollary
of subject reduction. A study of the relative expressive power of the two
systems is also carried out, that shows that the new system is as power-
ful as the original one on derivations of closed-object typing judgements.
Finally, an extension of the new system is presented, that gives provi-
sion for a class-based calculus, where primitives such as creation of class
instances and method update are rendered in terms of delegation.

1 Introduction

The problem of deriving safe and flexible type systems for object-oriented lan-
guages has been addressed by many theoretical studies in the last years. The
interest of these studies has initially been focused on class-based languages,
while, more recently, type systems have also been proposed for object-based (or
delegation-based) languages. Clearly, the work on the latter has been strongly
influenced by the study of the former. For example, the notion of row-variables
introduced by [18] to type extensible records was refined in [16, 7, 17, 5] to
type extensible objects. Similarly, recursive object types have first been used to
provide functional models of class-based languages [11, 9, 12, 14, 13], and then
applied to the case of an object calculus supporting method override in presence
of subsumption [3]. A further notion that has been studied extensively in class-
based languages (as well as in the record calculus of [10]) is that of (F-)bounded
quantification as a tool for modeling the subclass relation. Following this line of
research, in this paper we investigate the role of matching in the design of a type
system for the delegation-based Lambda Calculus of Objects [16].

Matching is a relation over object types that has first been introduced by [8]
as an alternative to F-bounded subtyping [13] in modeling the subclass relation in
class-based languages, and then as a complement to subtyping to model method
inheritance between classes [1, 2].

The Lambda Calculus of Objects [16] is a delegation-based calculus where
method addition and override, as well as method inheritance, all take place at
the object level rather than at the class level. In [16] a type system for this cal-
culus is defined, that provides for static detection of errors, such as message not
understood, while at the same time allowing types of methods to be specialized
to the type of the inheriting objects. This mechanism, that is commonly referred
to as Mytype specialization, is rendered in the type system in terms of a form of
higher-order polymorphism which, in turn, uses implicit quantification over row
schemes to capture the underling notion of protocol extension.

The system we present in this paper takes a different approach to the ren-
dering of Mytype specialization, while retaining the property of type safety of
the original system. Technically, the new solution is based on implicit match-
bounded quantification over type variables to characterize methods as functions
with polymorphic types, and to enfore correct instantiation of these types as
methods are inherited.

A similar solution for the polymorphic typing of methods in Lambda Calculus
of Objects is proposed in [6]. The key difference, with respect to the system of this
paper, is that [6] uses subtyping, instead of matching, and (implicit) subtype-
bounded quantification. There appear to be fundamental tradeoffs between the
two solutions: in fact, while subtyping has the advantage of allowing object
subsumption, matching appears to be superior to subtyping in the rendering of
the desired typing of methods. The reason is explained, briefly, as follows: in order
to ensure safe uses of subsumption, the system of [6] allows type promotion for an
object-type only when the methods in the promoted type do not reference any of
the methods of the original type. As in [7], labeled types are used to encode the
cross references among methods in the methods’ types. In [6], however, labeled
types involve some additional limitations over [7] for subsumption, and require
a rather more complex bookkeeping that affects the typing of methods as well.

Relying on matching, instead, has the advantage of isolating the typing of
methods from subtyping, thus allowing a rather elegant and simple rendering of
the method polymorphism. The simplicity of the resulting system also allows us
to draw a formal analysis of the relationship between the original system and
ours. In particular, we show that every closed-object typing judgement derivable
in [16] is also derivable in our system. We then show that the new system may
naturally be extended to give provision for a class-based calculus, where sub-
classing, and primitives such as creation of class instances and method update
are rendered in terms of delegation.

The rest of the paper is organized as follows. In Section 2, we review the
untyped calculus of [16]. In Section 3, we present the new typing rules for objects
and we prove type soundness. In Section 4, we present the encoding of the type
system of [16] into the new system. In Section 5, we present the extended system
that gives provision for classes, and then we conclude in Section 6 with some
final remarks.

2 The Untyped Calculus

An expression of the untyped calculus can be any of the following:
ex=z|c|Aze|erer| ()| (e1++ m=es) | (e1 m=e3) |e<=m

where z is a variable, ¢ a constant and m a method name. The reading of the
object-related forms is as follows:

O is the empty object,

(e1++ m=e3) extends object e; with a new method m having body es,
(e1+ m=e3) replaces e;’s method body for m with es,

e<m sends message m to object e,

The expression (e; <+ m=es) is defined only when e; denotes an object that does
not have an m method, whereas (e; < m=es) is defined only when e; denotes
an object that does contain an m method. As in [16], both these conditions are
enforced statically by the type system.

