
21 February 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Photocatalytic degradation of chlorophenols in soil washing wastes
containing Brij 35. Correlation between the degradation kinetics and the pollutants–micelle
binding.

Published version:

DOI:10.1007/s11356-012-1242-0

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/121389 since 2016-10-04T12:47:28Z



 1

 
 
 
 

This is an author version of the contribution published on: 
Questa è la versione dell’autore dell’opera: 
Environ Sci Pollut Res (2013) 20:3224–3231 

DOI 10.1007/s11356-012-1242-0 
The definitive version is available at: 

La versione definitiva è disponibile alla URL: 
http://www.springer.com/?SGWID=6-102-0-0-0 

 



 2

Photocatalytic degradation of chlorophenols in soil washing wastes containing 

Brij 35. Correlation between the degradation kinetics and the pollutants-micelle 

binding. 

M. Davezza, D. Fabbri, E. Pramauro* and A. Bianco Prevot 

Dipartimento di Chimica – Università di Torino - 10125 – Torino, Italy 

Tel +39 0116705292 Fax +39 0116705242 

edmondo.pramauro@unito.it 

 

ABSTRACT 

The photocatalytic degradations of 4-chlorophenol (CP), 4-chloro-2-methylphenol (CMP), 

4-chloro-3,5-dimethylphenol (CDMP) and 4-chloro-2-isopropyl-5-methylphenol (CIMP) were 

investigated in water and in simulated soil washing wastes containing Brij 35 

(polyoxyethylene(23)dodecyl ether) in the presence of TiO2 dispersions. A neat inhibition of 

substrates decomposition proportional to their growing hydrophobicity was observed in the washing 

wastes for CP, CMP and CDMP whereas CIMP showed a different behaviour. The mineralization 

of the organic chlorine of CP and CIMP was relatively fast and complete, whereas it was much 

slower for CMP and CDMP. Micellar solubilization and substrate adsorption onto the 

semiconductor play opposite roles on the degradation kinetics and a break-point between the 

corresponding induced effects was evidenced when the pollutants become completely bound to the 

micellar aggregates. 
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1. INTRODUCTION 

 

Soil washing, a remediation technology largely based on the use of aqueous surfactant 

solutions (Edwards et al. 1991; Deshpande et al. 1999) exploits the solubilization of contaminants 

present in soil by surfactant micelles and the simultaneous lowering of the interface tension between 

the washing solution and the soil particles, facilitating the pollutants desorption from the solid phase 

pores (Gotlieb et al. 1993; Chu and So 2001; Chu and Chan 2003). 

Nonionic surfactants have been often employed for soil washing due to their high 

solubilization capabilities towards hydrophobic solutes. Moreover, they exhibit low critical micelle 

concentrations and do not originate precipitates in the presence of ionic components of soil (Zheng 

and Obbard 2002). Hydrophilic non-ionic surfactants are, in particular, suitable candidates since 

they generally show lower adsorption on the solid soil particles, thus reducing the surfactant 

consumption during the washing. 

A typical problem arising from soil washing is that the obtained wastes must be further 

disposed or treated using proper chemical or biological degradation procedures. Among the possible 

chemical treatments, heterogeneous photocatalysis is an advanced oxidation method largely used in 

the past years for the effective degradation of a wide variety of organic pollutants present in 

aqueous wastes. One of the main advantages of this process is that it allows to obtain the effective 

decomposition and in most cases the complete mineralization of a great variety of substrates (Ollis 

et al. 1989; Pichat et al. 1993; Bahnemann et al. 1994; Hoffmann et al. 1995; Alfano et al. 2000; 

Malato et al. 2002). 

The photocatalytic treatment of aqueous wastes containing surfactants coming from soil 

washing was previously successfully applied in real cases (Fabbri et al. 2008). However this 

treatment is a very complex process which needs to be carefully considered since it is known that 

surfactants are themselves degraded (Hidaka et al. 1990), thus competing with the target pollutants 

for the active sites of the semiconductor. Moreover, the presence of surfactant micelles and 
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surfactant structures adsorbed onto the semiconductor drastically alter the partition equilibria of 

substrates between the solution and the catalyst, with noticeable effects on the degradation kinetics. 

