Production of Muons from Heavy Flavor Decays at Forward Rapidity in pp and Pb-Pb Collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV

This is the author's manuscript

Original Citation:

Production of Muons from Heavy Flavor Decays at Forward Rapidity in pp and Pb-Pb Collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV / B. Abelev; J. Adam; D. Adamová; A. Adare; M. Aggarwal; G. Aglieri Rinella; A. Agocs; A. Agostinelli; S. Aguilar Salazar; Z. Ahammed; A. Ahmad Masoodi; N. Ahmad; S. Ahn; S. Ahn; A. Akindinov; D. Aleksandrov; B. Alessandro; R. Alfaro Molina; A. Alici; A. Alkin; E. Almaráz Aviña; J. Alme; T. Alt; V. Altini; S. Altipinari; I. Altsybeev; C. Andrei; A. Andronic; V. Anguelov; J. Anielski; C. Anson; T. Antii; F. Antinori; P. Antonioli; L. Aphecetche; H. Appelshäuser; N. Arbor; S. Arcelli; A. Arend; N. Arpesella; R. Arnaldi; T. Aronsson; I. Arsene; M. Arslanbekov; A. Asryan; A. Augustinus; R. Averbeck; T. Awes; J. Ayestó; M. Azmi; M. Bach; A. Badalà; Y. Bae; R. Baille; R. Bala; R. Baldini Ferroli; A. Baldisseri; A. Baldit; F. Baltasar Dos Santos; T. Ban; I. Barcelo; R. Bartolo; L. Bartosik; A. Barna; V. Barnby; V. Bartel; P. Bartke; M. Basile; N. Bastid; S. Basu; B. Bathe; G. Batigne; B. Batyunya; C. Baumann; I. Bearden; H. Beck; I. Belich; F. Bellini; R. Bellwied; E. Belmont-Atienza; G. Bencic; S. Beole; I. Berceanu; A. Bercucci; Y. Berdnikov; D. Berenyi; A. Bergognon; D. Berzano; L. Betev; A. Bhasin; A. Bhati; J. Bhom; L. Bianchi; N. Bianchi; C. Bianchin; J. Bielik; J. Bieliková; A. Bilandzic; S. Bjelogrlic; F. Blanco; F. Blanco; D.

Published version:

DOI:10.1103/PhysRevLett.109.112301

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Production of Muons from Heavy Flavor Decays at Forward Rapidity in \(pp\) and Pb-Pb Collisions at \(\sqrt{s_{NN}} = 2.76\) TeV

B. Abelev et al.*
(ALICE Collaboration)
(Received 4 June 2012; published 13 September 2012)

The ALICE Collaboration has measured the inclusive production of muons from heavy-flavor decays at forward rapidity, \(2.5 < y < 4\), in \(pp\) and Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV. The \(p_t\)-differential inclusive cross section of muons from heavy-flavor decays in \(pp\) collisions is compared to perturbative QCD calculations. The nuclear modification factor is studied as a function of \(p_t\) and collision centrality. A weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a factor of about 3–4 is observed in \(6 < p_t < 10\) GeV/c. The suppression shows no significant \(p_t\) dependence.

DOI: 10.1103/PhysRevLett.109.112301 PACS numbers: 25.75.Cj, 13.20.-v

The study of ultrarelativistic heavy ion collisions is aimed at investigating the properties of strongly interacting matter in the extreme conditions of high temperature and energy density expected to be reached. Under such conditions, quantum chromodynamics (QCD) calculations on the lattice predict the formation of a deconfined partonic phase, the quark-gluon plasma, and chiral symmetry is restored [1]. Heavy quarks (charm and beauty), abundantly produced at the Large Hadron Collider (LHC), are sensitive probes of the properties of the quark-gluon plasma. Because of their large masses, they are created mainly in hard scattering processes during the early stage of the collision and subsequently interact with the hot and dense medium. In particular, measurement of open heavy-flavor hadrons may probe the energy density of the system through the mechanism of in-medium energy loss of heavy quarks. The in-medium effects are usually quantified by means of the nuclear modification factor \(R_{AA}\) of the transverse momentum \((p_t)\) distribution. Using the nuclear overlap function from the Glauber model [2], \(R_{AA}\) can be expressed as