The other main object operation is method invocation, which comprises two
separate actions, search and self-application: evaluating the message e < m
requires a search, within e, of the body of the m method which is then applied to
e itself. To formalize this behavior, we introduce a subsidiary object expression,
e < m, whose intuitive semantics is as follows: evaluating e <~ m results into
a recursive traversal of the “sub-objects” of e, that succeeds upon reaching the
right-most addition or override of the method in question.

The operational semantics 284 of the untyped calculus can be thus defined as
the reflexive, transitive and contextual closure of the reduction relation defined
below (o stands for both ++ and +)

®
<
2
~

(8) (Az.eq) es — [e2/x]eq
(<) e<m cvef (e+>m)e
(+ succ) (e14+0 m=ey) <> m oy e,

(+ next) (e140 n=ey) <> m DY e om
(fail ())+ m L G

(fail abs) Az.e <> m L G

plus a few additional reductions for error propagation (see Appendix A). The
use of the search operator expressions in our calculus is inspired to [7], and it
provides a more direct and concise technical device than the bookkeeping relation
originally introduced in [16].

3 Object Types and Matching

Object types have the same structure as in [16]: an object type has the form
Objt.{myi:T1,...,ME:TE)

where the m;’s are method names, whereas the 7;’s are type expressions.

The row (my:71, ..., my:7;) defines the interface or protocol of the objects of
that type, i.e. the list of the methods (with their types) that may be invoked on
these objects. The binder Obj scopes over the row, and the bound variable ¢t may
occur free within the scope of the binder, with every free occurrence referring
to the object type itself. Obj-types are thus a form of recursively-defined types,
even though 0bj is not to be understood as a fixed-point operator: as in [16], the
self-referential nature of these types is axiomatized directly by the typing rules,
rather than defined in terms of an explicit unfolding rule.

3.1 Types and Rows

Type expressions include type-constants, type variables, function types and ob-
ject types. The sets of rows and types are defined recursively as follows:

Rows R:u= ()| (R|m:T)
Types 71 :=b|v|7—7|0bjt.R.

The symbol b denotes type constants, ¢, u, and v denote type variables, whereas
T, o, p, ... range over types; all symbols may appear indexed.

Row expressions that differ only for the name of the bound variable, or for
the order of the component m:7 pairs are considered identical. More formally, a-
conversion of type variables bound by 0bj, as well as applications of the principle:

((R| n:mp) | m:m) = ((R | m:m) | nimy),

are taken as syntactic conventions rather than as explicit rules. The structure of
valid contexts (see Appendix B) is defined as follows:

i=e|@lNzx:7|Tudtr,

Correspondingly, the judgements are I' -, I' Fe: 7, I' - 7y <# T, where I' - x
stands for “I" is a well-formed context”, and the reading of the other judgements
is standard.

As an important remark, we note that, as in [6] and in contrast to [16], rows in
our system are formed only as “ground” collections of pairs “method-name:type”.
One advantage of this choice is a simplified notion of well-formedness for rows:
instead of the kinding judgements of [16], in our system this notion is axioma-
tized, syntactically, as follows. Let M (R) denote the set of method names of the
row R defined inductively as follows:

M) ={}, and MR |m:7T)) = M(R)U{m}.

Then, we say that a row is well formed if and only if it is (¢) either the empty
row (), or (ii) a row of the form (R | m:7) with R well formed and m ¢ M(R).

3.2 Matching

Matching is the only relation over types that we assume in the type system; it
is a reflexive and transitive relations over all types, while for Obj-types it also
formalizes the notion of protocol extension needed in the typing of inheritance.
The relation we use here is a specialization of the original matching relation [8],
defined by the following rule (77 is short for my:m, ..., mg:7;):

'k x {(m:7, o) well formed

——— —— (<#)
I'+ 0vjt.{m7,nc) ¢ O0bjt.(m:7)

Unlike the original definition [8], that allows the component types of a 0bj-
type to be promoted by subtyping, our definition requires that these types
coincide with the component types of every 0bj-type placed higher-up in the
<# -hierarchy. Like the original relation, on the other hand, our relation has the
peculiarity that it is not used in conjunction with a subsumption rule. As noted
in [2], this restriction is crucial to prevent unsound uses of type promotion in
the presence of method override.

3.3 Typing Rules for Objects

For the most part, the type system is routine. The object-related rules are dis-
cussed below. The first defines the type of the empty object (whose type is the
top of object-types in the <# -hierarchy):

I %
—— (empty object).
'+ () :0bjt.{)

The typing rule for method invocation has the following format:
I'te:o I'Fo<g 0bjt.d{n:T)

(send).