In fact, it was generally found that the degradation of organic pollutants is largely inhibited 

in the presence of surfactants (Pramauro et al. 1998; Bianco Prevot et al. 1999; Fabbri et al. 2004), 

but beneficial kinetic effects were also observed in some peculiar cases (Tada et al. 2002; Fabbri et 

al. 2006). In particular, in a very recent work the positive role played by the accumulation of the 

target pollutant in the admicellar structures formed on the semiconductor was clearly confirmed 

(Zhang et al. 2012). 

Although these contradictory results have been noticed and tentative explanations have been 

proposed, there is still a lack of information concerning the mechanisms of the photocatalytic 

treatments performed in the presence of surfactants due to the complexity of the heterogeneous 

reaction media. In particular, the existence of useful relationships between the kinetic effects and 

the interactions operating between the substrates and the different components present (micelles, 

admicelles, semiconductor particles and bulk solution) need to be more deeply examined. 

In order to give insight into these aspects, the application of photocatalysis to treat soil 

washing wastes containing some chlorophenolic derivatives was investigated, looking at the 

opposite influence exerted on the primary degradation kinetics by pollutants adsorption onto the 

TiO2 particles and by their binding to the micellar aggregates. All the examined compounds contain 

a common moiety (4-chlorophenol) and different alkyl substituents contributing to the whole 

molecule hydrophobicity. The evolution of the substrates mineralization was also examined by 

monitoring the chloride release during the treatment. 

Taking into account the good performances exhibited by the nonionic surfactant Brij 35 in 

previous investigations (Davezza et al. 2011), it was selected as suitable and unique candidate for 

the soil washing and the successive photocatalytic experiments. 
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2. MATERIALS AND METHODS 

2.1 Soil samples 

A clean sandy clay loam having an organic carbon content of ca. 2.5% was sampled from 

the 0-15 cm soil horizon, dried at room temperature, then grinded in a mortar and sieved to < 2 mm 

to remove the bigger particles. The soil was further homogenized, transferred to closed vessels and 

kept in refrigerator. 

2.2 Instruments 

The pollutants determinations were performed using an HPLC Merck-Hitachi, equipped 

with L-6000 and L-6200 pumps and a UV–VIS L-4200 detector. The chloride analysis was 

performed using a Dionex DX500 ionic chromatograph, equipped with a Dionex AS9HC anionic 

column (200 mm long x 4 mm i.d.) and a conductometric ED40 Dionex detector. 

A microwave digestion system MARSX (from CEM Corporation) was used for the 

exhaustive extraction of the soil samples. Surface tension measurements were performed with a 

digital tensiometer (K10, Krüss).  

All the irradiation experiments were carried out in Solarbox (CO.FO. MEGRA, Milan), 

where stirred cylindrical closed cells (40 mm i.d; 25 mm high, made of Pyrex glass) were placed. A 

1500 W Xenon lamp source, equipped with a 340 nm cut-off filter, was used to simulate the AM1 

solar irradiation. The measured temperature within the solarbox was ca. 53°C. 

Some ultrafiltration experiments were also performed on the pollutants-containing soil 

washing wastes using an ALC PK 131 R centrifuge (Milan, Italy). 

2.3 Reagents 

TiO2 Degussa P25 (composed of ca. 80% anatase and 20% rutile) was employed to perform 

all the photodegradation tests. In order to remove any organic impurity this oxide was washed with 

water and irradiated in solarbox for about 12 hours. The washed semiconductor was then dried in 

the oven at 80°C. The TiO2 dispersions were sonicated in water immediately before use. 
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Methanol (Lichrosolv, Merck) was used as eluent. The surfactant Brij 35 (from Aldrich), 

was used to prepare the soil washing solutions. Acetone and n-hexane (from Aldrich) were used for 

the microwave-assisted exhaustive extraction (MAE) of the soil samples. Pure water was produced 

using a Milli-QTM system (Millipore). Pure standards of CP (Aldrich), CMP (Fluka), CDMP and 

CIMP (from Alfa Aesar) were used as received. 