\[
R_{AA}(p_t) = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA}/dp_t}{d\sigma_{pp}/dp_t},
\]

where \(\langle T_{AA} \rangle\) is the average nuclear overlap function in a given centrality class. The term \(dN_{AA}/dp_t\) is the \(p_t\)-differential yield in nucleus-nucleus (AA) collisions, while \(d\sigma_{pp}/dp_t\) is the \(p_t\)-differential inclusive cross section in \(pp\) collisions. The value of \(R_{AA}\) is unity for hard probes if no nuclear modification is present. A \(R_{AA}\) value smaller than unity can arise from partonic energy loss as well as other nuclear effects. According to QCD, the radiative energy loss of gluons should be larger than that of quarks, and due to the dead cone effect [3–6], heavy quark energy loss should be further reduced with respect to that of light quarks. The contribution from other interaction mechanisms, for instance collisional energy loss [7,8], in-medium fragmentation, recombination, and coalescence [9–11], could also lead to a modification of heavy-flavor hadron \(p_t\) distributions in AA collisions. Finally, initial state effects [12,13] could complicate the interpretation of any deviation from unity of the \(R_{AA}\) in terms of energy loss effects, particularly in the low \(p_t\) region. The study of \(p-A\) collisions is required to quantify the role of initial state effects. The PHENIX and STAR Collaborations have reported a strong suppression of electrons from heavy-flavor decays at midrapidity, in central Au-Au collisions at \(\sqrt{s_{NN}} = 200\) GeV at RHIC [14–17]. The PHENIX Collaboration also measured a significant suppression of muons from heavy-flavor decays at forward rapidity in central Cu-Cu collisions at \(\sqrt{s_{NN}} = 200\) GeV [18]. Recently, a significant suppression of D mesons [19] and \(J/\psi's\) from B decays [20] was measured at midrapidity in central Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV by ALICE and CMS at the LHC, respectively. A complementary measurement of heavy-flavor suppression at forward rapidity, at the same energy, is of great interest in order to provide new constraints on models which aim at describing the nuclear modification factor as partonic energy loss.

In this Letter, we report the first measurement at the LHC of the production of muons from heavy-flavor decays at forward rapidity \((2.5 < y < 4)\), with the ALICE experiment [21], in \(pp\) and Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV. The measured \(p_t\)-differential inclusive cross section of muons from heavy-flavor decays in \(pp\) collisions at \(\sqrt{s} = 2.76\) TeV is compared to perturbative QCD (pQCD) calculations. In-medium effects are investigated by means of the nuclear modification factor as a function of
function are given in Table I. They were determined with the Glauber Monte Carlo simulation assuming an inelastic nucleon-nucleon cross section of 64 mb [23]. The strategy of cuts applied to reconstructed tracks is similar to the one used for pp collisions [25]. Various selection cuts were used in order to improve the purity of the data sample. Tracks were required to be reconstructed in the geometrical acceptance of the muon spectrometer. A track candidate measured in the muon tracking chambers was then required to be matched with the corresponding track measured in the trigger chambers. This results in a very effective rejection of the hadronic background that is absorbed in the iron wall. Furthermore, the correlation between the momentum and the distance of closest approach (distance between the extrapolated muon track and the interaction vertex in the plane perpendicular to the beam direction and containing the vertex) was used to remove the remaining beam-induced background tracks that do not point to the interaction vertex and fake tracks (tracks not associated to one single particle crossing the spectrometer). After these selections, the data sample consists of 10×10^6 muon candidates. The R_{AA} measurement of muons from heavy-flavor decays will be performed at high p_t ($p_t > 4$ GeV/c) where the main background component consists of muons from primary pion and kaon decays. The Pb-Pb distributions are corrected for acceptance and for tracking and trigger efficiency ($\Delta \epsilon$) using the procedure described in [25]. The global $\Delta \epsilon$ is close to 80% for $p_t > 4$ GeV/c. The dependence of the trigger and tracking efficiency on the detector occupancy, which is correlated with the collision centrality, was evaluated by means of the embedding procedure [26]. A decrease of the efficiency of about 4% ± 1% is observed in the 10% most central collisions.