I'te<n:lo/tlr

As in [16], the substitution for ¢ in 7 reflects the recursive nature of object types.
In order for a call to an n method on an object e to be typed, we require that e
has any type containing the method name n. An interesting aspect of the above
rule is that the type o may either be a 0bj-type matching 0bj¢.{n:7), or else an
unknown type (i.e. a type variable) occurring (match-bounded) in the context I'.
Rules like (send) are sometimes referred to as structural rules [1], and their use
is critical for an adequate rendering of Mytype polymorphism: it is the ability to
refer to possibly unknown types in the type rules, in fact, that allows methods
to act parametrically over any u <# A, where u is the type of self, and A is a
given 0bj-type.

The next rule defines the typing of an object-extension with a new method:

I+ e :0bjt.(R | mp)
I, u < 0bjt.(mip,n:T) F e : [u/t](t—T) n & M((R| m:T))

(ext).
I' - (e1 <+ n=ey) : 0bjt.{R | m:p,n:T)

Typing the method addition for n requires (i) that the n method be not in the
type of the object e; that is being extended, and (i7) that the protocol of the
resulting object contains at least the n method as well as the 7 methods needed
to type the body ey of n.

The typing of a method override is defined similarly. As for the (send) rule,
the generality that derives from the use of the type o is needed to carry out
derivations where the (over) rule is applied with e; variable (e.g. self).

I'kte:o I't o <t 0bjt.(mp,n:7)
I, u<gt 0bjt.{mp,nT) b ey : [u/t](t—T)

(over).
I'k{eg+n=ey): 0o
We conclude with the rule for typing a search expression:
I'te:o T'Fo<gtobjt(nr) I'FecFHto
(search).

I'ke+n:[g/tlt—r)

Once more we assume a possibly unknown type for e: typing a search requires,
however, more generality than typing a method invocation because the search of
a method encompasses a recursive inspection of the recipient object (i.e. of self).
This explains the intuitive roles of the two types ¢ and ¢ in the above rule: ¢ is
the type of the self object, to which the n message was sent and to which the
body of n will be applied; o, on the other hand, is the type of e, the sub-object
of self where the body of n method is eventually found while searching within
self.

3.4 An Example of Type Derivations

We conclude the description of the type system with an example that illustrates
the use of the typing rules in typing derivations. The example is borrowed from
[16], and shows that the type system captures the desired form of method spe-
cialization. The following object expression represents a point object with an x
coordinate and a move method:

pt = ((x = Aself.3)«+ move = Aself.\dx.(self<+ x = As.(self <« x) + dx)).

Below, we sketch the derivation of the judgement € F pt : Obj ¢t.(x : int,move :
int—t), using the assumption € F (x = Aself.3) : Objt.(x : int).

Consider then defining cp as a new point, obtained from pt with the addi-
tion of a color method, namely: cp = (pt«—+ color = Aself.blue). With a
similar derivation, we may now prove that cp has type 0bjt.(x : int,move :
int—t,color : colors), thus showing how the type of move gets specialized as
the method is inherited from a pt to a cp.

Contexts

I = wu<g 0bjt.(x:int,move : int—t), self : u, dx : int
It = I',v<gt0bjt(x:int,move:int—t), s: v
Derivation

1. Ib - (self < x) +dx :int
by (send) from I F self : u and I> F u <¢ 0bjt.(x : int).
2. It — sk As.(self < x) +dx : v—int
3. I I (self+ x = As.(self < x) +dx) : u
by (over) from It F self : u and It F u <# 0bjt.(x : int,move : int—t)
and 2.
4. It —self —dx F Aself.\dx.(self+ x = As.(self < x) + dx) : u—int—u
5. ¢ F pt : Obj¢.{x : int,move : int—t)
by (ert) from € F (x = Aself.3) : Objt.(x : int) and 4.

3.5 Type Soundness

We conclude this section with a theorem of type soundness. We first show that
types are preserved by reduction.

Theorem 1 [Subject Reduction]. If e; codl, es and the judgement I' F ey : T
is derivable, then so is the judgement I' - ey : T.

The proof is omitted here due to the lack of space, and can be found in [4].
Type soundness follows directly as a corollary of Subject Reduction, for if we
may derive a type for an expression e, then e may not be reduced to err (which
has no type). Hence we have:

Theorem 2 [Type Soundness|. If et e: 1 is derivable, then e% wrong.