 

3. EXPERIMENTAL PROCEDURES 

3.1 Soil Spiking  

50 g of soil were treated with 50 mL of solutions containing a known concentration of the 

organic pollutants dissolved in acetone. The slurry was strongly stirred for one hour, then allowed 

to stand at room temperature under forced ventilation in hood for 24 hours to obtain the complete 

removal of the organic solvent. The spiked soil samples were kept in refrigerator. 

3.2 Soil Washing Experiments 

The soil washing tests were performed on relatively fresh (one week) spiked soil samples. 

The effect of ageing was not considered in the present study. 

To 2 g of soil were added 12.5 mL of the surfactant-containing washing solutions, then the 

dispersions were placed in a rotatory mixer (rotation speed: ca. 10 rpm). The contact time was 5 h. 

After centrifugation at 5000 rpm for 10 min, aliquots of the supernatant solutions were filtered 

through a 0.45 µm Millex–LCR hydrophilic PTFE membrane (Millipore) and analyzed via HPLC 

using a mobile phase composed of methanol/water (50:50 v/v for CP; 60:40 v/v for CMP and 70:30 

v/v for CDMP and CIMP, respectively). A 100 RP-C18 column (Lichrospher, 4 mm i.d x 125 mm 

long, 5 µm particle size) was used. Isocratic elutions were performed at a flow rate of 1 mLmin-1; 

the detector wavelength was 220 nm. 

3.3 Microwave-assisted extraction (MAE) of the spiked soil samples 

Prior to the washing runs the spiked soil samples were analyzed following a standard 

exhaustive procedure (EPA method n° 3546): ca. 10 g of soil were weighed in the teflon microwave 
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vessel and 25 mL of acetone/hexane (50:50, v/v) were added. The samples were micro-waved at 

110°C and 100 psi for 20 min. The liners were cooled to the room temperature and the suspensions 

were filtered through 0.45 µm Millex–LCR filters (Millipore). Acetone was finally replaced by 

methanol before the HPLC analysis. 

3.4 Pollutants adsorption onto TiO2 

In order to verify the tendency of each pollutant to adsorb onto the semiconductor particles, 

adsorption runs were performed in the dark. Soil washing solutions containing 20 mgL-1 of 

alkylchlorophenols were placed in the Solarbox cells together with the proper amount of TiO2 (1000 

mgL-1). The cells, completely covered with aluminium foil, were kept under constant stirring for ca. 

4 hours, time which ensures to reach the complete equilibration of the system. The dispersion was 

then filtered (always in the dark) through a 0.45 µm Millipore membrane and analyzed by HPLC. 

3.5 Micellar ultrafiltration tests  

10 mL of soil washing solutions obtained from clean soil, containing 20 mg L-1 of each 

examined pollutant, were placed in centrifuge tubes equipped with YM 10 ultrafiltration 

membranes (Millipore) having a molecular weight cut-off of 10 kDa. After centrifugation at ca. 

6000 rpm for 8 min the collected permeate was analyzed by HPLC. 

3.6 Photocatalytic degradation tests 

The experiments were carried out in Solarbox on 5 mL of soil washing wastes containing 20 

mgL-1 of each individual pollutant and 1000 mgL-1 of added TiO2. Blank runs were also performed 

in water for comparison purposes. 

The primary degradation kinetics of each pollutant was followed by sampling and analyzing 

the dispersions after different irradiation times. An equal volume of methanol (5 mL) was added to 

the irradiated dispersions in order to dissolve the pollutant adsorbed on the catalyst particles, then 

the hydroorganic dispersions were stirred for 20 min and filtered before the HPLC analysis through 

a 0.45 µm Millex–LCR filters (Millipore). 
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4. RESULTS AND DISCUSSION 

4.1 Soil washing experiments 

The presence of micelles in the soil washing solutions is required to ensure the solubilization 

of hydrophobic pollutants, but it is known that the surfactant critical micellar concentration (CMC) 

increases in the presence of soil particles due to the surfactant adsorption (Zheng and Obbard 2002). 

In order to verify the presence of micellar aggregates after the equilibration of the washing solution 

with the soil, the effective CMC (CMCeff) was determined by means of surface tension 

measurements. 

