Ultrahigh-pressure metamorphism in the magnesite + aragonite stability field: evidence from two impure marbles from the Dabie-Sulu UHPM belt.

This is the author's manuscript

Original Citation:

Availability:

This version is available at http://hdl.handle.net/2318/120303

Published version:

DOI:10.1111/jmg.12005

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is an author version of the contribution published on:

Proyer A., Rolfo F., Zhu Y.F., Castelli D., Compagnoni R.
Ultrahigh-pressure metamorphism in the magnesite + aragonite stability field: evidence from two impure marbles from the Dabie-Sulu UHPM belt.
JOURNAL OF METAMORPHIC GEOLOGY (2013) 31
DOI: 10.1111/jmg.12005

The definitive version is available at:
http://doi.wiley.com/10.1111/jmg.12005
Ultrahigh-pressure metamorphism in the magnesite + aragonite stability field: evidence from two impure marbles from the Dabie-Sulu UHPM belt.

ALEXANDER PROYER1*, FRANCO ROLFO2, YONG-FENG ZHU3, DANIELE CASTELLI2, ROBERTO COMPAGNONI2

1 University of Graz, Universitaetsplatz 2/II, 8010 Graz, Austria;
*Corresponding author, e-mail: alexander.proyer@uni-graz.at
2 University of Torino, Via Valperga Caluso 35, 10135 Torino, Italy
3 Peking University, Beijing 100871, China

Short title: UHPM in the magnesite + aragonite stability field
ABSTRACT

Two magnesite-bearing impure dolomitic marbles from the Dabie-Sulu UHP region have been investigated in order to clarify if they had actually attained $P-T$ conditions outside the dolomite stability field, limited by the reaction dolomite = aragonite + magnesite, and to test their potential for recording (U)HP conditions. In both cases the silicate mineral assemblage records conditions around the terminal amphibole breakdown reaction: amphibole + aragonite \pm quartz = clinopyroxene + talc, which is a good geobarometer between at least 2.0 and 2.6 GPa. At higher pressures, the terminal breakdown of talc to clinopyroxene + coesite is another $P-T$ milestone that can be inferred from possible pseudomorphs of talc + calcite after coesite, at least in one sample. The dolomite dissociation curve becomes strongly divariant in Fe-bearing marbles and may be attainable during cold subduction near the 5°C/km “geotherm”. At least one of the samples (from Xinyan village, near Taihu, Dabie Shan) preserved relics of both magnesite and aragonite and most likely attained conditions within the aragonite + magnesite stability field. For the second sample from Sanqingge village in the Sulu terrane no certain evidence has been found in this study. Impure dolomitic marbles have considerable potential to preserve (ultra)high-pressure relics, and the inconspicuous mineral assemblage clinopyroxene + talc or quartz (after former coesite) may in fact record UHP conditions.

Keywords: UHP metamorphism, dolomite dissociation, magnesite, aragonite, Dabie-Sulu
INTRODUCTION

The mineral assemblage magnesite + aragonite is of considerable interest for researchers dealing with ultrahigh-pressure (UHP) metamorphism, crust-mantle interaction or carbonate stability in the upper mantle because the breakdown of dolomite to magnesite + aragonite has been determined in a series of experiments (Liu & Lin, 1995; Martinez et al., 1996; Luth, 2001; Sato & Katsura, 2001; Buob et al., 2006; Morlidge et al., 2006) to occur at very high pressures, within the so-called “forbidden zone”, i.e. at “geothermal gradients” below 5°C per km (Fig. 1). Even though there is a considerable spread between the different experimental results, search for traces indicating the (former) presence of a magnesite + aragonite bearing mineral assemblage in ultrahigh-pressure marbles or eclogites is indicated because the number of possible geothermobarometers in that P-T range is very limited and the tectonic consequences of such finds quite important.

Although dolomitic marbles can be found in almost any UHP metamorphic area with metamorphosed supracrustal rocks, only Zhu & Ogasawara (2002) and Zhu (2005) reported observation of dolomite decomposition in marbles from Kokchetav and from the Sulu-terrane in China, but these observations were contested (Hermann, 2003; Zhu, 2003) or revised after a more detailed investigation (Zhu et al., 2009) to the effect that the dolomite-magnesite marble investigated had not crossed the dolomite-out curve. Omori et al. (1999) discovered rare magnesite in impure dolomitic marbles from Xinyan (Dabie Shan) and concluded from the apparent textural disequilibrium of calcite-magnesite intergrowths that this rock also had not experienced pressures above the dolomite dissociation curve. Liu et al. (2006) however claim from inclusions of both aragonite and magnesite in the same “UHP growth zone” in
zircon that these marbles had passed the dolomite-out curve during their metamorphic history.

