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Abstract

Differently from the antiapoptotic action most commonly assigned to peroxisome proliferators (PPs), we demonstrated that
some of them, clofibrate (CF) in particular, display clearcut apoptogenic properties on rat hepatoma cell lines. We and
others could confirm that CF as well as various other PPs can induce apoptosis in a variety of cells, including human liver,
breast and lung cancer cell lines. The present study was aimed at investigating the cytotoxic action of CF on a neoplastic
line of different origin, the human T leukemia Jurkat cells. We observed that CF rapidly triggers an extensive and
morphologically typical apoptotic process on Jurkat cells, though not in primary T cells, which is completely prevented by
the polycaspase inhibitor zVADfmk. Gene silencing studies demonstrated that CF-induced apoptosis in Jurkat cells is
partially dependent on activation of caspase 2. Looking for a possible trigger of caspase 2 activation, we observed increased
levels of phosphorylated eIF2a and JNK in CF-treated cells. Moreover, intracellular Ca2+ homeostasis was perturbed.
Together, these findings are suggestive for the occurrence of ER stress, an event that is known to have the potential to
activate caspase 2. The present observations demonstrate that CF induces in Jurkat cells a very fast and extensive apoptosis,
that involves induction of ER stress and activation of caspases 2 and 3. Since apoptosis in Jurkat cells occurs at
pharmacologically relevant concentrations of CF, the present findings encourage further in depth analysis in order to work
out the potential implications of CF cytotoxcity on leukemic cells.
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Introduction

Clofibrate (CF) and other fibrate derivatives have long been

used as hypolipidemic drugs [1]. These compounds are part of

a largely heterogeneous class of chemicals known as peroxisome

proliferators (PPs). Their mechanism of action typically requires

binding to heterodimeric nuclear receptors in which a monomer of

RXR combines with a monomer of PP-activated receptor (PPAR).

Three different PPAR subfamilies (a, b/d, and c) have been

described [2], PPARa being particularly involved in fibrate-

activated signal transduction.

PPs have been shown to behave as hepatocarcinogens in rodents

[3]. Indeed, when administered to rats and mice they induce

peroxisome proliferation, hepatomegaly, and hepatocarcinogen-

esis [4,5]. By contrast, these effects cannot be observed in

monkeys, pigs and humans [6,7,8]. PPs are considered non-

genotoxic carcinogens, their oncogenicity apparently deriving

from both the oxidative response consequent to peroxisome

proliferation and their ability to interfere with the regulation of cell

proliferation and death [8,9]. PPARa appears mainly in charge of

these activities. Indeed, long term PPs administration does not

result in hepatocarcinogenesis in PPARa-null mice [10]. However,

several side effects such as rhabdomyolysis, liver and heart toxicity,

anemia and leukopenia as well as rodent liver carcinogenesis are

likely due to PPAR-independent mechanisms (rewieved in [11]). In

addition, despite observations that various PPARa ligands exert

a prosurvival action that was suggested to contribute to their

carcinogenic potential [12], some of them have been demonstrated

to induce apoptosis in different hepatoma cell lines.

An initial report from our laboratory [13] showed, quite

unexpectedly at the time, that treatment with CF promptly

induces massive and typical apoptosis in hepatoma cells of both rat

(Yoshida AH-130) and human (HepG2) origin, with no correlation

with the species-specificity of hepatocarcinogenesis. Subsequently,

similar observations were made on various cell lines exposed to CF

or other PPARa ligands such as nafenopin, perfluorooctanoic

acid, and BR931 [14,15,16]. Noterworthily, PPARa ligand

cytotoxicity is not restricted to cells of the hepatocytic lineage,

but it has also been observed in breast or lung cancer cell lines

[17,18] as well as in human keratinocytes and lymphoblasts

[19,20]. Furthermore, ligands of the other two PPAR isotypes, i.e.

b/d, and c, have been shown to induce cell death as well

[21,22,23], and CF itself can bind to all three PPAR subfamilies

[24].

Of particular interest are several reports that suggest the

potential use of PPARa ligands as antineoplastic drugs. In this

connection, a good insight into cell death mechanisms triggered by

these ligands becomes especially important. Previous results

obtained in our laboratory suggested that a role may be played
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by inhibition of HMG-CoA reductase (HMGR), a key enzyme in

isoprenoid biosynthesis. Indeed, the mRNA level and enzymatic

activity of HGMR as well as the cholesterol content in

mitochondria are reduced in Yoshida AH-130 cells soon after

CF treatment, while cell death can be attenuated by supplement-

ing cells with mevalonate, the reaction product of HMGR [25].

Quite recently we also demonstrated [26] that the rapid apoptosis

induced by CF in the AH130 hepatoma cells is amenable to

a classic caspase-dependent intrinsic pathway.