The R_{AA} of muons from heavy-flavor decays in the forward rapidity region is calculated according to Eq. (1), which can be written as

$$R_{AA}^{p_z \rightarrow HF}(p_t) = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{PbPb}^{p_z}/dp_t - dN_{pp}^{p_z}/dp_t}{d\sigma_{pp}^{p_z}/dp_t} \langle T_{AA} \rangle$$

TABLE I. Mean number of participating nucleons ($\langle N_{par} \rangle$) and mean nuclear overlap function ($\langle T_{AA} \rangle$) for different centrality classes, expressed in percentiles of the hadronic Pb-Pb cross section.

<table>
<thead>
<tr>
<th>Centrality</th>
<th>$\langle N_{par} \rangle$</th>
<th>$\langle T_{AA} \rangle$ (mb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10%</td>
<td>357 ± 4</td>
<td>23.48 ± 0.97</td>
</tr>
<tr>
<td>10%–20%</td>
<td>261 ± 4</td>
<td>14.43 ± 0.57</td>
</tr>
<tr>
<td>20%–40%</td>
<td>157 ± 3</td>
<td>6.85 ± 0.28</td>
</tr>
<tr>
<td>40%–60%</td>
<td>69 ± 2</td>
<td>2.00 ± 0.11</td>
</tr>
<tr>
<td>60%–80%</td>
<td>23 ± 1</td>
<td>0.42 ± 0.03</td>
</tr>
<tr>
<td>40%–80%</td>
<td>46 ± 2</td>
<td>1.20 ± 0.07</td>
</tr>
</tbody>
</table>
where \(dN_{p_{T}}^{\mu^{\pm}} / dp_{T} \) and \(dN_{p_{T}}^{\mu^{\pm},K^{\pm}} / dp_{T} \) are the inclusive muon and charged pion and kaon decay muon \(p_{T} \) distributions at forward rapidity in Pb-Pb collisions, respectively.

The \(pp \) reference, \(d\sigma_{pp}^{\mu^{\pm}-HF} / dp_{T} \), was obtained from the analysis of muon-triggered events collected during a \(pp \) run at \(\sqrt{s} = 2.76 \) TeV, in March 2011, with integrated luminosity of 19 nb\(^{-1}\) after event selection cuts. The analysis technique from the event and track selection to the normalization is the same as that described in [25]. Figure 1 shows the measured \(p_{T} \)-differential inclusive cross section of muons from heavy-flavor decays in the kinematic region \(2.5 < y < 4 \) and \(2 < p_{T} < 10 \) GeV/c. In the range \(p_{T} > 4 \) GeV/c (\(p_{T} > 6 \) GeV/c), regions of interest for the \(R_{AA}^{\mu^{\pm}-HF} (p_{T}) \) measurement, the contribution of muons from primary light hadron decays (mainly primary pion and kaon decays) that was subtracted amounts to about 19% (12%) of the total yield. The error bars are statistical uncertainties. The open boxes represent the systematic uncertainties varying from 15% to 24%, depending on \(p_{T} \). This includes the contributions from background subtraction (ranging from a maximum of about 24% at \(p_{T} = 2 \) GeV/c to 14% at \(p_{T} = 10 \) GeV/c), detector response (3%), and residual misalignment of tracking chambers (1% × \(p_{T} \), in GeV/c). The systematic uncertainty on the minimum bias \(pp \) cross section (1.9%), used in the normalization, is not shown. The data are compared to fixed order next-to-leading log (FONLL) pQCD predictions [27,28] (curve, with shaded band for the uncertainty). The ratio between data and FONLL calculations is also shown. The measured \(p_{T} \)-differential inclusive cross section of muons from heavy-flavor decays is well reproduced by the calculations within experimental and theoretical uncertainties, although at the upper limit of the predictions. A similar agreement between heavy-flavor results and pQCD calculations was also reported in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV in the four LHC experiments and at lower energies at the FNAL Tevatron and at the RHIC (see [25] and references therein). The contributions of muons from charm and beauty decays from the FONLL calculations are displayed separately in Fig. 1. According to these predictions, the component of muons from beauty decays exceeds that of muons from charm decays for \(p_{T} \geq 6 \) GeV/c.