Carbonate-bearing eclogites and metapelites from Dabie Shan and Tian Shan in China however are reported to fulfill the requirements: Zhang & Liou (1996) describe a dolomite-magnesite-bearing coesite-eclogite that also contains calcite-pseudomorphs after former aragonite as inclusions in garnet, and Zhang et al. (2003) observed inclusions of magnesite and calcite (interpreted as pseudomorphs after former aragonite) in large dolomite porphyroblasts in a garnet-chloritoid-glaucophane micaschist. In both cases, a former coexistence of magnesite and aragonite was inferred. Only one carbonate mineral is stable at a time, however, in the majority of carbonate-bearing metabasites, with a reported change with increasing pressure from aragonite to dolomite to magnesite-bearing blueschists and eclogites (e.g. Messiga et al., 1999; Zhang et al., 2003).

The present study is a detailed investigation of magnesite-bearing dolomitic marbles sampled from the same localities as those of Omori et al. (1999) and Zhu et al. (2009) with the purpose of understanding the complex calcite-dolomite-magnesite intergrowth microstructures in order to establish whether the dolomite dissociation curve had actually been overstepped at some point of the metamorphic history of these rocks.

SAMPLE LOCATIONS

The first sample of impure dolomitic marble (RPC-159) was taken from a river profile near Xinyan, less than 2 km from the well known Shima gneiss+eclogite and Maowu garnet-peridotite in the Coesite Eclogite Complex of eastern Dabie Shan. The local geology,
lithologies and metamorphic history as derived mainly from eclogites have been described in
Zhang & Liou (1996), Omori et al. (1999), Oberhänsli et al. (2002), Schmid et al. (2000,
2003) and Rolfo et al. (2004) and will not be covered here.

The second sample (XU-1) was collected in a quarry ca. 1 km northeast of the village of
Sanqingge in the Sulu terrane. The location and its geological inventory are described in
detail in Zhu et al. (2009). Folded bands of mostly dolomitic marble are separated by thin
layers of eclogite, and three different types of marble, depending on the degree of
retrogression, have been distinguished (Zhu et al., 2009). The sample used for this study
belongs to the least retrogressed magnesite marble type and was taken directly from the
contact with an eclogite layer.

PETROGRAPHY

Sample RPC-159

This is a dolomite marble that contains large porphyroblasts of omphacite and tremolite (Fig.
2a) together with subordinate calcite and the accessory minerals epidote, zircon, rutile,
apatite, pyrrhotite and chalcopyrite. Quartz is found only as inclusions in tremolite or at grain
boundaries between tremolite and omphacite, magnesite as inclusions in dolomite and tiny
relics of talc are rarely preserved in matrix dolomite (Fig. 2b). Omphacite and tremolite
porphyroblasts are xenomorphic, with no apparent compositional zoning in spite of their
large grain sizes of up to several millimeters. Epidote can be found both as inclusions and in
the rock matrix and shows oscillatory zoning with local enrichment in Ce and Fe\(^{3+}\) (Fig. 2c).
The degree of retrogression is minor: omphacite decomposes into a fine- to medium-grained
symplectite of diopside + tremolite + albite ± calcite (Fig. 2d). Rutile affected by such
alteration zones is partly replaced by titanite (Fig. 2e). The symplectites around phengitic
muscovite consist of Ba-rich muscovite + phlogopite + albite (Fig. 2f). Rounded inclusions of microcrystalline talc + calcite in omphacite, surrounded by cracks could be pseudomorphs after former coesite (Fig. 2g). Apatite cores are strewn with micrometer-sized blebs and needles of a Ce-rich phosphate – presumably monazite. The needles are crystallographically oriented in at least three different directions, indicating a precipitate origin (Fig. 2h).

The most revelatory mineral microstructures are those of the carbonate phases. Magnesite has yet been found only as inclusions in dolomite, but its degree of preservation can vary from completely fresh, often oval grains with straight grain boundaries to completely replaced by a porous type of calcite with or without additional dolomite or a Mg-Si-bearing talc-like mineral, which is, however, too poorly crystallized for a reasonable microprobe measurement. The various states of replacement are documented in Figs 3a-d.

Calcite occurs in three different morphological varieties. Pseudomorphic replacement of magnesite invariably results in a porous type of calcite (Fig. 3d). Another type of matrix calcite contains abundant blebs of dolomite and is interpreted as former high-Mg-calcite (Fig. 3e). Some, but not all of these calcite grains are found as part of medium grained amphibole + quartz or symplectite replacement microstructures after omphacite, and could be by-products of the omphacite breakdown reaction. A third type of calcite is devoid of pores and of dolomite inclusions. It was observed mainly as inclusions in omphacite, often with concentric cracks, and more rarely included in dolomite or adjacent to omphacite or dolomite grains (Figs 3f,g). One such grain contains relics of a BSE-brighter CaCO₃ mineral, which is aragonite (Fig. 3g), as verified by Raman spectra which show a peak at 206 wavenumbers which is typical for aragonite and absent in calcite. The Mg-content of the latter calcites is negligible (see below), consequently these grains are considered to represent former aragonite.
as well. Finally, BSE-imaging revealed dolomite within dolomite, i.e. a grain of dolomite with a brighter BSE-contrast than the surrounding “normal” matrix dolomite (Fig. 3h).