The possibility that CF, and fibrate derivatives in general, in

addition to the hypolipidemic action, could be exploited also in

view of their cytotoxic activity is an interesting one. Indeed, these

drugs are currently used in the clinical practice and their side-

effects are generally compatible with a good quality of life. In this

regard, their possible use in combination with classical antineo-

plastic treatments is intriguing. The data actually available in the

literature are scanty and confusing, showing that CF may be

cytotoxic for several tumor cell lines, with poor attention given to

the underlying mechanisms. On this line, the present study tries to

fill this gap, investigating CF-induced apoptosis in Jurkat cells,

a human neoplastic line of hematopoietic origin. The results show

that CF quickly activates the apoptotic machinery through a non

conventional pathway that at least involves the initiator caspase 2,

likely activated via ER stress, and the effector caspase 3, though

not caspases 8 and 9.

Materials and Methods

All materials were supplied by Sigma (St. Louis, MO, USA),

unless differently specified.

Jurkat cells (from human leukemic transformed T lymphoma,

clone E6-1) were purchased from ATCC (Manassas, VA, USA),

seeded in RPMI 1640 medium supplemented with 10% fetal calf

serum, 100 U/ml penicillin, 100 mg/ml streptomycin, 2 mM L-

glutamine, and maintained at 37uC in a humidified atmosphere of

5% CO2 in air. CF, dissolved in DMSO, was added to the

medium at the final concentration of 1 mM (or as specified).

Controls were treated with the solvent alone. In some experiments

Jurkat cells were pretreated with one of the following molecules:

zVAD-fmk (zVAD, 1 h, 20 mM), DEVD-cho (DEVD, 1 h,

20 mM), VDVAD-cho (VDVAD, 1 h, 20 mM) LEHD-cho

(LEHD, 1 h, 20 mM), IETD-cho (IETD, 1 h, 20 mM) from Alexis

Biochemicals (Lausen, Switzerland), cyclosporine A (CsA, 15 min,

1 mM), calpeptin (1 h, 250 mM), bapta-AM (1h, 10 mM) from

Biomol (Plymouth Meeting, PA, USA), SP600125 (1 h, 20 mM),

PD150606 (1 h, 20 mM), form Calbiochem (La Jolla, Ca, USA)

and EGTA (2mM, 30 min).

Flow Cytometry
DNA distribution analysis was performed as described else-

where [26]. Briefly, cells were washed in PBS, fixed in ice-cold

Figure 1. Kinetic of clofibrate-induced death in Jurkat cells. Morphological appearance (A: phase contrast microscopy, B: DAPI staining) of
Jurkat cells exposed to clofibrate (CF) 1 mM for 45 min (Co: control). (C) percentages of cells with hypodiploid DNA content (apoptotic; see Penna et
al., 2009) after exposure to CF (concentration on top of the bars, time on X axis). Data are expressed as mean 6 SD (n = 3). ** p,0,01 vs Co; ***
p,0,001 vs Co.
doi:10.1371/journal.pone.0045327.g001

Rapid Jurkat Apoptosis by Clofibrate
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70% ethanol for at least 30 min, incubated at room temperature in

PBS containing DNase-free RNase (Type II-A) and propidium

iodide at the final concentrations of 0.4 mg/ml and 10 mg/ml,

respectively. Cells were then analyzed with a FACScan flow

cytometer (Becton & Dickinson, Mountain View, CA, USA)

equipped with a 488 nm argon laser and three filters, respectively

transmitting at 530 nm (FL1), 585 nm (FL2) and above 620 nm

(FL3). Data were analysed with the CellQuest software (Becton &

Dickinson). The percentage of apoptotic events has been assessed

by evaluating the accumulation of cells characterized by a ,2n

DNA fluorescence.

Mitochondrial depolarization was detected on unfixed cells

measuring the fluorescence emission shift of the lipophilic cationic

probe 5,5-6,6-tetra-chloro-1,1-3,3-tetraethylbenzimidazolyl-carbo-

cyanine iodide (JC-1, Molecular Probes, Invitrogen Corporation,

Carlsbad, CA, USA). JC-1 exhibits potential-dependent accumu-

lation in mitochondria, indicated by a fluorescence emission shift

from green (529 nm) to red (590 nm). The loss of mitochondrial

membrane potential is indicated by a decreased ratio between red

and green fluorescence [27].

Intracellular Ca2+ fluctuations were measured using the calcium

indicator OregonGreen488-Bapta1-AM (Molecular Probes, Invi-

trogen Corporation, Carlsbad, CA, USA). Briefly, cells (2?106)

were loaded with the specific calcium probe (2 mM, 30 min, room

temperature) in complete medium without phenol red, centrifuged

(600 g, 5 min) and resuspended in 1 ml of the same medium. Data

capture was performed recording the FL1 mean on 10,000 cells

for each time point. CF and/or A23187 were added after reading

the baseline fluorescence.

