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The ultrasound-assisted cross-linking of chitosan with hexamethylene diisocyanate with the simultaneous 

incorporation of Pd(OAc)2 resulted in a catalyst which is suitable for the solid-state Suzuki cross-coupling of 

poorly reactive (hetero)aryl chlorides with phenylboronic acid. Reactions were carried out solvent-free in 

planetary ball mill allowing the catalyst to be recycled several times. 10 

Introduction 

Reactions in ball mills have attracted serious attention in organic synthesis circles during the last 

decade.1,2 This method allows reactions in the solid state to be carried out and possibly reduces solvent 

amount 3-6 which makes it attractive for other application fields as well.7 Pd-catalyzed cross-couplings 

from the Suzuki-,8-10 Heck-,11 or Sonogashira-type reactions, 12,13 as well as Cu-catalyzed click reactions 15 

(CuAAC),14 and the homo-coupling of terminal alkynes,15 make use of metal salts or metal complexes 

which are difficult to separate from the solid reaction mixtures afterwards.  

Additionally, the application of aryl chlorides instead of bromides or iodides as cross-coupling partners 

has only so far afforded zero or minor yields. An example of this is a Suzuki reaction in the presence of 

KF-Al2O3 using a planetary ball mill.10 This inorganic solid material was used for the in situ generation 20 

of the base needed for the reaction and Pd(OAc)2 was used as the catalyst.10,16 The synthetic procedure 

was very efficient with aryl iodides and bromides but failed when it came to the poorly reactive aryl 

chlorides.10 Similar observations were reported when the more reactive reagent system Pd(PPh3)4 and 

K2CO3 (catalyst and base, respectively) was used.8 All the results reported in the literature gave no 

reaction or very low yields with these substrates.8-10,16 25 

With the aim of finding conditions which may widen the application of this method, we realized that the 

physicochemical properties of the catalyst could play a fundamental role in the solid state. Our candidate 

for Pd-catalyzed reactions is a cross-linked chitosan/Pd(II) catalyst that has already been tested as a 

heterogeneous catalyst in microwave-assisted reactions.17 Although chitosan (CS) modification requires 



 

some tricky procedures,18 this material is cheap, stable and biodegradable, making it suitable for Pd-

catalyzed Suzuki reactions.19-21 Despite the fact that several metal-catalyzed reaction protocols for ball 

milling synthesis have been developed, only in one case the possibility of catalyst recycling was 

included.22 These authors described the synthesis of oximes with Bi2O3 as a catalyst by grounding in a 

mortar the reacting mixture with a pestle. 5 

Experimental 

Materials 

Commercially available reagents and solvents were used without further purification. Medium molecular 

weight CS was purchased from Sigma Aldrich. 

Catalyst preparation 10 

CS (5.0 g) was dissolved in 0.1N HCl (350 mL) in a 1 l round-bottom cylindrical flask at 60°C under 

sonication with a titanium horn (19.8 kHz, 70 W) for less than 1 h. A solution of Pd(OAc)2 (2.23 mmol, 

500 mg) in 0.1N HCl (50 mL) was added after 5 min at 50°C while the sonication was run at reduced 

power (50 W). Hexamethylene diisocyanate (HMDI; 37.0 mmol, 6 mL) was added dropwise at the same 

temperature of 50°C and was sonicated for 10 min at 60 W at which point complete gelation occurred. 15 

The gel was heated for 2 h at 50°C and a yellowish solid material formed which was then transferred to 

a mortar and triturated with a 0.5N NaOH solution until pH 5 was reached. The solid residue was filtered, 

washed with water, acetone and diethylether (each solvent 150 mL), and dried overnight under vacuum. 