Sample XU-1

The thin section of sample XU-1 goes right across the contact between eclogite and dolomitic marble, which are separated by a thin monomineralic band of amphibole 2-3 mm across. The eclogite consists mainly of omphacite and subordinate garnet, phengite and rutile, which are rimmed or replaced respectively by: symplectites of amphibole + plagioclase, Fe-Al-rich amphibole, symplectites of biotite + plagioclase, and titanite. The marble is composed of dolomite, calcite, amphibole, talc and very minor chlorite (Fig. 4a). Both tremolite and talc are coarse-grained (up to mm-sized). Talc is inclusion-free whereas tremolite often contains inclusions of quartz and more rarely of omphacite, magnesite and calcite. Omphacite is not stable in the matrix but was replaced by amphibole + quartz (Fig. 4f). The quartz inclusions in amphibole are sometimes fresh, but more often develop reaction coronas of talc plus calcite (Fig. 4b). Dolomite also contains inclusions of omphacite, magnesite and amphibole and shows a complex chemical zoning with BSE-darker cores and brighter peripheral parts (Figs 4c,g). The degree of brightness increases with Fe-content of dolomite, the source of which, in some cases at least, seems to be inclusions of relict magnesite (Figs 4c,e).

Calcite is modally dominant over magnesite in the matrix, where the former replaces the latter (Fig. 4d) and displays a variety of microstructures, the most common one being non-porous calcite along former grain margins of magnesite and polycrystalline porous calcite towards the centers of such pseudomorphic replacement microstructures (Fig. 5a). However, a non-porous calcite and a mixed type also exist (Figs 5b-d), sometimes with a BSE-zoning due to variable Fe-content, and even a calcite type with complex zoning has been observed.
(Figs 5e,f). Finally, a fourth textural type of calcite is filling abundant cracks in dolomite (Fig. 4a). In contrast to sample RPC159, a BSE-bright substance is part of the pseudomorphs. The EDX spectra show predominant Fe and subordinate Si in variable proportions; analytical totals vary largely between 65 and 80 wt%, indicating significant porosity and most likely also the presence of undetected light elements. A tentative identification by Raman spectroscopy points to a combination of goethite + amorphous silica as the most likely constituents. Concentrations of this BSE-bright material often run parallel to former grain boundaries of magnesite between porous and non porous calcite of the pseudomorphs (Figs 4d,g). Xenoblastic magnesite is very often preserved in the centers of such pseudomorphs. Uncorroded magnesite is restricted to inclusions in amphibole and was found in one instance as an inclusion in apatite (Figs 6a-c). Compositional zoning of magnesite and dolomite is due to variable Fe-Mg ratios (see below) and usually rather irregular or patchy and rarely concentric, with more Fe-rich rims.

MINERAL COMPOSITIONS

Quantitative chemical analyses were obtained with a Superprobe JEOL JXA 8200 with 5 WDX spectrometers in the E.F. Stumpfl EMP-Laboratory, Leoben, and additionally with a JEOL JSM 6310 scanning electron microscope equipped with an Oxford Link ISIS EDX spectrometer and a Microspec WDX spectrometer at the University of Graz. Analytical conditions were 15 kV accelerating voltage and 6 nA probe current for silicates and 2 nA for carbonates respectively, with a 1-2µm diameter of the focused beam and counting times were 20-30 seconds on peak and 10-15 seconds on lower and upper background positions respectively. Matrix correction of phi-rho-Z-type was performed with internal software. Standards were adularia (K, Si), garnet (Fe, Mg), rhodonite (Mn), titanite (Ca, Ti), chromite...
(Cr), gahnite (Zn) and jadeite (Na), and calcite (Ca), dolomite (Mg) and siderite (Fe, Mn) for carbonate analyses. Mineral formulae and endmembers were calculated with the softwares PET (Dachs, 1998, 2004) and AX (Holland, www.esc.cam.ac.uk/astaff/holland/), and mineral chemical plots with PET or GCDkit (Janousek et al. 2006).

Representative mineral analyses for sample RPC-159 are given in Table 1. Large omphacite grains are slightly zoned, with increasing Na, Al and Fe$_{tot}$ and decreasing Ca and Mg from core to rim (Fig. 7a). The composition range in terms of endmembers is about Di$_{69}$-75Hed$_{15-20}$CaTs$_{3-5}$Aeg$_{2-5}$. Amphiboles are calcic to sodic-calcic (tremolite to winchite, Figs 7b,c) and display minor compositional zoning in Ca, Mg versus Na, Al, with all other elements remaining constant. Muscovite contains up to 3.40 a.p.f.u. Si, is enriched in barium also in its non-decomposed cores (up to 3.4 wt% or 0.68 a.p.f.u.) and contains a few Mol% of paragonite, talc and pyrophyllite endmembers (Tab. 1). No fresh talc could be found in this sample; the analyses in Table 1 are from a rounded talc-rich pseudomorph with radial cracks in omphacite. Most noteworthy is the complete absence of Al and F.