As expected, the measured CMCeff of the washing extracts (2.6x10-4 M) was above the CMC 

values reported for Brij 35 in pure water (9x10-5 M) (Borgerding and Hinze 1985). Taking into 

account the total surfactant concentration employed, the presence of micellar aggregates in the 

extracts was then confirmed. 

Although the mean aggregation number of surfactants slightly changes in the presence of 

other solutes, a rough estimate of micelle concentration (assuming the aggregates as 

macromolecules) can be done for Brij 35 starting from its reported aggregation number in water (ca. 

40 at room temperature (Phillies et al. 1995; Borbély 2000). Then, the ratio (R) between the 

substrate and micelle concentrations can be calculated according to the following equation: 

AG

efftot

sub

N

)CMC(C
MW

C

R
−

=       Eq. (1) 

Where Csub is the substrate concentration (2x10-2 gL-1), MW is the substrate molecular 

weight (gmol-1), Ctot is the surfactant concentration in the washing solution and NAG is the surfactant 

aggregation number. Values of R ≤ 1 largely favour the substrates solubilization.  

The molar concentrations of the examined compounds vary between ca. 1.1x10-4 M for CP 

and ca. 1.6x10-4 M for CIMP. Since the concentration of Brij 35 micelles in the starting washing 
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solutions is ca. 2.4x10-4 M, the corresponding R values were: 0.64 (CP), 0.58 (CMP), 0.53 (CDMP) 

and 0.44 (CIMP), respectively. 

Under the reported working conditions the effective extraction of the examined 

chlorophenols from the spiked soil samples was obtained. Table 1 reports the percent recoveries and 

their standard deviations (from five replicated measurements) after the soil washing runs. The 

recoveries obtained with water and with Brij 35 washing solutions were calculated in respect to 

those obtained using the exhaustive MAE procedure with acetone/hexane. The higher recovery of 

the relatively hydrophilic CP reflects the lower adsorption of this compound on the soil in 

comparison with the more hydrophobic alkyl derivatives.  

4.2 Photocatalytic runs 

The fundamental aspects of the photocatalysis are well known (Ollis et al. 1989; Pichat et al. 

1993; Bahnemann et al. 1994; Hoffmann et al. 1995; Alfano et al. 2000; Malato et al. 2002) and 

will be not remembered here. The influence of surfactants on these processes, largely due to their 

tendency to adsorb onto the semiconductor, has been recognized and must be carefully considered. 

In particular, detailed studies on surfactants adsorption onto hydrophilic solids (Koopal 2003) 

indicated that, within a homologous series of alylpolyoxyethylene surfactants having the same 

hydrophobic moiety, the extent of adsorption onto oxides significantly decreases with the increase 

of the hydrophilic head size. In these cases, the formation of admicellar structures onto the 

semiconductor particles becomes negligible. Brij 35 has been chosen in this light in order to reduce 

the competitive adsorption between surfactant and pollutant on the active semiconductor oxide, thus 

allowing a faster pollutant abatement. 

Both the degradation of the chlorophenolic substrates (primary process) and the formation of 

the chloride ions generated during the mineralization process were followed as a function of the 

irradiation time. The TOC analysis during the waste treatment is precluded due to the simultaneous 

degradation of the surfactant. 
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Fig. 1 illustrates the degradation profiles of the investigated compounds. Linear plots up to 

ca. 75%  of substrate degradation were obtained by fitting the degradation data with Eq. (2), 

confirming the typical pseudo-first order kinetics observed in most photocatalytic experiments. 

tk
C

C
ln obs

0

−=







−  Eq. (2) 

 

In Eq. (2) C0 is the initial substrate concentration before to start the run and C is the 

substrate concentration measured after the irradiation time t. Table 2 summarizes the measured rate 

constants of the examined pollutants. Each reported kobs value represents the mean of four repeated 

runs. 

A general decrease of the degradation rate with the increasing hydrophobicity of the 

substrates is observed in the presence of Brij 35. A contribution to the degradation inhibition also 

arises from the presence of organic components of soil (Davezza et al. 2011) since it is known that 

also humic compounds undergo photocatalytic degradation, thus competing with the pollutants for 

the occupation of the semiconductor active sites (Minero et al. 1999; Al-Rasheed and Cardin 2003). 