Caspase Activities
Cells were resuspended in 20 mM HEPES-KOH, pH 7.5,

containing 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM

EGTA, 1 mM DTT, 1 mM PMSF, frozen and thawed, sonicated,

centrifuged (14,000 g, 15 min, 4uC), and the supernatant collected.

Aliquots corresponding to 20 mg protein were diluted in caspase

buffer (25 mM HEPES, pH 7.5, 0.1% CHAPS, 10% sucrose,

10 mM DTT) and assayed for caspase 2, 3, 8, and 9 activities by

1 h incubation at 37uC in the presence of 20 mM substrates

Figure 2. Mitochondrial involvement in clofibrate-induced apoptosis. Shift of the FL2 (590 nm)/FL1 (529 nm; green to red) fluorescence
ratio of JC-1 in cells treated with clofibrate (CF) for 5 min (A: control (C); B: CF). (C) representative western blot showing the time course of Smac/
DIABLO and cytochrome c appearance in the cytosolic fraction (surnatant, SN). Cytochrome c oxidase subunit IV (COX4) serves as loading control for
mitochondrial enriched fraction (insoluble, INS) and actin for cytosolic fraction. (D) western blotting pattern representative of cyclosporine A and
zVAD pretreatment on cytochrome c release in cells exposed to CF for 30 min.
doi:10.1371/journal.pone.0045327.g002
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(VDVAD-AMC (AMC:7-amino-4-methylcoumarin)), DEVD-

AMC, IETD-AMC, LEHD-AMC; Biomol, Plymouth Meeting,

PA, USA). The reaction was stopped with 0.1% trichloroacetic

acid, and the fluorescence read in a Perkin-Elmer fluorometer

(excitation 380 nm – emission 460 nm). Free AMC was used as

working standard.

Western Blotting
Cells were suspended in 0.25% sodium deoxycholate and

homogenized by sonication. For cytochrome c detection, cells

were suspended in 20 mM HEPES-KOH, pH 7.2, containing

250 mM sucrose, 1 mM EDTA, 0.025% digitonin and freshly

added 0.1 mM PMSF, then centrifuged (14,000 g, 30 min, 4uC) to
obtain the mitochondrial (pellet) and the cytosolic (supernatant)

fractions.

Protein concentration was determined by the method of Lowry

et al. (1952), using BSA as working standard. Equal amounts of

protein (30 mg) were heat-denaturated in sample-loading buffer

(50 mM TRIS-HCl, pH 6.8, 100 mM DTT, 2% SDS, 0.1%

bromophenol blue, 10% glycerol), resolved by SDS-PAGE and

transferred for 2 h to nitrocellulose membranes (Bio-Rad,

Hercules, CA, USA). Protein transfer was checked by Ponceau S

staining. The filters were then blocked with Tris-buffered saline

(TBS) containing 0.05% Tween and 5% non-fat dry milk, and

incubated overnight with the following primary antibodies: Smac/

DIABLO, poly-ADP-ribose polymerase (PARP), caspase 2,

caspase 3, caspase 12, fodrin, JNK (Santa Cruz Biotechnology,

Santa Cruz, CA, USA); cytochrome c oxidase subunit IV (COX4),

p-eIF2a, eIF2a, p-JNK (Cell Signaling, Danvers, MA, USA);

cytochrome c (Becton & Dickinson, Mountain View, CA, USA);

actin and tubulin (Sigma, St. Louis, MO, USA). Peroxidase-

conjugated IgG (Bio-Rad, Hercules, CA, USA) was used as

secondary antibody. The membrane-bound immune complexes

were detected by an enhanced chemiluminescence system (Santa

Cruz Biotechnology, Santa Cruz, CA, USA) on a photon-sensitive

film (Hyperfilm ECL; GE Healthcare, Milano, Italy). Bands were

quantified by densitometric scanning of the films and elaborated as

described in ‘Data analysis and presentation’.

Caspase-2 Silencing
The shRNA lentiviral vector pLKO.1,-puro bearing the

hairpin sequence CCGGGTTGAGCTGTGACTAC-

GACTTCTCGAGAAGTCGTAGTCACAGCT-

CAACTTTTTG was transfected in packaging HEK 293T cells

using calcium phosphate. 24 hours later, the supernatant contain-

ing the lentiviral particles was filtered (0,22 mm) and 1 ml added to

106 Jurkat cells. Infected cells were selected adding puromycin

1mg/ml during 2 weeks, tested for silencing efficiency and used for

subsequent experiments.

Data Analysis and Presentation
Results are expressed as means6 standard deviation (SD). Each

experiment was performed in triplicate or repeated three times.