Symplectite along cracks and rims of omphacite consists of Na-rich diopside, pure albite and an amphibole that is significantly more tremolitic than coarse-grained matrix amphibole. Magnesite without alteration rims of calcite is more magnesian Mg$_{91-93}$Fe$_{6-7}$Ca$_{1}$ and becomes partly more ferroan during replacement: Mst$_{89-90}$Sid$_{8-9}$Cal$_{1}$ (Fig. 8a). Matrix calcite is highest in Mg- and Fe-content (Cal$_{94}$Mst$_{06}$Sid$_{01}$) - even without integrating dolomite exsolutions (Fig 8b). The non-porous calcite inclusions in omphacite range from entirely pure CaCO$_3$ to Cal$_{97}$Mst$_{03}$. Calcite replacing magnesite ranges at the high-Mg end of these compositions. In matrix dolomites, Ca correlates negatively with Mg, with a range of Cal$_{48-50}$Mst$_{47-49}$Sid$_{2-3}$, whereby (Mg+Mn+Fe) $>$ Ca (Figs 8c,d). The BSE-brighter dolomite grains within a large dolomite crystal are significantly richer in Ca, with (Mg+Mn+Fe) $<$ Ca.
In sample XU-1 (Table 1) the amphiboles show subtle compositional zoning with barroisitic cores and a trend to more tremolite-rich composition towards the rims (Fig. 7b). Within the first centimeter from the eclogite contact there is no significant change in amphibole composition as a function of distance. Omphacite inclusions are virtually pure ternary diopside-hedenbergite-jadeite solid solutions (very low K, Fe$^{3+}$, IVAl) and show a considerable spread in jadeite component from 20 to 42 Mol% (Fig. 6a). The highest jadeite content was found in an inclusion in quartz, followed by inclusions in dolomite and amphibole, with the lowest values for inclusions in calcite (Table 1). The magnesite in sample XU-1 has a slightly higher Fe/Mg ratio (less Ca) than that of sample RPC-159 (Fig. 8a), with a composition range of Mst$_{69-92}$ Sid$_{7-11}$ Cal$_1$. Porous and non-porous calcites from the pseudomorphs are indistinguishable in terms of major element composition and cover most of the compositional range of pseudomorphic and non-porous calcites of sample RPC-159 with the exception of pure CaCO$_3$ compositions. Fe is slightly above and Mn below the detection limit, Ca and Mg correlate well and range within Cal$_{97-106}$ Mst$_{0-3}$ (Fig. 7b). Matrix dolomites are less ferroan and thus higher in Mg compared to those in sample RPC-159 (Fig. 8c). The conspicuous BSE-zoning of dolomites corresponds to a relatively narrow composition range from pure Cal$_{50}$ Mst$_{50}$ to Mst$_{48-49}$ Sid$_{1-3}$ Cal$_{48-50}$, whereby (Mg+Mn+Fe) > Ca (Fig 8c, d). Mg is inversely correlated with Fe+Mn, while Ca shows no correlation with any of the other cations.

DISCUSSION

Geothermobarometry and reaction history of the magnesite-bearing marbles
A petrogenetic grid in the model system CaO-MgO-SiO$_2$-H$_2$O-CO$_2$ (CMSCH) was calculated with THERMOCALC 3.3 (thermodynamic dataset from 22 Nov. 2003) for the P-T range of 1.5 – 4.5 GPa and 300 – 900°C to show the reactions that cause significant modal changes (Fig. 9). Adding the components FeO, Al$_2$O$_3$ and Na$_2$O would increase the variance of these equilibria in the natural samples and stabilize the corresponding assemblages over a larger P-T range. In addition to the polymorphic phase transitions and the dolomite dissociation curve in the upper left corner, the key feature of this diagram is the strongly pressure-dependent degenerate reaction tremolite $=$ diopside + talc, which passes through 4 invariant points. The reactions, emanating from these points towards higher pressures into the UHP field, delimit the stability field of talc in (1) aragonite-dolomite marbles, (2) dolomite-magnesite marbles and (3) rocks with magnesite as the only carbonate mineral. Towards higher temperatures talc breaks down to quartz/coesite + clinopyroxene or enstatite. Only the terminal breakdown reaction of talc, emanating from invariant point (4) applies to ultrabasic compositions, while the others are valid for quartz-saturated rocks. The coloured ellipses in Fig. 9 indicate P-T estimates performed by prior workers.

We would first like to discuss the metamorphic history of the investigated marbles in this framework and then compare the P-T estimates obtainable from them (using THERMOCALC, mode average PT) with prior P-T estimates for these areas.