Surprisingly, it can be observed that the degradation rate of CIMP is higher than that of CDMP and 

similar to that of CP. 

Taking into account that the pH of the collected washing wastes lies in the range 6.6-6.9 and 

that the measured pH values of the corresponding TiO2 dispersions after long term irradiation (5-6 

h) were found in the range 6.4-6.7, the presence of ionic interactions between the pollutants and the 

semiconductor can be excluded. In fact, the isoelectric point of TiO2 P-25 is around 6.5 (Lee et al. 

2003), whereas the reported pka of CP is 9.38 (Liang et al. 2007) and higher pka values are expected 

for the alkylchlorophenols. 

As previously reported in the literature, the negative influence of micellar solubilization on 

the solutes degradation rate can be related to the tendency of pollutants to bind to the host micellar 

aggregates, whereas the pollutants adsorption onto the semiconductor favours their degradation. 
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Then, the evaluation of substrates-micelle binding constants, KB (not found in the literature) and the 

measurement of substrates adsorption on TiO2 have been performed looking at the possible existing 

correlations between these data and the observed kinetic effects. 

As far as the mineralization evolution is concerned, Fig. 2 shows a nearly stoichiometric 

formation of Cl- in water after ca. 3 h for CP and CIMP, whereas the chloride ion release is slower 

and incomplete in the irradiated washing wastes for CMP and CDMP. Even after long term 

irradiation (5 h), the measured Cl- concentration was found to be far from the expected 

stoichiometric value for CMP and CDMP (ca. 60% and ca. 30%, respectively). 

4.3 Effect of substrate hydrophobicity on the primary process kinetics 

The solute-micelle binding constant, KB, was chosen as suitable parameter for the estimation of  the 

substrates hydrophobicities. The correlations between this parameter and the equilibria regulating 

the solutes partitioning in the surfactant-containing semiconductor dispersions were investigated. 

4.3.1 Measurement of solute-micelle binding constants using micellar HPLC 

The retention of solutes in micellar HPLC (Armstrong and Nome 1981) depends on the 

surfactant concentration in the mobile phase and on the partition coefficients of the solutes between 

stationary, aqueous and micellar phase, according to the following equation: 

M
SW

MW

MWme

S C
P

1)(P

P

1

VV

V
⋅

−⋅
+=

−
V

    Eq. (3) 

where Vs is the stationary phase volume, Ve is the elution volume of the solute and Vm is the void 

volume of the column, V is the partial molar volume of the surfactant and CM is the micellized 

surfactant concentration in the mobile phase (CM = Ctot – CMC). PMW is the solute partition 

coefficient solute between the micellar and aqueous phases and PSW is the solute partition 

coefficient between the stationary and the aqueous phase. The solute-micelle binding constant, KB, 

is in turn defined by the equation (Berezin et al. 1973): 

)1(PK MWB −⋅= V       Eq. (4) 
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The KB values can then be estimated from the slope/intercept ratio of the plots according to 

Eq. (3). The volume of the stationary phase in the column was calculated from the difference 

between the total column volume and the void volume, in turn determined from the retention time 

of injected NO3
-, analyte which do not interact with the C18 stationary phase. All the measurements 

were performed at room temperature (25°C). 

As reported in previous studies concerning Brij 35 (Borgerding et al 1988) the phase ratio 

remains constant over the surfactant concentration range examined in our experiments (0.06-0.09 

M). It was also found that working with relatively low surfactant concentrations, as in our case, the 

uncertainties in the KB determinations are lower (Kord 1991). 

Fig. 3 shows the variation of the chromatographic parameter Vs/(Ve-Vm) as a function of the 

micellized Brij 35 concentration in the mobile phase for CP and CMP. The binding constant of 

phenol (P) was also determined for comparison purposes and its value was found in good agreement 

with previously reported data (Marina et al. 1989). It can be seen that the linear behaviour predicted 

by Eq. (3) is obeyed.  