Image quantification was obtained by densitometry and bands

Figure 3. Caspase activation in clofibrate-treated cells. (A) Kinetic of caspase enzymatic activity evaluated by measuring the cleavage of
specific fluorogenic substrates. Data are expressed as fold increase respect to control. (B) representative western blotting patterns of caspase and
PARP (poly-ADP-ribose polymerase) expression in CF-treated Jurkat cells. Tubulin serves as loading control. (C) Caspase 3 enzymatic activity in cells
pretreated with the indicated inhibitors before CF (clofibrate; grey bars) exposure for 30 min. Data (means6 SD, n= 3) are expressed as fold increase
respect to Co (control; black bar); ** p,0,01 vs Co; *** p,0,001 vs Co; 1 p,0,05 vs CF; 11 p,0,01 vs CF; 111 p,0,001 vs CF.
doi:10.1371/journal.pone.0045327.g003
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analyzed using a specific software (TotalLab, NonLinear Dynam-

ics, Newcastle upon Tyne, UK). Significance of the differences was

evaluated by the Student’s ‘t’ test.

Supplemental Material
Primary T cells were isolated using buffy coats from healthy

individuals (kindly supplied by CeRMS, Centro Ricerche

Medicina Sperimentale, Torino, Italy). PBMCs were separated

using the Ficoll-Paque reagent (GE Healthcare, Milano, Italy)

following the manufacturer’s instruction. Pan T cells were

obtained by negative selection retaining the non-target cells in

the magnetic field of a MACS Column (Miltenyi Biotec GmbH,

Bergisch Gladbach, Germany) after incubation with a cocktail of

biotin-conjugated monoclonal anti-human antibodies against

CD14, CD15, CD16, CD19, CD34, CD36, CD56, CD123, and

CD235a. The extracted cells were rapidly seeded in complete

medium (same as Jurkat cells) and immediately exposed to CF for

cytotoxicity assays.

Results

When exposed to 1 mM CF for 45 min, the standard treatment

schedule adopted throughout the present work, approximately

50% of Jurkat cells develop a frankly apoptotic morphology

characterized by cell shrinkage due to nuclear and cytoplasmic

condensation with nuclear fragmentation (Fig. 1A–B). Compara-

ble effects have been observed on different cell lines, such as

human HL-60 promyelocytic leukemia (Fig. S1A) or human

CCRF-CEM acute lymphoblastic leukemia (data not shwn), and

the murine Colon-26 carcinoma cells (Fig. S1B). Noteworthily,

a time/dose study shows that apoptosis is also induced by CF at

concentrations lower than 1 mM (Fig. 1C), even if propagating

more slowly in the cell population. These concentrations are well

within the usual therapeutic (antilipidemic) range that approx-

imates 0.5 mM in patient blood [28]. More pertinently, in

pharmacological terms, optimal therapeutic plasma levels of CF

have been reported to be around 0.5 mM ([28]; MICROMEDEX

Healthcare Series, POISINDEX Managements, Clofibrate and

related agents, www.thomsonhc.com). To verify if clofibrate exerts

Figure 4. Effect of different caspase inhibitors and caspase 2 silencing on apoptotic death in cells exposed to clofibrate. (A) cells were
pretreated with the indicated inhibitors, exposed to clofibrate (CF) and analysed after 45 min. Histograms refer to percentages of cells with
hypodiploid DNA content (black bars: untreated; grey bars: CF-treated). (B) sh-RNA effectively abrogates caspase 2 expression in Jurkat cells.
Co = control, Scr = scramble shRNA, shCSP2= caspase 2-specific shRNA; Lane 1: molecular weight marker. Tubulin is used as loading control. (C) flow-
cytometric analysis showing the percentages of cells with hypodiploid DNA content of the above mentioned cells exposed to 1 mM clofibrate for
45 min. Data are expressed as mean 6 SD (n = 3). ** p,0,01 vs Co; *** p,0,001 vs Co; 11 p,0,01 vs CF; 111 p,0,001 vs CF.
doi:10.1371/journal.pone.0045327.g004
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its cytotoxic activity also on normal cells, primary T lymphocytes

were exposed to the drug. The results shown in Fig. S2A

demonstrate that 45 minutes exposure to 1 mM clofibrate slightly

modifies the precentage of hypodiploid cells observed in control

cultures. The results do not change when T cells are stimulated

with anti-CD3 antibodies for 36 h, in order to have them in

a proliferative condition (% of hypodiploid cells: C= 11, CF=13).

In contrast to what observed in Jurkat cells (Fig. 1C), exposure of

T lymphocytes to low CF concentrations (0.5 mM) for a period

longer than the standard experimental schedule (from 459 to 8 h)

markedly delays the onset of cell death, leading to slightly

increased percentage of hypodiploid cells only after 8 h treatment

(Fig. S2B).