The observed mineral microstructures and compositions in sample RPC-159 can be explained as follows: an aragonite-bearing dolomite marble passes into the omphacite + talc stability field along the prograde subduction path, and subsequently crosses the dolomite decomposition curve to become an aragonite-magnesite marble. During exhumation, magnesite and aragonite mostly back-react to dolomite, leaving only isolated relics of aragonite (in omphacite, dolomite and matrix) and magnesite (inclusions in dolomite).
During subsequent breakdown of omphacite + talc to amphibole ± quartz all talc is consumed (relics occurring only as rare and poorly preserved inclusions in omphacite and dolomite). Quartz is clearly a reaction product and occurs only as part of this reaction microstructure, generally included in amphibole. Aragonite later transforms to calcite. The coarse-grained omphacite + tremolite assemblage is still largely preserved with the exception of partial symplectite-type retrogression. The fine-grained, porous nature of the minerals pseudomorphically replacing magnesite indicates low temperatures for this stage. The dolomite-in-dolomite microstructure might indicate that at least some magnesite grains were replaced earlier - in a process with different kinetics - by dolomite only.

Omori et al. (1999) had already observed the disequilibrium replacement microstructures of magnesite by calcite but not differentiated between the different types of calcite, which makes it possible to better understand the metamorphic evolution. They also observed magnesite being replaced by an inner rim of dolomite and an outer rim of calcite (their Fig. 4b) – a microstructure that was not found in our study but that can be expected and may represent a transitional type to the dolomite-in-dolomite microstructure reported here.

As indicated by the blue ellipses in Fig. 8, Zhang & Liou (1996) derived $P-T$ conditions of ca. 760°C and minimum pressures of 2.8 GPa from an eclogite from this area, and Rolfo et al. (2004) calculated ca. 730°C and 3.2 GPa as peak conditions recorded by a phengite-bearing eclogite from the area, whereas Schmid (2000) derived maximum $P-T$ conditions of ca. 4.2 GPa and 730°C from a phengite-bearing eclogite sampled in the nearby Changpu area. If this rock had actually attained conditions above the dolomite dissociation curve, the composition of magnesite can be used to estimate a minimum pressure from the shift of the reaction curve in the Fe-bearing system. Fe content of dolomite decreases with increasing pressure and was
most likely pure CaMg(CO$_3$)$_2$ at the breakdown curve. Using the most Fe-rich compositions
of magnesite and an ideal solid solution model gives activities of ca. 0.89 for both RPC-159
and XU-1: this would shift the dolomite decomposition reaction to the blue curve labeled
$m_{st0.89}$, which is near, but not quite at the P-T estimates from eclogites.

These results are very different from what the silicates record, which re-equilibrated during
exhumation at pressures of around 2.5 GPa. The position of the amphibole breakdown
reaction can shift considerably, depending on actual mineral compositions and the intricacies
of the activity models used for amphibole and, to a lesser extent, for clinopyroxene and talc.
We used models implemented in the AX software of Holland, which are simplified at least to
the degree that fluorine is disregarded. The actual peak metamorphic silicate assemblage
stable at conditions estimated from the eclogite samples would have been clinopyroxene +
coesite + aragonite + dolomite/magnesite. However, only possible pseudomorphs after
former coesite have been found.

Mineral modes, microstructures and compositions of sample XU-1 can be explained in a very
similar way as for sample RPC159. The silicates preserve record of retrograde breakdown of
omphacite + talc to amphibole ± quartz during decompression, indication of a prior high-
pressure if not ultrahigh-pressure history. Omphacite was completely consumed during this
reaction, and as talc is a poor container of (U)HP relics, the chance to recover UHP relics is
very unlikely in this type of marble. The carbonate microstructures differ from those in
RPC159: magnesite was apparently a stable matrix phase during much of the rocks
metamorphic history. Magnesite inclusions in apatite indicate that magnesite was most likely
present already at the beginning of the metamorphic cycle, and magnesite inclusions in
amphibole indicate that it was present as a stable matrix phase during amphibole growth,
which occurred at pressures far below the dolomite decomposition curve (Fig. 9). The modal predominance of calcite over magnesite in the thin section seems to be contradictory, but there is no record of primary aragonite. Quite to the contrary, all calcite is of the replacement type, and the very fine grain size of the replacement products as well as the presence of goethite and amorphous silica indicate that this replacement occurred at a very late (cool) stage of the metamorphic history. This would corroborate conclusions drawn by Zhu et al. (2009) that the calcite-magnesite replacement microstructures are a product of late-stage Ca-metasomatism. Fe-release from decomposing magnesite at that stage might also explain most of the complex compositional zoning patterns in magnesite and dolomite. The great variety of calcite types indicates that two stages of magnesite replacement may have occurred: an earlier one at higher temperatures producing smooth, non-porous and often compositionally zoned calcite and a later one resulting in porous calcite. It is interesting to note that retrogression of the eclogite also occurs in two main stages, the first one with coarse-grained amphibole and clinozoisite as reaction products, and a second stage of symplectitization. These stages might correlate with the magnesite replacement stages in the adjacent marble and reflect events of fluid pulses passing through. Oscillatory zoned calcites in particular might reflect such fluid activity.