4 Relationship with the Type System of [FHM94]

The relationship between our system and the system of [16] is best illustrated by
looking at the example of Section 3.4, where we showed that the move method
for the pt object may be typed with the following judgement:

u <¢t 0bjt.(x : int,move : int—t) -
Aself . Ax.(self< x = As.(self <« x) + dx) : u—int—u

The corresponding judgement in the original system, (cfr. [16], Section 3.4)) is:

r: T—[x,move] - Aself.Ax.(self+ x = As.(self < x) + dx)
:[0bjt.{rt | x : int,move : int—t)/t](t—int—t).

The two judgements have essentially the same structure, but the rendering of
polymorphism is fundamentally different. In the original system, polymorphism
is placed inside the row of the type 0bjt.(rt | x:int,move:int—t), and arises

from using the (second order) row variable r: instances of the Obj-type are
obtained by substituting any well-kinded row (i.e. one that does not contain the
names x and move) for the row r¢ that results from the application of r to the
type t. In our system, instead, we place polymorphism outside rows: the type
of move is polymorphic in the type-variable u, and instances of this type are
obtained by substituting any syntactically well-formed type that matches the
bound 0bj ¢.{x:int,move:int—t) for .

As it turns out, the correspondence between polymorphic Obj-types of the
original system, and the type-variables of our systems carries over to typing
derivations. As a matter of fact, the correspondence works correctly as long as
the polymorphic Obj-types are used in a “disciplined”, or regular way in typing
judgements and derivations from [16]; it breaks, instead, in other cases. Consider,
for instance, the following judgement:

r:T—[m], e: 0bjt.{rt) b (e« m=>As.s) : 0bjt.(rt | m:t)

While this judgement is derivable in [16], replacing the polymorphic 0bj-types
with the corresponding type variables fails to produce a derivable judgement in
our system. There are several reasons for this, the most evident being that our
(ext) rule requires a Obj-type (not a variable) in the type of the extended object.

In general, the correspondence between row and type variables breaks when-
ever the same row-variable occurs in different polymorphic Obj-types of a deriva-
tion. Fortunately, however, it can be shown that such undesired uses of poly-
morphic Obj-type may always be dispensed with in derivations for closed-object
typing judgements of the form e I e : 7. The proof of this fact is rather complex,
and requires a number of technical lemmas establishing some useful properties
of the typing derivations of [16]. Due to the lack of space, below we only state
the main result, referring the reader to [4] for full details.

Definition 3. [4] Let € - e : 7 be a judgement from [16], and let = be a deriva-
tion for this judgement. We say that = is regular if and only if every every
row-variable of = occurs always within the same polymorphic 0bj-type in =.

Theorem 4. [4] Every judgement of the form ¢ & e : 7 has a derivation in [16]
iff it has a regular derivation.

Using this result, we may then prove that every typing judgement of the form
€ F e : 7 derivable in [16] is derivable also in our system. We do this, in the
next subsection, introducing an encoding function that translates every regular
derivation from [16] into a corresponding derivation in our system. Restricting
to regular derivation is convenient in that it greatly simplifies the definition of
the encoding; on the other hand, given the result established in Theorem 4, it
involves no loss of generality for the judgements of interest.

4.1 Encoding the Fisher-Honsell-Mitchell Type System

Throughout this subsection, types, contexts, judgements and derivations from
[16] will be referred to as, respectively row—types, row-contexts, row-judgements.
Also we will implicitly assume that they occur within regular derivations.

Encoding of Types, Contexts and Judgements. The encoding of a row-
type 7 is the type 7* that results from replacing every occurrence of a polymor-
phic Obj-type with a corresponding type-variable. The correspondence between
the polymorphic Obj-types of 7 and the type-variables of 7* may be established
using any injective map from row-variables to corresponding type variables (this
is because in every regular row-derivation there is a one-to-one correspondence
between row-variables and polymorphic Obj-types). To ease the presentation,
we will thus assume that the row-variables of regular derivations are all chosen
from a given set V,, and that an injective map £ : V,, — V; is given, where V; is
a corresponding set of type variables.

Definition 5 [ENcODING OF TYPES|. Let 7 be a row-type. The encoding of T,
denoted by 7*, is defined as follows:

- 7% = 1, for every type variable or type constant T;
(o)t =T oy

- (Obj t.{mi:my, ... ,myme))* = 0bjt.(my:r], ..., mpT)
- (Obj t.(rt | my:my, ... ,mp:TE))* = &(r)

It follows from the definition that the encoding of a “ground” type, i.e. one that
does not contain any occurrence of row-variables, leaves the type unchanged: in
other words, 7* is equal to 7, whenever 7 is ground in the sense we just explained.