Mitochondrial Alterations Induced by CF
A drop in the mitochondrial membrane potential (Fig. 2A–B) as

well as a substantial release of cytochrome c to the cytosol (Fig. 2C)

manifest rapidly and are already remarkable after a 5 min

exposure of Jurkat cells to CF. By contrast, Smac/Diablo is barely

detectable in the cytosol (Fig. 2C). The release of cytochrome c to

the cytosol is clearly attenuated when the opening of the

permeability transition pore is inhibited with cyclosporine A

(Fig. 2D) or when cells are pretreated with the polycaspase

inhibitor zVAD (Fig. 2D). The latter finding indicates that

cytochrome c release is, at least in part, an effect rather then

a cause of a proteolytic event inhibited by zVAD.

CF-induced Death is Caspase-dependent
In a next step, Jurkat cells have been assayed for the enzymatic

activity of an effector (3) and three initiator (2, 8 and 9) caspases.

As Fig. 3A illustrates, caspase 2-like activity rapidly increases in the

first time interval (15 min) and is maintained active afterwards.

Conversely, the increase of both caspase 8- and 9-like activities is

more evident in the late phases (30–45 min). Finally, the caspase 3-

like activity markedly increases in a virtually linear fashion over

the whole 45 min interval. Caspase 2 and 3 activation is confirmed

by western blotting analysis: the precursor isoforms progressively

decrease after exposure to CF, while processed (active) caspase 3

becomes detectable (Fig. 3B), in parallel with an early and

extensive cleavage of its endogenous substrate PARP (Fig. 3B).

Jurkat cells lack any detectable caspase 4 expression (our original

observation, not shown) as well as any caspase 12 activity, which is

a general property of human cells [29]. Incidentally, no change in

the level of procaspase 12-like immunoreactive protein occurs in

CF-treated Jurkat cells over the whole experimental time (Fig. 3B).

CF-induced caspase 3 activation is completely abrogated when

cells are pretreated with either polycaspase (zVAD) or caspase 3

(DEVD) inhibitors (Fig. 3C). Among the initiator caspases, only

caspase 2 inhibition with VDVAD partially prevents caspase 3

activation, while inhibitors of caspase 8 (IETD) or 9 (LEHD) are

ineffective.

As emerging from inhibitor tests, CF-induced cell death is

caspase-dependent (Fig. 4A). Cells treated with zVAD become

Figure 5. Phosphorylation of eIF2a and JNK activation in clofibrate-treated cells. (A) Representative western blottings of phosphorylated
eIF2a and JNK (46 and 54 kDa isoforms). (B) histograms refer to the densitometric analysis. Data are expressed as arbitrary units. (C) Cells were
pretreated with the JNK inhibitor SP600125, then exposed to clofibrate (CF) and analysed after 45min. Histograms refer to percentages of cells with
hypodiploid DNA content (black bars: untreated; grey bars: CF-treated). Data are expressed as mean6 SD (n = 3). ** p,0,01 vs Co; *** p,0,001 vs Co;
1 p,0,05 vs CF.
doi:10.1371/journal.pone.0045327.g005

Rapid Jurkat Apoptosis by Clofibrate

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e45327



almost completely refractory to CF cytotoxicity. Caspase 2 and 3

inhibitors (respectively, VDVAD and DEVD) afford no more than

a partial protection, which becomes higher when they are used

concomitantly. Finally, inhibitors such as IETD (caspase 8) or

LEHD (caspase 9) do not rescue cells from apoptosis, which is

consistent with their inability to affect caspase 3 activation (Fig. 3B).

In keeping with this finding, cyclosporine A, which is known to

suppress mitochondrial membrane permeability transitions, af-

fords no protection from cell death (Fig. 4A). To clarify if caspase 2

activation is crucial to CF citotoxicity, its expression in Jurkat cells

was abrogated by means of shRNA (Fig. 4B). The lack of caspase 2

rendered Jurkat cells more, although not completely, resistant to

CF-induced apoptosis. Indeed, the percentage of hypodiploid cells

was more than 50% in wild-type cultures, and about 30% in

caspase 2-depleted cells (Fig. 4C).

CF Induces ER Stress
At present, caspase 2 is not univocally associated with a precise

cell death pathway, yet there is evidence that on ER stress it may

act upstream of mitochondria to promote cytochrome c release

[30,31]. Therefore, we assessed the occurrence of ER stress in CF-

treated Jurkat cells by examining the phosphorylation status of the

stress-activated SAPK/JNK (46 and 54 kDa isoforms) and of the

translation inhibitory factor eIF2a and in both cases observed its

progressive increase (Fig. 5A–B). Furthermore, apoptosis by CF is

partially prevented in cultures pretreated with the JNK inhibitor

SP600125, which suggests a role for JNK in this death process

(Fig. 5C).