The earlier metamorphic history of this rock is more difficult to constrain. If it was originally a dolomite-magnesite marble (next to an eclogite), the reactions emanating from invariant point (2) in Fig. 9 apply, and if the P-T estimates of Zhu et al. (2009) obtained from the eclogite are correct, then this rock must have been outside the stability field of talc, with a clinopyroxene + coesite + dolomite + magnesite peak assemblage. One possible piece of evidence for that may be the only grain of quartz found in the matrix (Fig. 4a), which, embedded in dolomite, may have survived the entire exhumation history. Talc would then
have formed as the first product of back-reaction from coesite and clinopyroxene, and may
have also been the first layer separating the coesite-bearing eclogite from the dolomite-
magnesite marble. Crossing of the degenerate reaction diopside + talc = tremolite would then
have replaced this layer by amphibole and consumed all matrix omphacite in the talc-
dominated marble. Quartz inclusions in amphibole start to react with their host during
exhumation according to the simplified reaction tremolite + quartz + CO₂ = talc + calcite.
The BSE-bright, Fe-rich goethite-SiO₂ material has also been found in this microstructural
setting (Fig. 6d-f), indicating that this reaction was coeval with the main stage of matrix
magnesite replacement. Fe²⁺ from amphibole (and not from magnesite) may have been the Fe
source for goethite in this case.

P-T conditions of ca. 600°C and 3.4-3.7 GPa were derived from an eclogite assemblage from
this outcrop and a UHP history is further corroborated by finds of coesite (Zhu et al., 2009).
The shift of the dolomite dissociation curve calculated for this sample is again not big enough
(Fig. 9) to reach down to the conditions recorded in the eclogite, which could mean that the
aragonite + magnesite stability field had not been reached. However, it should be noted that
Liu et al. (2006) reported inclusions of aragonite and magnesite from within the “UHP-zone”
of a zircon, also from the same outcrop, indicating a P-T history that is not preserved in the
main mineral assemblages of marbles. It is possible that a dolomite-magnesite marble crossed
the dolomite dissociation curve, but that all evidence of prior aragonite produced in that field
was erased at least in the samples investigated by us.

Interestingly, the composition of matrix dolomites in both samples (Ca<(Mg+Fe+Mn))
indicates that they coexisted with magnesite rather than with aragonite; only the Ca-rich
“dolomite-in-dolomite” grains in sample RPC-159 seem to have Ca>(Mg+Fe+Mn). This
makes sense for sample XU-1, because all evidence points to a late-stage Ca-introduction into the rock. In fact, these dolomite composition data corroborate the metasomatism hypothesis. In the case of RPC-159, there is no evidence for Ca-transfer into the system, and the amount of high-Mg matrix calcite is definitely higher than the small amount of magnesite relics (ratio of at least 10:1). A possible explanation is that the composition of dolomite growing from aragonite + magnesite is controlled by magnesite rather than aragonite.

General implications

Impure marbles have not been considered to be particularly useful for high-pressure metamorphic research because most of the reactions known from simple chemical systems like CaO-MgO-SiO₂-H₂O-CO₂ (CMASCH) are mainly temperature-dependent and because rocks with a mixed H₂O-CO₂-fluid are not amenable to constant composition diagrams (“pseudosections”). This is due to the fact that the composition of the fluid, for which the system is inevitably open, changes throughout the metamorphic history in a manner that becomes predictable only by including kinetic boundary conditions.

Nevertheless we have shown that the degenerate reaction tremolite = diopside + talc is a good barometer that covers a certain P-T range because all of the minerals involved are solid solutions, and it has played a central role in the P-T evolution of both samples investigated in this study. As a degenerate reaction it is pertinent for calcite-dolomite, dolomite-magnesite and pure magnesite marbles, with an increasing stability field of clinopyroxene + talc at higher pressures in that sequence. Clinopyroxene-talc-marbles are replaced by clinopyroxene-coesite marbles towards higher T and P, before the possible onset of dolomite decomposition. The reaction of dolomite = aragonite + magnesite is again highly divariant due to variable Fe-
content, mainly in magnesite and dolomite, and is shifted towards lower pressures with increasing Fe, becoming thus amenable for impure marbles in cold subduction zones. Therefore, great care should be taken to not overlook relics of magnesite in “ordinary” calcite-dolomite marbles from UHPM terrains. The role of coesite/quartz and aragonite/calcite “relics” has to be evaluated carefully because both minerals can be reaction products along the retrograde path, too. The role of calcite is even more critical because Mg-free calcite inclusions with radial cracks might be the only criterion to derive a prior aragonite + magnesite stability stage, and calcite can obviously be involved in late-stage disequilibrium replacement reactions and form pseudomorphs that could be misinterpreted as former aragonite.