The \(p_{T} \) distribution of muons from heavy-flavor decays in Pb-Pb collisions at forward rapidity is obtained by subtracting the muon background component (mainly muons from primary pion and kaon decays) from the corrected inclusive muon \(p_{T} \)-differential distribution. The presence of unknown nuclear effects, in particular, medium-induced parton energy loss at forward rapidity, prevents subtraction of this contribution by means of Monte Carlo simulations, as was done in \(pp \) collisions [25]. Hence, the contribution of muons from primary \(\pi^{\pm} \) and \(K^{\pm} \) decays at forward rapidity in Pb-Pb collisions was estimated by extrapolating to forward rapidity (2.5 < \(y < 4 \)) the \(p_{T} \) distributions of pions and kaons measured at central rapidity (|\(y \) | < 0.8) in \(pp \) and Pb-Pb collisions [29] and generating the corresponding \(p_{T} \) distributions of decay muons with a simulation of the decay kinematics and of the front absorber. For the rapidity extrapolation, it was assumed that the suppression of pions and kaons is independent of rapidity up to \(y = 4 \). This assumption is motivated by the observation, made by the ATLAS Collaboration, that the central-to-peripheral nuclear modification factor of charged hadrons does not show any \(\eta \) dependence up to \(\eta = 2.5 \) within uncertainties [30]. The systematic uncertainty introduced by this assumption was conservatively estimated by varying \(R_{AA}^{\pi^{\pm},K^{\pm}} (p_{T}) \) from 0 (full suppression) up to 2 times its value. The entire background-estimation procedure is detailed in the following.

The \(p_{T} \) distribution of pions and kaons at forward rapidity in Pb-Pb collisions in a given centrality range is expressed as

\[
\frac{dN_{p_{T}}^{\mu^{\pm},K^{\pm}}}{dp_{T}} = \langle T_{AA} \rangle \frac{d\sigma_{pp}^{\mu^{\pm},K^{\pm}}}{dp_{T}} \left[R_{AA}^{\pi^{\pm},K^{\pm}} (p_{T}) \right]_{y=0} .
\]

(3)

The midrapidity pion and kaon \(p_{T} \) distributions measured in \(pp \) collisions were extrapolated to forward rapidity using [31].
\[
dS_{pp}^{\pi^\pm,K^\pm}/dp_d y = [dS_{pp}^{\pi^\pm,K^\pm}/dp_d y]_{-0} \exp\left(-\frac{y^2}{2\sigma_y^2}\right),
\]

with \(\sigma_y = 3.18\). The latter is the average of the values obtained with the PYTHIA [32] and PHOJET [33] event generators. Equation (4) assumes that the shape of the \(p_t\) distribution is independent of \(y\). However, results from the BRAHMS Collaboration suggest a small dependence at large rapidities [34], but the effect is expected to be negligible in the analysis due to the small amount of muons from pion and kaon decays in the \(p_t\) range of interest (see below).

Then, the muon \(p_t\) distributions were measured up to \(p_t = 20\) GeV/c for all centrality classes used in the analysis. The kaon \(p_t\) distributions were determined only at low \(p_t\). Therefore, the \(K^0_S\) \(p_t\) distributions, measured up to 16 GeV/c were used, considering that \(N(K^+) + N(K^-) = 2N(K^0)\). A further extrapolation up to 40 GeV/c, by means of a power law fit, was needed. In addition, the \(K^0_S\) \(p_t\) distributions were measured only for the 0–5% and 60%–80% centrality classes. As a consequence, the \(p_t\) distributions of muons from pion and kaon decays at forward rapidity were determined only in these two centrality classes. For the other centrality classes used in this analysis (Table 1), the \(dN_{\mu PB}^{\pi^\pm,K^\pm}/dp_d y\) distributions were obtained by scaling the \(R^{\pi^\pm,K^\pm}_{AA}(p_t)\) with the double ratio \(R^{\mu^\pm,K^\pm}_{AA}(p_t)/R^{\pi^\pm,K^\pm}_{AA}(p_t)\) which was found to be the same in the 0–5% and 60%–80% centrality classes, within a maximum variation of 9% included in the systematic uncertainty.