CF-induced Apoptosis does not Rely on Calpain
Activation
ER stress is often associated with or elicited by Ca2+

mobilization from ER stores, which results in increased cytosolic

Ca2+ concentrations ([Ca2+]i) that may trigger activation of the

Ca2+-dependent calpain system [32]. A physiological substrate of

the latter is fodrin, a cortical cytoskeletal protein, whose

cleavage can thus denote an ongoing calpain activation [33]

and has implications for membrane blebbing and phosphati-

dylserine externalization during apoptosis [34]. In CF-treated

Jurkat cells, fodrin cleavage into a 150 kDa product is already

Figure 6. Fodrin cleavage and effect of calpain inhibition in clofibrate-treated cells. (A) Representative western blotting of fodrin cleavage
in clofibrate (CF)-exposed Jurkat cells in the presence or in the absence of zVAD and calpeptin. (B) Cells were pretreated with the calpain inhibitors
calpeptin or PD150606, then exposed to CF and analysed after 45min. Histograms refer to percentages of cells with hypodiploid DNA content (black
bars: untreated; grey bars: CF-treated). Data are expressed as mean 6 SD (n = 3). ** p,0,01 vs Co; *** p,0,001 vs Co; 111 p,0,001 vs CF.
doi:10.1371/journal.pone.0045327.g006
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prominent at 5 min and virtually complete at 15 min, while

a 120 kDa fragment appears after 30 min (Fig. 6A). The

120 kDa fragment is generated by caspase 3 only, whereas both

calpain and caspase 3 can cut a similar though not identical

150 kDa fragment [33]. We thus used appropriate inhibitors in

order to discriminate between the latter two possibilities. As

Fig. 6A illustrates, the 150 and 120 kDa products of fodrin

cleavage both nearly disappear in the presence of zVAD,

whereas the calpain inhibitor calpeptin affords no more than

a weak decrease of the 150 kDa fragment. In apparent contrast

with the latter finding, calpeptin markedly protects Jurkat cells

from death by CF, yet such protection in not provided at all by

another calpain inhibitor such as PD150606 (Fig. 6B). Alto-

gether, these observations suggest that calpains make no

significant contribution to CF-induced apoptosis in Jurkat cells.

Ca2+ Influx Prevents CF-induced Apoptosis
Finally, we tested the hypothesis that altered Ca2+ homeo-

stasis could be critical for CF cytotoxicity, even if not necessarily

through calpain activation. CF was previously shown [35] to

induce transient increases of the [Ca2+]i in Jurkat cells. The

relevance of such increase to CF-induced apoptosis was not

investigated, however. In the present work, neither intracellular

nor extracellular Ca2+ chelators, such as OG-BAPTA-AM and

EGTA, respectively, prevent CF-induced apoptosis (Fig. 7A). In

addition, the Ca2+ ionophore A23187 by itself exerts no

appreciable toxicity on Jurkat cells, at least over the 45 min

interval herewith adopted (Fig. 7A). This observation implyes

that any change of [Ca2+]i caused by CF or the Ca2+ influx

induced by A23187 separately are well tolerated by these cells.

Surprisingly, however, CF cytotoxicity is fully antagonized by

A23187 and such protection is abrogated when cells are in the

presence of EGTA (Fig. 7A). Not only enforced Ca2+ influx is

required for cell survival, but also other CF effects such as

caspase 3 activation and cytochrome c release are reduced by

A23187 (Fig. 7C–D). In agreement with [35], we found CF to

induce an early increase of [Ca2+]i, peaking at 1 min and

followed by a progressive decline (Fig. 7B). A23187 causes

a prompt [Ca2+]i rise that is largely maintained till the end of

the assay. Finally, cotreatment with CF and A23187 results in

a complex pattern including an initial [Ca2+]i spike followed by

a decline to a suprabasal plateau and by an eventual rise to

Figure 7. Effect of Ca2+ influx on clofibrate-induced apoptosis. (A) Cells were pretreated with OG-Bapta-AM or EGTA, then exposed to
clofibrate (CF) and/or the Ca2+ ionophor A23187 (5 mM) and analysed after 45min. Data are expressed as mean 6 SD (n = 3). *** p,0,001 vs Co; 111
p,0,001 vs CF. Histograms refer to percentages of cells with hypodiploid DNA content (black bars: without CF; grey bars: CF-treated). (B) cells were
incubated with OG-Bapta1-AM and treated with CF and/or A23187. Intracellular calcium release was measured by the increase of 523 nM
fluorescence. (C) Caspase 3 enzymatic activity in cells treated with CF and/or A23187 for 30 min. Data (means 6 SD, n = 3) are expressed as fold
increase respect to control. * p,0,05 vs Co; ** p,0,01 vs Co; *** p,0,001 vs Co; 11 p,0,01 vs CF. (D) western blotting representative of the effect of
CF and/or A23187 for 30 min on cytochrome c release. Cytochrome c oxidase subunit IV (COX)4 serves as loading control for mitochondrial enriched
fraction (P) and actin for cytosolic fraction (SN).
doi:10.1371/journal.pone.0045327.g007