The encoding of a row-context I is more elaborate, and it is given with
respect to the regular derivation where the context occurs.

Definition 6 [ENCODING OF CONTEXTS]. Let I' be a row-context of a regular
derivation =, and let Objt.(rt | mT) denote the polymorphic Obj-type of =

where r occurs. The encoding of I', denoted by I'%, is defined as follows:

e =¢

’ (th:T);”: é';

’ (F,’I‘:Ii)i:- :Féa 5(”.)<'$'é Objt'(W*)
(LN m)E=T% o 7*.

The definition is well-posed as every row-variable occurs in just one polymorphic
Obj-type, = being regular. Also note that the encoding of every valid row-context
I is a valid context, since every row-variable r may occur at most once in I

The encoding of row-judgements is also given with respect to the regular
derivation where they occur.

Definition 7 [ENCODING OF JUDGEMENTS]. Let I' F e : 7 be a row-judgement
of a regular derivation =. Then the encoding of this row-judgement is I'z F e : 7*.

Note that if € - e : 7 is a derivable judgement, then its encoding is the
judgement ¢ F e : 7 itself. This is easily seen as the type 7 must be ground, the
judgement being derivable.

Encoding of Type Rules. The row-portion of the type system from [16] has
no counterpart in our system, as we axiomatize well-formedness for rows syntac-
tically. The encoding of a type rule for terms, instead, is the result of encoding
the row-judgements in the conclusion and in the premises of the rule, with the
exception of the rules (send), (ext) and (over).

Definition 8 [ENCODING OF (send)].

I'kFe: (0bjt(R|mTy)"
I'z - (0bjt(R | miT))" g Objt.(m:T")

—

= It Fe<m: ([0bjt(R | 77 /t]r)"

*
(I'te:0bjt.{(R|mT))

I'te<m:[0bjt(R|m:T)/t]T
where = is the regular derivation where the rule occurs.

The type (0bjt.(R | m:7))* may either be a a Obj-type, if R is a list of m:7
pairs, or the type variable u = £(r) if R = (rt | ...). The two cases correspond
respectively to messages to an object, and messages to self. As in [16], they are
treated uniformly in our type system.

Definition 9 [ENCODING OF (ext)].

I'F ey : 0bjt.(R | m7)
Ir:T — [mn]t r not in T
es : [0bj t.{rt | M7, n:7) /t](t—T)

I't (e1+—+ n=e3) : 0bjt.(R | M7, n:T) | =

I'z ke :0bjt(R" | mT*) n & M(Rx)U {m}
Iz, uw<g 0bjt.{mr,mr*) Fes: [u/t](t—7)"

I'Z F (e1¢+ n=ey) : 0bjt(R" | 7", n:7™)
where u = (), and = is the regular derivation where the rule occurs.

Note that the context I'z, u < 0bjt.{TRi7*) is just the encoding, in =, of the
row-context I, r : T — [m]. The notation R* is consistent because, as we show
in [4], for every instance of the (ext) rule occurring in a regular derivation it
must be the case that R is a ground row of the form p:g for some methods p
and types @. The encoding of (over) is defined similarly to the (ext) case.

Theorem 10 [COMPLETENESS]. Let ¢ - e : 7 be a row-judgement derivable in
[16]. Then € & e : T is derivable in our system.

Proof. Since € F e : 7 is derivable, the encoding of this judgement coincides
with the judgement itself. Let then = be a regular derivation for £ F e : 7 (the
existence of such a derivation follows from Theorem 4): to prove the claim, it
is enough to show that the encoding (in =) of every other judgement of = is
derivable in our system.

Let then I'" F €’ : 7 be a judgement of =, and let =/ be the sub-derivation of
Z rooted at I'' F €’ : 7. The proof is by induction on Z’. The basis of induction,
the (projection) case, follows immediately, and most of the inductive cases follow
easily by induction.

The only slightly more elaborate cases is when =’ ends up with (send). In
this case the last rule of Z', ans its encoding are, respectively:

!