Table 3 summarizes the data arising from the micellar HPLC measurements. The 

uncertainties of the measured KB were in the range ± 5 – 10 %, as expected on the basis of previous 

results concerning solutes having similar KB values (Khaledi et al. 1987). For highly hydrophobic 

solutes the large increase of the term PSW and the corresponding decrease of the intercept of Eq. (3) 

lead to a noticeable uncertainty of the intercept determination, precluding the application of the 

micellar HPLC method (Borgerding et al. 1988). The KB values of CDMP and CIMP were then 

estimated using an alternative approach. 

4.3.2 Evaluation of KB for CDMP and CIMP. 

A correlation exists between the free energy of transfer of solutes from water to micelles and 

their corresponding binding constants (Bunton and Sepulveda 1979): 

∆µ0
t = µ0

mic - µ0
w = -RT ln (55.5 KB)         Eq. (5) 
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In homologous series the free energy of transfer of complex molecules can be related to the 

individual contributions of the various substituent groups to the starting moiety. In particular for the 

examined alkylchlorophenols the following equation holds: 

∆µ0
t molecule = ∆µ0t Clphenol + n∆µ0

t C             Eq. (6) 

where ∆µ0
t C represents the contribution of each aliphatic carbon atom of the alkyl substituents to 

the free energy of transfer of the starting 4-chlorophenol molecule. The hydrophobic contribution of 

the chlorine atom to the free energy of transfer of 4-chlorophenol, ∆µ0
t Cl, was found to be –0.7 kJ 

mol-1, as expected from the measured ∆µ0
t of P and CP (-23.0 kJ mol-1 and -23.7 kJ mol-1, 

respectively). 

The contribution of each aliphatic carbon group (∆µ0
t C = -1.2 kJ mol-1) was in turn estimated 

from equation Eq. (6) starting from the ∆µ0
t values of CP and CMP (-23.7 kJ mol-1 and -24.9 kJ 

mol-1, respectively) calculated from the measured KB  using Eq. (5). On the other hand, from the 

calculated ∆µ0
t of CDMP and CIMP (-26.1 kJ mol-1 and -29.7 kJ mol-1, respectively), their 

corresponding KB values (680 and 1,800 M-1) were evaluated. 

4.3.3 Determination of the percentage of pollutants bound to the micelles in the washing 

wastes 

In order to evaluate the extent of pollutants binding to the Brij 35 micelles, some 

ultrafiltration experiments were performed on blank soil washing solutions obtained from clean soil 

samples. A fixed amount of each investigated chlorophenol (20 mg L-1) was dissolved in these 

solutions, previously filtered through a 0.45 m filter, then the ultrafiltration runs were performed as 

previously described and the permeate was analyzed by HPLC. The percentage of rejection, defined 

by Eq. (7), was then calculated. 

100
C

C
%R

O

P ⋅







=   Eq. (7) 

In Eq. (7) Cp is the measured concentration of each pollutant in the permeate and C0 is the initial 

concentration before ultrafiltration. The obtained %R values were the following: 85.0±3.4 (CP), 
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94.5±3.3 (CMP), 99.9±2.5 (CDMP) and 100.0±2.7 (CIMP). Each reported rejection value was the 

mean of five repeated runs. The obtained rejection data confirmed that, as previously reported 

(Pramauro et al. 1993), the complete binding of solutes to micelles occurs for KB values in the range 

800-1000 M-1. Under these conditions the presence of free solute molecules in the aqueous bulk 

becomes negligible and it was recognized that, in these cases, the direct transfer of highly bound 

solutes from the host micelles to a solid/solution interphase becomes slower and difficult 

(Borgerding et al 1988). Then, it can be expected that the negative effect exerted by micelle–solute 

binding on degradation kinetics tends to level off for highly hydrophobic compounds. 

4.3.4  Evaluation of substrates adsorption onto TiO2  

A significant adsorption of the examined chlorophenols onto the TiO2 particles has been 

evidenced. The adsorption of the three less hydrophobic compounds was between 32.6% for CP and 

39.6% for CDMP, whereas a neat increase was observed for CIMP (ca. 70%). As shown in Fig. 4 

the substrates adsorption increases monotonically with increasing KB. In the same figure the plot of 

%R vs. KB (shown for comparison purposes) indicates that for higher KB values the substrates can 

be considered completely bound to the aggregates.  