This procedure afforded 8.23 g of the Pd(II)-loaded urethane/urea-bridged CS derivative ≙ catalyst 

HMDI-CS/Pd. 20 

Catalyst characterization 

FT-IR spectra were recorded on a Perkin-Elmer model 2000 spectrometer in the 400-4000 cm-1 range at 

a resolution of 0.2 cm-1 using the ATR-method. TG-curves were recorded on the TA Instrument TGA 

2050 (Shimadzu). The analyses were carried out with a constant heating rate of 10 K min-1 from 50 to 

700°C under atmospheric conditions. The metal content of the catalysts was determined by ICP-MS on 25 

a Quadrupole-ICP-MS X Series II (Thermo Fisher Scientific) after the solid catalyst samples were 

digested in HNO3 and aqua regia. The oxidation state of the adsorbed palladium was determined by 

measuring the binding energy (Eb) of the Pd 3d-core level by X-ray photoelectron spectroscopy (XPS) 

with a Quantum 2000 (PHI Co., Chanhassen, MN, USA) using a focused monochromatic Al K-source 

(1486.7 eV). Spectra were normalized to the C 1s peak. 30 



 

Catalytic testing 

Ball milling was conducted using a planetary ball mill (PM100; Retsch GmbH) equipped with a single 

milling beaker (stainless steel, 125 mL). For the experiments 15 x 10 mm milling balls of the same 

material were applied. The prepared catalyst (1 g), aryl halide (0.25 mmol), phenyl-boronic acid (0.27 

mmol, 33 mg), and K2CO3 (0.5 mmol, 69 mg) were added to the milling balls one after the other. The 5 

reaction mixture was subsequently milled at 600 min-1 for either 90 or 120 min. Every 30 min the 

direction of rotation was inverted. The reaction products were dissolved in EtOAc (3 x 15 mL). The 

supported catalyst, insoluble in the organic solvent, was separated by filtration and was washed with 

acetone (3 x 15 mL), dried under vacuum and reused in a new reaction. The products were analyzed by 

GC-MS. The yields determined by GC-MS were comparable with the yields of the isolated products. 10 

Purification was performed via flash-chromatography on a silica column (CombyFlash Rf® Teledyne 

ISCO) using hexane/ethyl acetate mixtures as eluents. Conversions and yields were initially determined 

by GC-MS and confirmed by chromatographic separation (+2%). 

Product analysis 

GC-MS measurements were performed on an Agilent Technologies 6850 Network GC System with a 15 

5973 Network Mass Selective Detector using a capillary column (length 30 m, i. d. 0.25 mm, film 

thickness 0.25 μm). GC conditions were as follows; injection split 1:20, injector temperature 250°C, 

detector temperature 280°C. The temperature program ran from 50°C (3 min) to 80°C at 3°C/min and 

80°C to 300°C at 10°C/min (30 min). Helium was used at 25 kPa as the carrier gas. 

Results and Discussion 20 

The ultrasound-assisted synthesis of the CS catalyst HMDI-CS/Pd resulted in a solid material which was 

characterized using FT-IR, XPS-spectroscopy, and thermal analysis (TGA, DTA). The metal content of 

the catalysts, prior to and after their application in Suzuki cross-couplings (Scheme 1), was determined 

with ICP-MS analysis. The addition of HMDI to the CS solution containing Pd(OAc)2 resulted in the 

cross-linking of the polymer chains, a regular distribution of the metal and a considerable catalytic 25 

activity.17 

Structural properties of the catalyst 

To compare the properties of CS and the catalyst, FTIR and thermal analysis of both materials have been 

carried out. Figure 1 shows the overlay of the infrared spectra for pure CS and HMDI-CS/Pd. Pure CS 

shows a broad band at around 3320 cm-1 which is caused by OH-, NH2- as well as CONH-vibrations 30 



 

(amide = non-deacetylated glucosamine groups).19 After cross-linking with HMDI and in situ deposition 

of Pd, the band appears less broad. This indicates that the diisocyanate reacted with the hydroxyl and 

amino groups of the polymer. The resulting urea- and urethane-linkages also contain the CONH-

function, which are responsible for this band. It should be mentioned that isocyanate-groups do not 

necessarily react with the polymer, they can also be hydrolyzed by the solvent which would result in 5 

new amine-functions. Another indicator for successful cross-linking is the band at 2930 cm-1 which 

refers to CH2-vibrations. After polymer cross-linking, there is a higher number of CH2-groups in the 

polymer, resulting in a stronger and sharper absorption band in the IR-spectrum. New bands appear at 

approximately 1600 and 1260 cm-1 which are assigned to the urea- and urethane-functions (C=O- and 

C-N-vibrations) in the polymer. The absorption at 1026 cm-1 indicates C-O-C vibrations which are 10 

typical for carbohydrates. This band slightly decreases in intensity. This could be caused by the chain-

cleavage that may occur in the acidic solvent that was used during the cross-linking under power 

ultrasound. 