This procedure allowed us to estimate \(dN_{\mu PB}^{\pi^\pm,K^\pm}/dp_d y\) and then to deduce the nuclear modification of muons from heavy-flavor decays at forward rapidity according to Eq. (2). The background contribution to the muon \(p_t\) distribution increases with decreasing \(p_t\). Hence, in order to limit the systematic uncertainty on its subtraction, \(R_{AA}\) was computed for \(p_t > 4\) GeV/c where this component is 7% (11%) of the total muon yield in central (peripheral) collisions.

The systematic uncertainties on the \(R_{AA}\) of muons from heavy-flavor decays originate from the \(pp\) reference, the corresponding Pb-Pb yields, and the average nuclear overlap function. The systematic uncertainty on the \(pp\) reference, previously discussed, is about 15%–17% for \(p_t > 4\) GeV/c. The systematic uncertainty on the yields of muons from heavy-flavor decays in Pb-Pb includes contributions from the following: (1) the inclusive muon yields in Pb-Pb collisions, about 6%–10%, containing the systematic uncertainty on the detector response (3.5%), the residual misalignment (1% \(\times p_t\), in GeV/c) and the centrality dependence of the efficiency determined with the embedding procedure (1%); (2) the yields of muons from primary pion and kaon decays in \(pp\) collisions at forward rapidity, about 17%, due to the systematic uncertainty on the input midrapidity distributions, the extrapolation procedure (\(\sigma_y\) parameter), and the absorber effect (pion and kaon mean free path in the absorber); (3) the \(R^{\pi^\pm,K^\pm}_{AA}(p_t)\), about 14%–17%, due to the systematic uncertainty on the input midrapidity pion \(p_t\) distributions; (4) the \(R^{\mu^\pm,K^\pm}_{AA}(p_t)/R^{\pi^\pm,K^\pm}_{AA}(p_t)\) double ratio, up to 9% at \(p_t = 10\) GeV/c; (5) the unknown suppression at forward rapidity for muons from primary pion and kaon decays. As mentioned, a conservative systematic uncertainty was considered by varying \(R^{\pi^\pm,K^\pm}_{AA}(p_t)\) from 0 to 2 times its value, with the additional condition that the upper limit does not exceed unity. Finally, the systematic uncertainty on the normalization includes the 1.9% uncertainty on the minimum bias cross section measurement in \(pp\) collisions and the uncertainty of 4.3% (centrality class 0–10%) to 7.3% (centrality class 60%–80%) on \((T_{AA})\).

Figure 2 presents the \(R_{AA}\) of muons from heavy-flavor decays in \(2.5 < y < 4\), as a function of \(p_t\), in central (0–10%, left) and peripheral (40%–80%, right) collisions. The vertical error bars are the statistical uncertainties. The \(p_t\)-dependent systematic uncertainties are displayed by the open boxes and include all the contributions previously discussed, except the normalization uncertainty that is displayed at \(R_{AA} = 1\). A larger suppression is observed in central collisions than in peripheral collisions, with no significant \(p_t\) dependence within uncertainties.

The centrality dependence of the \(R_{AA}\) of muons from heavy-flavor decays was studied in the range \(6 < p_t < 10\) GeV/c where the contribution of muons from \(B\) decays becomes dominant in \(pp\) collisions according to the central value of the FONLL calculations: in particular, it amounts to 0.02468 1 0

FIG. 2 (color online). \(R_{AA}\) of muons from heavy-flavor decays in \(2.5 < y < 4\) as a function of \(p_t\), in the 0–10% (left) and 40%–80% (right) centrality classes, in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV. Vertical bars (open boxes) represent the statistical (systematic) uncertainty. The filled box centered at \(R_{AA} = 1\) is the normalization uncertainty. Horizontal bars show the bin widths.
to about 58% and 68% at \(p_t = 6 \) and 10 GeV/c, respectively, (Fig. 1). The analysis was carried out in five centrality classes from 0–10% to 60%–80% (Table I). The resulting \(R_{AA} \) is displayed as a function of \(\langle N_{\text{part}} \rangle \) in Fig. 3. The contribution to the total systematic uncertainty, which is fully correlated between centrality classes (filled boxes), is displayed separately from the remaining uncorrelated systematic uncertainty (open boxes). The \(R_{AA} \) of muons from heavy-flavor decays at forward rapidity exhibits a strong suppression with increasing centrality, reaching a factor of about 3–4 in the 10% most central collisions.