The degradation rate of CIMP, higher than that of CDMP, can be justified on the basis of the 

dominant contribution of adsorption to the faster degradation of highly hydrophobic compounds, in 

agreement with previously reported data (Tada et al. 2002; Fabbri et al. 2006). 

 

5. CONCLUSIONS 

The non-ionic surfactant Brij 35 allows to obtain satisfactory recoveries of the investigated 

chlorophenols present in spiked soil samples, then it can be proposed as suitable solubilizing agent 

for the removal of these pollutants from contaminated soil. The further photocatalytic treatment of 

the washing wastes allows to degrade the extracted pollutants, being the kinetics of the process 

mainly dependent on the solute hydrophobicity. 
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For the less hydrophobic compounds (CP, CMP and CDMP) the decrease of the primary 

degradation rate with respect to the corresponding values in water can be directly related to the 

increase of the solute hydrophobicity, whereas a neat change of this tendency was observed for 

CIMP. The observed behaviour can be explained in terms of competition between micellar 

solubilization, proportional to KB and limited by the complete binding of substrates to micellar 

aggregates, and substrates adsorption onto the semiconductor, growing monotonically with 

increasing KB. The obtained results suggest that adsorption plays a dominant role for solutes having 

KB values higher than a threshold limit of ca. 1000 M-1, leading to a relative increase of their 

degradation rate.  

The evolution of the mineralization process, markedly slower than the pollutants abatement, 

for CMP and CDMP, suggests that a longer treatment time of the corresponding wastes should be 

necessary in order to minimize the presence of residual chlorinated by-products. 
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CAPTIONS 

Fig. 1 Primary process: � CP, � CMP, ▼ CDMP and � CIMP in presence of Brij 35 1.0x10 -2 M 

(soil washing extracts). Substrates concentration: 20 mgL-1, TiO2: 1000 mgL-1. 

Fig. 2 Chloride evolution: � CP,  CMP, � CDMP and � CIMP in presence of Brij 35 1.0x10 -2 

M (soil washing extracts). Substrates concentration: 20 mgL-1, TiO2: 1000 mgL-1. 

Fig. 3 Variation of Vs/(Ve-Vm) with the micellized concentration of Brij 35 (� P,  CP, � CMP). 

Fig. 4 Percentage of adsorption and rejection vs KB for the pollutants analyzed.  
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Table 1 Recoveries of the investigated chlorophenols after soil washing. 

 

 

Soil washing solution 
Acetone/n-hexane Brij 35 1.0 x 10-2 M 

% 
Recovery 

Standard 
Deviation 

% 
Recovery 

Standard 
Deviation 

CP 97.6 0.5 100 2.3 

CMP 100 2.3 95.2 4.6 

CDMP 100 3.9 91.4 1.7 

CIMP 100 2.4 90.2 4.6 
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Table 2 Primary degradation rate constants of alkylchlorophenols. 

 

 

 
 

kobs(min-1) 
 

Compounds H2O 
Brij 35 1.0x10-2 M 

soil washing extracts 

CP 2.1x10-1 5.1x10-2 

CMP 1.2x10-1 5.4x10-3 

CDMP 4.7x10-2 2.4x10-3 

CIMP 7.0x10-2 3.2x10-2 
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Table 3 Association constants of P, CP and CMP to Brij 35 micelles 

 
 

Solute Intercept Slope r2 KB (M-1) PSW PMW
a 

P 9.3x10-3 1.76 0.999 196 111 872 

CP 4.3x10-3 1.13 0.990 264 233 1174 

CMP 2.2x 10-3 0.92 0.985 419 454 1863 

CDMPb - - - 680 - - 

CIMPb - - - 1,800 - - 

 
a The Partial molar volume of Brij 35 is 0.225 L mol-1  (Borgerding et al 1988). 
 
b The determination of the value for these compounds is not possible via HPLC and the KB 
was evaluated using the approach detailed in the section 4.3.2. 
 