The peak assemblage in the diamond stability field is clinopyroxene + coesite + dolomite + aragonite, which is more or less equivalent to clinopyroxene + quartz + dolomite + calcite – a very common assemblage at much lower pressures and higher X_{CO2} in the fluid. Hence it is also vital to search for coesite relics in “normal”-looking marbles from UHP areas. Schertl & Okay (1994), Zhang & Liou (1996) and also the results of this study show that dolomite can be good enough as a container to preserve relics such as coesite or magnesite, and even talc that is no longer in equilibrium with matrix clinopyroxene. Hence, massive impure marbles that have not been pervasively infiltrated by fluids during exhumation are considered to preserve high-pressure relics better than metapelites, paragneisses and orthogneisses, and perhaps almost as well as eclogites or metaperidotites. An additional benefit in this respect is the fact that most silicate crystals are separated from each other by the predominant carbonate matrix, so diffusion pathways become longer and silicate minerals which are reaction partners may not come in sufficient contact by diffusion of chemical
species for an actual breakdown reaction to be triggered or run to completion, as in the case of a fluid-consuming reaction.

CONCLUSIONS

Out of two investigated cases of magnesite-bearing impure dolomite-calcite marbles, at least one has in fact attained $P-T$ conditions within the magnesite + aragonite stability field. Both the dolomite and the amphibole terminal breakdown reactions are highly useful geobarometers for impure marbles. The microstructures and reaction histories of the carbonate minerals can be quite complex and revelatory. Disequilibrium replacement of magnesite by aragonite/calcite at relatively low temperatures has been observed in both samples and might be common in magnesite-bearing UHP dolomitic marbles. Dolomite has turned out to be a quite useful container for high-pressure relics like magnesite, talc, omphacite or coesite/quartz. Impure calcite-dolomite marbles that have experienced conditions in the aragonite + magnesite stability field during their earlier metamorphic history may be more common than hitherto assumed. This implies $P-T$ conditions that lie close to the $5^\circ C/km$ “geotherm”, with corresponding implications for tectonic processes in these orogens.

ACKNOWLEDGEMENTS:

K. Ettinger has been very helpful in optimizing electron microprobe measurements. The first author wants to gratefully acknowledge the financial support for this work by Austrian Science Fund project P22479-N21.
REFERENCES

Figure and table captions

Figure 1. The most important reactions defining stability fields in the (ultra)high-pressure regime, with the 5°C/km geotherm for reference.
Figure 2. Sample RPC-159: a) coarse grained matrix omphacite and amphibole in dolomite, with quartz and calcite as early reaction products and later symplectite; b) rare relics of magnesite and talc in dolomite; c) oscillatory-zoned matrix epidote; d) detail of symplectite with fine grained, light grey diopside and coarser-grained tremolite in albite; e) rutile rimmed by retrogression titanite; f) phengitic muscovite in amphibole, decomposing to symplectite of very Ba-rich muscovite, phlogopite and albite; g) pseudomorphs of talc + calcite, possibly after former coesite, with radial cracks in omphacite; h) apatite crystals with oriented monazite exsolutions in a dolomite host.

Figure 2. Sample RPC-159: a-d) magnesite in various stages of replacement by mostly porous calcite and to a minor extent by dolomite and a porous, “talc-like” material (c); e) interstitial calcite with dolomite exsolutions; f) non-porous calcite in omphacite, with radial cracks; g) like (f), but with BSE-brighter relics of aragonite; h) BSE-brighter dolomite-2 within normal matrix dolomite, near magnesite (mostly broken out) and calcite.

Figure 3. Sample XU-1: a) coarse grained matrix amphibole and talc in dolomite, with calcite as crack fillings and pseudomorphs, and a small rounded relic of matrix quartz; b) quartz inclusions in amphibole with reactions rims of calcite + talc; c) strongly zoned dolomite with an inclusion of calcite pseudomorphic after magnesite; d) magnesite with inclusions of dolomite, partly replaced by calcite; note BSE-bright Fe-rich material outlining former grain boundaries; e) detail of (c); f) omphacite relic in matrix dolomite, partly reacted to amphibole + quartz; g) zoned dolomite (detail of d).
Figure 4. Sample XU-1: calcite pseudomorphs after magnesite: a) typically with smooth rim and porous core; b) non-porous; c) non-porous with apparently euhedral magnesite inclusion; d) partly porous, smooth part zoned; e, f) with complex zoning.

Figure 5. Sample XU-1: a) magnesite inclusion in apatite; b, c) magnesite inclusions in amphibole: partly replaced by calcite (b) and fresh (c); d, e) quartz inclusion in amphibole partly replaced by talc, calcite and Fe-rich material; f) like in d) and e), but no quartz visible.