.y __ I':kFe: (0bjt(R|mTy)”
I'ke:0bjt.(R|meT) and T2 (0Bj8(R | M:7))" G Obj t.(m:r")
I'te<m:[0bjt(R|mT)/tlT) =

It Fe<m: ([0bjt.(R | 77 /t]r)*

That I't F e : (0bjt.{(R | mT))* is derivable follows from the induction hy-
pothesis. For the other judgement in the premise, instead, we distinguish the two
possible sub-cases. If (0bj t.(R | m:7))* = 0bj ¢.{R* | m7*) then the judgement
is question is derivable directly by (<#). If, instead, (0bjt.{R | m:T))* is a type
variable, say £(r), then it must be the case that R = (rt | pig) for some pio.
But then r € Dom(I") and 0bjt.{rt | pio, m:T) is the polymorphic 0bj-type for
r in =. Hence, from Definition 6, we have that {(r) <# 0bjt.(po, M7y € I'%,
and then I't F (Objt.(R | miT))* < 0bjt.{m:7*) is derivable by (<# proj)
and (<& trans). a

5 Classes

Introducing classes relies on the idea of distinguishing two kinds of types, Class
types whose elements are classes, and 0bj types whose elements are instances
created by the classes. This distinction is inspired by [17], but we use it here in
a completely different way and with orthogonal purposes.

5.1 Class Types and Object Types

Object types have the usual form 0bjt.(m}:mi,..., m}, 1), with the difference
that we now require that the component methods be instance-methods annotated
by the superscript *. Class types, instead, have the form:

C. C., L. L.
Classt.{mS:Ty,...,m§ T, mi:00,. .., mj:0o7)

with the superscript ¢ distinguishing class-methods from the remaining instance-
methods. The intention is to have each class define a set of class-methods for
exclusive use of the class and its sub-classes, as well as a set of instance-methods
for the instances of the class (and of the class’ sub-classes). Instance-methods
may only invoke or override other instance-methods, so that classes are protected
from updates caused by their instances; class-methods, instead, are not subject
to this restriction.

Every class defines (or inherits from its super-classes) at least one class-
method — new — for creating new instances of that class. As in [17], instances
of a class are created by packaging a class, an operation that does nothing but

“sealing” the class, so that no methods may be added. Sealing a class changes
its type into a corresponding 0bj type, that results from hiding all of the class-
methods of the class. As for subclassing, new classes may be derived from a class
by adding new methods or redefining existing methods of that class.

To account for the above features, the object-related forms of the untyped
calculus are extended as follows:

e = | topclass | (e1 <4 m=ey) | pack(e) | (e1+ m=es) |e = m | e > m

The operational meaning of the operations of override, send, and search is exactly
as in Section 2. The meaning of the remaining expressions is given next.

topclass is a pre-defined constant representing the empty class and defined
as follows: topclass = (new®=M\s.pack(s)). This class defines class-method new
for creating instances: the result of a call to new on a class is the instance of
that class that results from packaging the class.

New classes may be derived from the empty class by a sequence of method
overrides and extensions. The symbol 4 above denotes two different operators,
++ and <+ , denoting class-extension with, respectively, class-methods, and
instance methods.

The operational semantics of the pack operator is defined by few additional
cases of the reduction relation; the effect of packaging on types, in turn, is ren-
dered in terms of a corresponding type operator, denoted by pack. The new cases
of reduction for pack and the equational rules for packaged types are defined
below:

pack(c) wd . PaCkEb)) =b

eval pack(mi—m =TT
pack(Az.e) = Az.e pack(Classt.(m%p, p'ir)) = Obj t.(per)
pack(e) < m — (e <> m)pack(e) pack(0bjt.R) = 0bjt.R
pack(pack(e)) v pack(e) pack(pack(7)) = pack(7)

Packaging a class produces the corresponding Obj type that results from hiding
all of the class-methods of the class. Packaging any other expression, instead, has
no effect on the type of the expression. The introduction of the pack operator
induces a new, and richer, notion of type equality that now allows two types to
be identified if they are equal modulo the equational rules for the pack operator.
The definition of matching is readily extended to the newly introduced types.
Matching over Class-types is exactly as matching over 0bj-types, namely:

'k x {(me°:7,n°:0) well formed

(<# class),
I' - Classt.{m°:7,n%c) < Classt.{m°:T)

where ° may either be ¢ or *. As for matching between Class and 0bj types, we
have the following rule:

'k x (me:1,nt:a) well formed

— —— (< obj),
I' - Classt.{m°:T,n*:0) <¢ 0bjt.(n*:0)

that is, every Class type matches its corresponding Obj type.

5.2 Typing Rules

The new types require few additional changes in the object-related portion of
the type system, which are described next. The following two rules define the
type of the empty class and of packaged expressions.

I'F x
(topclass).
I' + topclass : Classt.{new® : pack(t))
I'Fe:7
(pack).

I' - pack(e) : pack(r)

For the remaining object-expression, we need different rules for distinguishing
the different behavior of class-methods and instance-methods.