Rapid Jurkat Apoptosis by Clofibrate

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e45327



levels close to those produced by A23187, but quite higher than

those caused by CF per se. These findings can be likely

accounted for by the notion [35] that in Jurkat cells CF

$0.5 mM, not only stimulates a transient [Ca2+]i increase, but

also inhibits the external Ca2+ influx. They also seem to support

the view that a [Ca2+]i rise neither plays a crucial role in CF-

induced apoptosis of Jurkat cells nor is adequate to support

calpain activation and fodrin clevage, as shown above.

Discussion

In recent years, we have been investigating what initially

appeared as an unexpected property of CF, namely, its ability to

elicit a fast and extensive apoptotic process in cell lines of

neoplastic origin, particularly hepatocarcinomas [13,19,25,26],

among which the rat Yoshida ascites hepatoma AH-130 provided

the main paradigm. The observation that an important lethal

action is exerted by CF as well as other PPs on cells of both rodent

and human origin prompted us to evaluate carefully these agents

for their possible use as antineoplastic drugs. We noticed that

human T-lymphoma Jurkat cells are as susceptible as rat

hepatoma AH-130 cells to CF-induced apoptosis. This finding

suggests that CF could be useful in the treatment of lymphoid

malignancies. In this regard, to resort therapies less aggressive in

terms of systemic toxicity and side effects would represent a major

advance.

Mechanisms of CF-induced Apoptosis
Among PPAR ligands, only few studies have investigated the

cytotoxic mechanisms of those targeting PPARa. Among the

latter, some have been reported to activate apoptotic death in

various cell lines (reviewed by [36]). In our experience, PPARa
activation is unlikely to play any significant role in CF-induced

apoptosis of Jurkat (this report) or hepatoma cells, particularly in

view of its very rapid time-course [25]. All the potentially relevant

parameters herewith evaluated in Jurkat cells are already altered

within 5 min exposure to CF, and [Ca2+]i within 1 min.

Therefore, this fast apoptotic death should be likely categorized

as an extrareceptor activity, not differently from other effects of

PPARa ligands, such as ER or oxidative stress [12].

In both human Jurkat T-leukemia cells and rat AH-130

hepatoma cells [13,19,25,26] CF-induced apoptosis is caspase-

dependent, yet the two death processes follow different courses. As

previously found, caspases 3, 8, and 9 are rapidly activated in AH-

130 cells exposed to CF and relevant caspase inhibitors afford

a significant protection from apoptosis [26]. At variance, we

presently found that caspases 8 and 9 activation in Jurkat cells is

delayed, particularly with respect to caspase 3 and, in less striking

manner, to caspase 2. Moreover, while the mitochondrial pathway

appears to play a significant role in CF-treated AH-130 cells [26],

in Jurkat cells the pattern is quite different. Briefly, the

mitochondrial membrane potential rapidly falls and cytochrome

c is released in both cell lines, once exposed to CF, but Smac-

Diablo is released from mitochondria in AH-130 cells only

(unpublished data). Moreover, caspase-9 inhibition or treatment

with cyclosporine A are completely ineffective in protecting Jurkat

cells from death. Altogether, these observations suggest that the

mithocondrial pathway only marginally contributes to CF-induced

apoptosis of Jurkat cells.

The occurrence of ER stress in Jurkat cells exposed to CF is

documented by the early and marked increased phosphorylation

of two typical targets, eIF2a and JNK. Moreover, a selective JNK

inhibitor (SP600125) affords a partial protection from CF-induced

apoptosis, suggesting a role for JNK activation in this death. In last

years, ER stress has been proposed to trigger apoptosis through

mechanisms involving either caspase 12 [37] or 4 or 2, apart from

other initiator (8, 9) and effector (3, 7) caspases [38]. Since we

ruled out an involvement of both caspases 12 and 4 (see Results),

our attention was focused onto caspase 2, which is regarded as an

initiator caspase [39]. Dimerization and autocleavage of the p51

caspase 2 precursor lead to formation of an active p37 complex

that is subsequently cleaved by an unknown caspase into an

inactive 19 kDa fragment [39]. In the present study, the p51

precursor is already decreased in Jurkat cells after 5 min on CF,

indicating early activation of caspase 2 that subsequently further

increase through the whole experimental time. Of interest, the

inactive p19 fragment becomes detectable after 30 min on CF

(data not shown), suggesting that a late inhibitory cleavage might

maintain constant levels of active caspase 2.