The ALICE Collaboration has measured the production of prompt D mesons in proton-proton collisions at 2 < \(p_t < 16 \) GeV/c at midrapidity (\(| y | < 0.5 \)) [19] and the CMS Collaboration reported on that of nonprompt \(J/\psi \) from beauty decays, in 5 < \(p_t < 30 \) GeV/c and \(| y | < 2.4 \) [20]. The corresponding suppression of D mesons and \(J/\psi \) from beauty decays in those studies is similar to that reported here for muons from heavy-flavor decays, although in a different \(p_t \) and rapidity region.

In conclusion, we have reported on the first measurement of the production of high-\(p_t \) muons from heavy-flavor decays at forward rapidity, in pp and Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV with the ALICE detector. FONLL pQCD calculations describe well the pp data within experimental and theoretical uncertainties, with the data being close to the upper limit of the model predictions. The \(R_{AA} \) of high-\(p_t \) muons from heavy-flavor decays indicates a clear suppression increasing towards the most central collisions. The measured suppression is almost independent of \(p_t \), in the region 4 < \(p_t < 10 \) GeV/c. These results provide clear evidence for large in-medium effects for heavy quarks in central Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV. The forthcoming p-Pb collisions will complement these measurements, by providing insight into the possible contribution of initial nuclear matter effects, although these are expected to be less important in the high \(p_t \) region studied here.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish National Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the “Region Pays de Loire,” “Region Alsace,” “Region Auvergne,” and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, México, ALFA-EC and the HELEN Program (High-Energy physics Latin-American—European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research—NASR (Autoritatea Națională pentru Cercetare Științifică—ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Educación y Ciencia of Spain, Xunta de Galicia (Consellería de Educación), CEADEN, Cubanaenergía, Cuba, and IAEA (International Atomic Energy Agency); Swedish
Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); the United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States

Helsinki Institute of Physics (HIP) and University of Jyväskylä, Jyväskylä, Finland

Sezione INFN, Catania, Italy

Commissariat à l’Energie Atomique, IRFU, Saclay, France

Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia

Institute of Physics, Bhubaneswar, India

Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy

School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

Joint Institute for Nuclear Research (JINR), Dubna, Russia

Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France

University of Houston, Houston, Texas, United States

Dipartimento di Fisica Sperimentale dell’Università and Sezione INFN, Turin, Italy

Petersburg Nuclear Physics Institute, Gatchina, Russia

Physics Department, University of Jammu, Jammu, India

University of Tsukuba, Tsukuba, Japan

Laboratori Nazionali di Frascati, INFN, Frascati, Italy

Dipartimento di Fisica dell’Università and Sezione INFN, Padova, Italy

Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

Moscow Engineering Physics Institute, Moscow, Russia

Institute for High Energy Physics, Protvino, Russia

Faculty of Science, P.J. Šafárik University, Košice, Slovakia

Wayne State University, Detroit, Michigan, USA

Saha Institute of Nuclear Physics, Kolkata, India

Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France

Lawrence Berkeley National Laboratory, Berkeley, California, USA

Purdue University, West Lafayette, Indiana, USA

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

Russian Federal Nuclear Center (VNIIEF), Sarov, Russia

Physics Department, University of Cape Town, iThemba LABS, Cape Town, South Africa

Hua-Zhong Normal University, Wuhan, China

Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru

Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

Universidade de São Paulo (USP), São Paulo, Brazil

Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy

Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

Yonsei University, Seoul, South Korea

Physics Department, Creighton University, Omaha, Nebraska, USA

Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France

Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

Division of Experimental High Energy Physics, University of Lund, Lund, Sweden

Pusan National University, Pusan, South Korea

Sezione INFN, Cagliari, Italy

Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

Institute of Space Sciences (ISS), Bucharest, Romania

Indian Institute of Technology, Mumbai, India

Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy

Sezione INFN, Bari, Italy

Soltan Institute for Nuclear Studies, Warsaw, Poland

Sezione INFN, Rome, Italy

Department of Physics, University of Oslo, Oslo, Norway

Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

Sezione INFN, Trieste, Italy