Class Methods. The typing of class-method invocation is as follows:

I'te:o Il o<gt Classt.{nt:T)

c-send),
I'kte<n:o/tr ()

If n is a class-method (as indicated by the annotation ¢), then e must have
a Class-type matching Classt.{n°7). Therefore, only class-methods may be
invoked on a class; class-methods may, instead, perform (internal) invocations
or overrides also on instance-methods of that class. The following rule for class-
method addition allows this behaviour.

I't-e; : Classt.(R | m°:p) n¢& M(R)U{m}
I', u <¢ Classt.(mO%:p,n:T) F ey : [u/t](t—T)

(c-ext).
I'F (e1 ¢+ n=ey) : Classt.(R | m%:p,nc:1)

As usual, method addition, is subject to the constraint that the n method be
not already in the type of class. The typing rule for method override is similar to
(c-ext), while the typing of search expressions follows the same idea as (c-send)
above.

Instance Methods. As we said, instance-method may only invoke other instance-
methods of the self object. The following typing rule enforces this constraint:

I't- ey : Classt.(R | m*:p) n ¢ M(R)U {m}
I, u<gt 0bjt.{m*:p,n":T) F ey : [pack(u)/t](t—7)

(v-ext).
I+ {e1 ¢4+ n=ey) : Classt.(R | mt:p,n':7)

Note that the bound for u is so defined as to allow the n method to be applied
on objects of every type matching the 0bj type corresponding to the Class type
(as in (<# obj) rule). This way, instance-methods may safely be inherited by

the instances of the class. Note, furthermore, that the polymorphic type of e
is so defined as to ensure that es may only be applied on elements of packaged
types (i.e., objects).

A corresponding constraint is imposed on the typing of instance-method in-

vocation.
I'te:pack(oc) I'Fo<# 0bjt(n':T)

(1-send),

I'te < n: [pack(o)/t]T

The type of the receiver must be a packaged type consistent with the polymorphic
type that is associated with the body of the method. The rules for method search
and override may be defined following this idea.

5.3 A Simple Example

Using the above type rules, it is now possible to define an object expression
representing the class of points with an = coordinate and, say, a set method for
updating the position of the points in the class. Assuming that create is a class
method, and that = and set are instance methods, the class of points may be
defined as follows:

ptClass = (new = As.pack(s);
create = As.Av.((s < new) < setv);
x = As.0;
set = As.Av.(s< x=Aself w))

where the value of the z field is defaulted to 0 in the class definition. The following
type may then be derived:

ptClass : Classt.{new:pack(t), create®:pack(t), x':int, set":int—pack(t))

Instances of this class may then be created with a create message to ptclass. For
instance, the expression (ptclass < create 3) creates a point instance of type
Objt.{x':int, set':int—pack(t)), with x coordinate valued 3 and a set method.

6 Conclusions

We have presented a new type system for the Lambda Calculus of Objects. The
main difference with respect to the original proposal, is that in [16] method poly-
morphism is rendered in terms of quantification over row-schemas, whereas in
our system it is captured by means of match-bounded quantification and match-
ing. A formal analysis of the relative expressive power of the two systems shows
that they coincide on derivations for closed-object typing judgements. On the
other hand, there are some fundamental tradeoffs between the two approaches,
both in terms of complexity and of their logical rendering. In fact, while the new
solution appears to reduce the complexity of the system, freeing it from the cal-
culus of rows of the original system, on the other hand the auxiliary judgements

and side-conditions needed for matching are not costless, and may have unde-
sired consequences in the encoding of the new system in Logical Frameworks
[15].

We have then presented an extension of the new system that gives provision
for classes in an object-based setting. The extended calculus may, in some re-
spects, be seen as a functional counterpart of the Imperative Object Calculus of
[1]. Besides the different operational setting (i.e. imperative versus functional),
that proposal differs from ours in that, while using matching to model method
inheritance between classes, it relies on subtyping for the treatment of self types.
Instead, our system requires no subtyping, since it relies on matching as the only
relation over class and object types.

Acknowledgements. We would like to thank Mariangiola Dezani-Ciancaglini
for inspiring this work and for endless discussions on earlier drafts. Suggestions
from the anonymous referees helped to improve the presentation substantially.

References

1. M. Abadi and L. Cardelli. An Imperative Objects Calculus. In P.D. Mosses,
M. Nielsen, and M.I. Schwartzbach, editors, Proceedings of TAPSOFT’95: The-
ory and Practice of Software Development, volume 915 of LNCS, pages 471-485.
Springer—Verlag, May 1995.