 

Fig. 1 FTIR-spectra of pure CS and cross-linked catalyst HMDI-CS/Pd. 15 

 

Further evidence of successful cross-linking with HMDI can be found in the TGA-analysis (Figure 2). 

At the beginning of the measurement, a mass loss of approximately 10% was observed. This is assigned 

to absorbed water. It is important to note that the two curves show different slopes. Pure CS loses the 

absorbed water faster than the cross-linked polymer. In fact, the modified polymer has a network-like 20 

structure which is responsible for the slower release of water. Moreover, the cross-linking caused an 

increased amount of polar groups in the polymer, which can absorb more water and bind it via hydrogen 

bonds. The TGA-curve shows that the cross-linked polymer indeed exhibits a greater (but slower) weight 

loss. 



 

 

Fig. 2 TGA- and DTA-curves for pure CS and HMDI cross-linked catalyst HMDI CS/Pd. 

 

The metal loading of the catalysts was checked by ICP-analyses. Due to impurities, non-modified CS 

exhibited a Pd-loading of  < 9.4*10-4 wt%, which is a number of magnitudes lower than found in the 5 

prepared catalyst. 

Analysis of the Pd-loaded polymer directly after catalyst preparation and after the forth reaction cycle 

(cf. Table 1) resulted in Pd-contents of 2.3 ± 0.3 and 2.1 ± 0.3 wt%, respectively. Thus, the catalyst 

system proves its stability with respect to metal leaching. However, catalyst recycling entailed an 

average weight loss of 3.4% relative to the initial catalyst mass. XPS-analysis of the oxidation state 10 

resulted in a similar Eb, for the Pd 3d5/2 core level, to the value reported in literature.17 

Catalytic testing 

Catalytic tests were carried out by comminuting phenylboronic acid (1) and several aryl halides (2a-i) 

together with the catalyst and K2CO3
8 which was used as the base in a stainless steel milling beaker 

mounted on a planetary ball mill. The reaction with unloaded CS samples led to no conversion at all.17,19 15 

Solid-state reactions in presence of HMDI cross-linked CS/Pd(II) afforded the cross-coupled products 

(3a-i) and biphenyls which originated from homo-coupling of the aryl halide (4a-d, Ullmann reaction; 

Scheme 1).23 The amount of biphenyl (3e) from the homo-coupling of 1 was very low (< 1%) for most 

of the reactions. The amount of homo-coupled products 4a-d is considerably higher for the present CS-

based catalyst system (Table 1) than for other Suzuki cross-coupling procedures in ball mills using 20 

Pd(OAc)2
9,10 or Pd(PPh3)4.

8 As expected, the reactions of aryl iodides (2a,b) and aryl bromides (2c,d) 

lead to higher reaction rates, resulting in quantitative conversion after 90 min, whereas the chlorides 

afforded longer reaction times (120 min). The increased formation of homo-coupling products 4, was 

evident in recycling experiments. Thus, with p-iodoanisole (2a), the yield of 4a was 35% in the second 

run, compared to 25% after the first. m-iodophenol (2b), however, exclusively gave the cross-coupling 25 



 

product 3b. Similarly to 2a, p-bromoacetophenone (2c) and p-bromoanisole (2d) gave 84% and 72% 

yields of cross-coupling adducts (3c and 3d respectively) and 15%, 22% of homo-coupling products (4c, 

4d respectively) (Table 1). In a trial with 2c, no reaction occurred in the absence of 1and only a 5% yield 

of 4c was isolated. The higher reactivity and selectivity of aryl bromides towards Suzuki cross-coupling, 

when compared to iodides, has also been reported by other authors.8-10 The formation of the 5 

dehalogenated aromatics was observed among the side reactions. 

Beside the reactions with aryl iodides and bromides, noteworthy results were also obtained with the less 

reactive aryl chlorides 2e-i (Tab. 1). To the best of our knowledge this is the first report in which aryl 

chlorides have been cross-coupled with 1 in a ball mill affording > 10% yield. 