Figure 6. a) Pyroxene classification triangle showing clinopyroxene relics from XU-1 (crosses), omphacite (open circles) and symplectite diopside (dots) from RPC-159; b) Amphibole plots for Si vs. Na on the B-site, and c) Si vs. X_{Mg} for matrix amphiboles from XU-1 (crosses) and RPC-159 (dots).

Figure 7. Carbonates from XU-1 (crosses in all plots) and RPC-159 (other symbols); a) magnesite: fresh or dark parts (circles) and brighter parts (dots); b) calcite: matrix calcite (triangles), replacing magnesite (stars), non-porous calcites (circles) and aragonite (dot); c, d) dolomites: matrix dolomite (circles) and “dolomite-in-dolomite” (dots).

Figure 8. Petrogenetic grid for impure marbles in the system CaO-MgO-SiO$_2$-H$_2$O-CO$_2$. P-T conditions constrained in this and prior studies are indicated for sample RPC-159 from Dabieshan (blue) and sample XU-1 from Sulu (red): R = Rolfo et al. (2004), S = Schmid et al. (2000), ZL = Zhang & Liu (1996) and Z = Zhu et al. (2009). The role of the invariant points 1-4 and the pertinent reactions are explained in the text.

Table 1: Representative analyses of silicates and carbonates of samples RPC-159 and XU-1.
Figure 4

(a) Image a shows dolomite (dol) and calcite (cc) with tectonic lineations (tlc) and quartz (qtz). (b) Image b displays dolomite (dol), calcite (cc), tectonic lineations (tlc), and quartz (qtz) with Fe-oxide (Fe-ox) and montmorillonite (mst) as inclusions. (c) Image c focuses on dolomite (dol) with a scale of 200 μm. (d) Image d highlights dolomite (dol), tectonic lineations (tlc), montmorillonite (mst), and calcite (cc). (e) Image e illustrates dolomite (dol) with calcite (cc) and Fe-oxide (Fe-ox). (f) Image f shows calcite (cc) with quartz (qtz) and an opal (omp) inclusion. (g) Image g depicts dolomite (dol) with calcite (cc).
Figure 6

- (a) Shows a micrograph of a dolomite (dol) withapatite (ap) and mst interspersed.
- (b) Displays a higher magnification view, highlighting mst and dol with cc.
- (c) Illustrates the distribution of dolomite, mst, and amphiophyllite (amph) in the rock.
- (d) Focuses on a quartz (qtz) with Fe-ox precipitates.
- (e) Depicts Fe-ox around a quartz grain and tlc.
- (f) Shows Fe-ox and tlc with amph interspersed.
<table>
<thead>
<tr>
<th></th>
<th>RPC-159</th>
<th></th>
<th>XU-1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>omp</td>
<td>amph</td>
<td>mus</td>
<td>epidote</td>
</tr>
<tr>
<td>SiO\textsubscript{2}</td>
<td>55,31</td>
<td>55,32</td>
<td>51,01</td>
<td>38,22</td>
</tr>
<tr>
<td>TiO\textsubscript{2}</td>
<td>0,02</td>
<td>0,06</td>
<td>0,31</td>
<td>0,12</td>
</tr>
<tr>
<td>Al\textsubscript{2}O\textsubscript{3}</td>
<td>6,10</td>
<td>5,33</td>
<td>27,23</td>
<td>28,91</td>
</tr>
<tr>
<td>Cr\textsubscript{2}O\textsubscript{3}</td>
<td>0,00</td>
<td>0,01</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>FeO\textsubscript{3}</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>4,77</td>
</tr>
<tr>
<td>FeO</td>
<td>1,81</td>
<td>3,08</td>
<td>0,77</td>
<td>0,00</td>
</tr>
<tr>
<td>MnO</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,02</td>
</tr>
<tr>
<td>Si</td>
<td>13,03</td>
<td>20,13</td>
<td>4,71</td>
<td>0,15</td>
</tr>
<tr>
<td>CaO</td>
<td>19,82</td>
<td>9,82</td>
<td>0,01</td>
<td>24,43</td>
</tr>
<tr>
<td>BaO</td>
<td>0,00</td>
<td>0,01</td>
<td>3,23</td>
<td>0,00</td>
</tr>
<tr>
<td>Na\textsubscript{2}O</td>
<td>4,02</td>
<td>3,07</td>
<td>0,33</td>
<td>0,01</td>
</tr>
<tr>
<td>K\textsubscript{2}O</td>
<td>0,03</td>
<td>0,21</td>
<td>8,04</td>
<td>0,00</td>
</tr>
<tr>
<td>F</td>
<td>0,00</td>
<td>0,12</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Cl</td>
<td>0,00</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Total</td>
<td>100,15</td>
<td>97,18</td>
<td>95,65</td>
<td>96,63</td>
</tr>
</tbody>
</table>