2. M. Abadi and L. Cardelli. On Subtyping and Matching. In Proceedings of
ECOOP’95: European Conference on Object-Oriented Programming, volume 952
of LNCS, pages 145-167. Springer—Verlag, August 1995.

3. M. Abadi and L. Cardelli. A Theory of Primitive Objects. Information and Com-
putation, 125(2):78-102, March 1996.

4. V. Bono and M. Bugliesi. Matching Lambda Calculus of Objects. Submitted for
publication, 1996.

5. V. Bono, M. Bugliesi, and L. Liquori. A Lambda Calculus of Incomplete Objects.
In Proc. of MFCS, volume 1113 of Lecture Notes in Computer Science, pages 218—
229. Springer-Verlag, 1996.

6. V. Bono, M. Bugliesi, M.Dezani, and L. Liquori. Subtyping Constraints for Incom-
plete Objects. In Proc. of CAAP, Lecture Notes in Computer Science. Springer-
Verlag, 1997. To appear.

7. V. Bono and L. Liquori. A Subtyping for the Fisher-Honsell-Mitchell Lambda
Calculus of Objects. In Proc. of CSL, volume 933 of Lecture Notes in Computer
Science, pages 16-30. Springer-Verlag, 1995.

8. K.B. Bruce. A Paradigmatic Object-Oriented Programming Language: Design,
Static Typing and Semantcs. Journal of Functional Programming, 1(4):127-206,
1994.

9. L. Cardelli. A Semantics of Multiple Inheritance. Information and Computation,
76:138-164, 1988.

10. L. Cardelli and J.C. Mitchell. Operations on Records. Mathematical Structures in
Computer Sciences, 1(1):3-48, 1991.

11. L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction and Poly-
morphism. Computing Surveys, 17(4):471-522, 1985.

12
13

14.

15.

16.

17.

18.

A

B

. W. Cook. A Self-ish Model of Inheritance. Manuscript, 1987.

. W. Cook, W. Hill, and P. Canning. Inheritance is not Subtyping. In Proc. of ACM
Symp. POPL, pages 125-135. ACM Press, 1990.

W.R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown Uni-
versity, 1989.

Harper R. Honsell F. and Plotkin G. A Framework for Defining Logics. J.ACM,
40(1):143-184, 1993.

K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and
Method Specialization. Nordic Journal of Computing, 1(1):3-37, 1994.

K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with Subtyping.
In Proc. of FCT, volume 965 of Lecture Notes in Computer Science, pages 42—61.
Springer-Verlag, 1995.

M. Wand. Complete Type Inference for Simple Objects. In Proc. of IEEE Symp.
LICS, pages 37—44. Silver Spring, 1987.

Operational Semantics

®
<
g

(8) (Az.e1) e2 — [e2/z]ex
(<) €e<=m e (e <= m)e
+ succ e1¢o m=es) <> m —> e2
() () eval

« nex e1¢on=ex)<>m — e m
(t) (> eval

ai «m — err
(fail §) 0
(fail abs) Az.e ¢ m LU err
(err <o) (err<om=ce) L
(err abs) Az.err LU err

err a err e — err
(pp) eval

err ¢ err ¢ n — err
() eval

Typing Rules

General Rules: I' - A stands for any derivable judgement in the system.

(start)
ek %
(projection) '+ z:7el
'z:7
!
(weakening) rrA LIME«

L' A

Rules for Terms
I'++ x¢ Dom(I')

(var)
I x:mk*
(abs) I x:m Fem
' Az.emi—m
(app) I'kepm—m I'keam
I |— €1€2:T2
(empty) k-
't ():0bjt.()
I't e : 0bjt.(R | mip)
(ext) T, uw<g 0bjt.(mip,niT) - es : [u/t](t—T) n g M((R | mT))
I' - (e1+—+ n=e2) : 0bjt.{R | mip, n:T)
I'kei:o I't o< 0bj t.(mip,n:T)
(over) I'yu<gt Objt.(mip,n:t) Fea : [u/t](t—T)
't {e1n=es): o
(send) I'te:o I'Fo<d 0bjt.(n:T)
I'te<n:lo/tlr
(search) I'te:o I'Fo<gtObjt(mr) I'Fc<#Ho

I'te«n:[s/t](t—1)

Rules for Matching
I't+x w¢gl uégr

(< var)
u<dt k=

(< proj [weprel
F'Fu<#r

(< refl) I'F %
I'tr<#T1

(< trans) I'to<#r I'ET1<gEp
I'Fo<dp

(<) '+« (mT, o) well formed

I & Obj t.(e7, o) <@ Obj t.(meT)