 10 

Scheme 1. Suzuki cross-coupling reaction of aryl halides in a planetary ball mill (cf. Tab. 1). 

 

Reports by Schneider and Ondruschka10 and Klingensmith and Leadbeater9 reported yields of only 6% 

and 2% for the cross-coupling of chlorobenzene (2e) and p-chlorotoluene with 1, respectively. Moreover, 

we exclusively recovered cross-coupling (3e-i) products in these new experiments (Table 1). 15 

 



 

Table 1. Suzuki reaction of aryl halides (2a-i; Scheme 1) with phenylboronic acid (1) in a ball mill 

using HMDI-CS/Pd as catalyst.a 

Entries 

2a-i 

Hal 

 

R 

 

time/min 

 

X2 

(%) 

yield 

(%) 

homo-

coupling 

(%) 

a I 
p-

MeO 
90 >99 74 25 

a b)   90 >99 64 35 

b I m-OH 90 90 90  

c Br p-Ac 90 >99 84 15 

d Br 
p-

MeO 
90 >99 72 22 

e Cl H 120 >99 99  

f Cl p-NO2 120 >99 84  

f b)   120 95 75  

f c)   120 82 64  

f d)   120 65 50  

g Cl p-Ac 120 29 29  

h Cl m-Ac 120 40 36  

i Cl o-Ac 120 78 39  

X2 = conversion of 2. 

a) Reaction conditions: 1 g catalyst, 0.27 mmol 1, 0.25 mmol 2, 0.5 mmol K2CO3; planetary ball mill, milling beaker (stainless steel, 125 

mL), milling balls (stainless steel, 15x10 mm); 600 min-1. Distribution from GC-MS analysis as mean of three runs.  5 

Catalyst application: b) 2nd run.   c) 3rd run.   d) 4th run. 

 

Obviously, the stronger C-Cl bond in 2e-i favours oxidative addition to the catalyst over the 

dehalogenation accompanied by homo-coupling seen in 2a-d. High conversions and high yields were 

obtained with 2e and p-chloronitrobenzene (2f). With p-chloroacetophenone (2g), the reaction proceeded 10 

slowly with partial conversion but with high chemoselectivity, while higher conversions and yields were 

detected with the m- (2h) and o-isomer (2i). We suppose that these slight differences could arise from 

the coordinating effect of the carbonyl group on the palladium, stronger in the ortho and meta positions, 

thus favouring the oxidative addition. In the reaction with 2f, the catalyst was recycled three times with 

a loss in activity. ICP-analyses of the catalyst after its application revealed that leaching is not so 15 



 

significant as to explain the activity loss. Weight loss during catalyst recycling is probably responsible 

for the observed effect. Using heterocyclic 2-chloropyridine (5a) and 4-benzoxazole (5b) in the reaction 

with 1 afforded the cross-coupling products 6a and 6b in 79 and 62% yields, respectively (Scheme 2).  

Competitive aryl-aryl coupling can be slightly reduced when working under argon atmosphere, this, 

however, is a task that cannot easily be when using a planetary ball mill. In comparison to results 5 

previously published for the cross-coupling of bromo-N-heteroarenes in a similar ball mill,8 the yields 

obtained with the present catalyst are considerably higher, although the reaction times are longer. 

 

Scheme 2. Solid state Suzuki cross-coupling of heteroaryl chlorides (5) with phenylboronic acid (1) in 

a planetary ball mill (conditions see Table 1; X = conversion). 10 

Conclusions 

In summary, we have reported an interesting protocol for Suzuki cross-couplings under ball milling 

conditions using a HMDI cross-linked CS/Pd-derivative as catalyst. The catalyst was prepared in water 

via sonochemical cross-linking with HMDI in the presence of the metal salt. This catalyst can be reused 

three times and shows low metal leaching during its application in Suzuki cross-coupling of aryl 15 

chlorides. The average to high yields that were obtained with several aryl chlorides, compared with the 

poor results reported in literature, may open the door to reactions with poorly reactive substrates in the 

ball mill and possibility to catalyst recycling. 
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