Interestingly, CF has been reported to cause retrograde

movement of Golgi constituents to the ER and, independently

from PPARa activation, to disrupt the morphological and

functional integrity of the Golgi complex in a manner similar to

brefeldin A [40,41]. In conclusion, these observations are

compatible with the hypothesis that activation of Golgi- or ER-

associated caspase 2 are involved in the activation of caspase 3 in

CF-treated cells.

Role of Intracellular [Ca2+] in CF Cytotoxicity
Both ER stress and mitochondrial depolarization may result in

increases of cytosolic [Ca2+] i, which should be expected to

activate calpains. The latter in turn can be involved in the early

phases of apoptosis, leading to cleavage of the effector caspase 3

[42,43,44]. As an example, coincubation of Jurkat cells with

Entamoeba histolytica results in calpain-dependent caspase 3 activa-

tion and apoptosis, that can be prevented by calpeptin [45].

However, the involvement of calpain activation in CF-induced cell

death appears unlikely, in view of two different observations: (i)

even if calpeptin partially protects Jurkat cells from CF, this effect

probably relies on non-specific caspase inhibition, since calpeptin

only barely attenuates the intracellular fodrin cleavage if compared

to the polycaspase inhibitor zVAD; (ii) no significant protection

from CF is afforded by PD150606, another calpain inhibitor. A

[Ca2+]i rise can result either in pro- or antiapoptotic effects [46].

In the present work, a [Ca2+]i elevation occurs after CF, yet

treatments aimed at inhibiting it by means of extra- or intracellular

chelators confer no protection against CF-induced cell death. By

contrast, Ca2+ influx elicited by A23187 unexpectedly exerts

a marked antiapoptotic action in CF-treated Jurkat cells, this

protection being abrogated by adding EGTA into the medium.

Therefore, protection by A23187 appears to depend on its ability

to increase the Ca2+ influx in CF-treated cells, where it also

inhibits both cytochrome c release and caspase 3 activation. The

present data match a previous report of an antiapoptotic action of

Ca2+ influx in puromycin-treated U937 cells [46]. The negligible

toxicity of A23187 itself on Jurkat cells remains to be clarified.

Noteworthily, T-cells tolerate high [Ca2+]i as required for

activation, proliferation, and cytokine synthesis (reviewed by

[47]), nor death occurs in B-lymphoma cell cultures exposed to

anoxia/reoxygenation, in spite of a sustained [Ca2+]i rise [48].

Conclusion
The present study demonstrates that exposing Jurkat cells to CF

triggers a caspase-dependent apoptotic process not conforming to

a canonical pathway, wherein caspases 2, likely activated by ER

stress, and caspase 3 are involved. Finally, both apoptosis and

caspase 3 activation are prevented by Ca2+ influx, suggesting that

mobilization of Ca2+ stores from the ER combined with
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suppression of Ca2+ influx are as well a crucial event in the

pathway to cell death.

The present work on Jurkat cells significantly improves the

knowledge concerning PPARa ligand toxicity on tumor-derived

cell lines. So far, the data in the literature are relatively scanty and

quite scattered in terms of cell types and drugs investigated,

treatment schedule, and kinetic of the events under study. Two

groups of neoplastic cell lines received the largest share of attention

so far: those belonging to the hepatocytic lineage (see Introduction)

and those of hematopoietic origin. Among the latter, evidence for

growth arrest, induced differentiation and apoptosis driven by

PPARa ligands, alone or combined with other drugs, has been

obtained on neoplastic human cells of both lymphoid ([49], [50],

[20]) and myeloid origin ([51,52,53,54], [55]). On this basis, we

can at least conclude that remarkable antiblastic properties are

exhibited by a variety of PPARa ligands. In particular, clinically

relevant concentrations of CF exert a strong apoptogenic action on

human T-leukemia Jurkat cells, comparable with that on rat

hepatoma Yoshida AH-130 cells. Therefore, the present results

suggest that CF, a PPAR agonist that has been widely used in the

clinical handling of hyperlipemias, is worth being further

scrutinized as a potential low-toxicity and low-cost drug for

leukemia therapy. Further work on this issue is thus advisable.

Supporting Information

Figure S1 Clofibrate-induced apoptosis in HL-60 and
C26 cells. Representative plots of flow-cytometric analysis (see

Materials and Methods for details). Panel A: HL-60 cells, panel B:

C26 colon adenocarcinoma cells. M1 represents the percentage of

cells with hypodiploid DNA content (apoptotic).

(TIF)

Figure S2 Effect of clofibrate on primary T lympho-
cytes. Representative plots of flow-cytometric analysis (see

Materials and Methods for details), M1 represents the percentage

of cells with hypodiploid DNA content (apoptotic). Panel A: T cells

exposed to 1 mM CF for 45 min; Panel B: T lymphocytes exposed

to 0.5 mM clofibrate at different time points (from 45 min to 8 h).

(TIF)
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