A physical, genetic and functional sequence assembly of the barley genome.

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/125624 since 2016-06-29T14:49:43Z

Published version:
DOI:10.1038/nature11543

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene–space in a structured whole–genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high–resolution genetic map. Projecting a deep whole–genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 ‘high–confidence’ genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post–transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single–nucleotide variation. Our data provide a platform for both genome–assisted research and enabling contemporary crop improvement.

Cultivated barley, derived from its wild progenitor Hordeum vulgare ssp. spontaneum, is among the world’s earliest domesticated crop species and today represents the fourth most abundant cereal in both poorer countries, maintaining harvestable yields in harsh and marginal environments. Derived from its wild progenitor races and wild accessions are readily available, and undoubtedly contain germplasm containing geographically diverse elite varieties, landraces and wild accessions available.

As a diploid, inbreeding, temperate crop, barley has traditionally been considered a model for plant genetic research. Large collections of germplasm containing geographically diverse elite varieties, landraces and wild accessions are readily available and undoubtedly contain alleles that could ameliorate the effect of climate change and further enhance dietary fibre in the grain. Enriching its broad natural diversity, extensive characterized mutant collections containing all of the morphological and developmental variation observed in the species have been generated, characterized and meticulously maintained. The major impediment to the exploitation of these resources in fundamental and breeding science has been the absence of a reference genome sequence, or an appropriate enabling alternative. Providing either of these has been the primary research challenge to the global barley community.

In response to this challenge, we present a novel model for delivering the genome resources needed to reinforce the position of barley as a model for the Triticeae, the tribe that includes bread and durum wheats, barley and rye. We introduce the barley genome gene space, which we define as an integrated, multi-layered informational resource that provides access to the majority of barley genes in a highly structured physical and genetic framework. In association with comparative sequence and transcriptome data, the gene space provides a new molecular and cellular insight into the biology of the species, providing a platform to advance gene discovery and genome-assisted crop improvement.

A sequence–enriched barley physical map

We constructed a genome–wide physical map of the barley cultivar (cv.) Morex by high–information–content fingerprinting and contig assembly of 571,000 bacterial artificial chromosome (BAC) clones (∼14–fold haploid genome coverage) originating from six independent BAC libraries. After automated assembly and manual curation, the physical map comprised 9,265 BAC contigs with an estimated N50 contig size of 904 kilobases and a cumulative length of 4.98 Gb (Methods, Supplementary Note 2). It is represented by a minimum tiling path (MTP) of 67,000 BAC clones. Given a genome size of 5.1 Gb, more than 95% of the barley genome is represented in the physical map, comparing favourably to the 1,036 contigs that represent 80% of the 1 Gb wheat chromosome 3B.

We enhanced the physical map by integrating shotgun sequence information from 5,341 gene–containing and 937 randomly selected BAC clones (Methods, Supplementary Notes 2 and 3, and Supplementary Table 4), and 304,523 BAC-end sequence (BES) pairs (Supplementary Table 3). These provided 1,136 megabases (Mb) of genomic sequence integrated directly into the physical map (Supplementary Tables 3 and 4). This framework facilitated the incorporation of whole–genome shotgun sequence data and integration of the physical and genetic maps. We generated whole–genome shotgun sequence data from genomic DNA of cv. ‘Morex’ by short–read Illumina GAIIx technology, using a combination of 300 base pairs (bp) paired–end and 2.5 kb mate–pair libraries, to >50–fold haploid genome coverage (Supplementary Note 3.3). De novo assembly resulted in sequence contigs totalling 1.9 Gb. Due to the high proportion of repetitive DNA, a substantial part of the whole–genome shotgun data collapsed into relatively small contigs characterized by exceptionally high read depths. Overall, 376,261 contigs were larger than 1 kb (N50 = 264,958 contigs, N50 length = 1,425 bp). Of these, 112,989

A list of authors and their affiliations appears at the end of the paper.
(308 Mb) could be anchored directly to the sequence-enriched physical map by sequence homology.

We implemented a hierarchical approach to further anchor the physical and genetic maps (Methods, Supplementary Note 4). A total of 3,241 genetically mapped gene-based single-nucleotide variants (SNV) and 498,165 sequence-tag genetic markers was allowed us to use sequence homology to assign 4,556 sequence-enriched physical map contigs spanning 3.9 Gb to genetic positions along each barley chromosome. An additional 1,881 contigs were assigned to chromosomal bins by sequence homology to chromosome-arm-specific sequence data sets (Supplementary Note 4.4). Thus, 6,437 physical map contigs totalling 4.56 Gb (90% of the genome), were assigned to chromosome arm bins, the majority in linear order. Non-anchored contigs were typically short and lacked genetically informative sequences required for positional assignment.

Consistent with genome sequences of other grass species the peri-centromeric and centromeric regions of barley chromosomes exhibit significantly reduced recombination frequency, a feature that compromises exploitation of genetic diversity and negatively impacts genetic studies and plant breeding. Approximately 1.9 Gb or 48% of the genetically anchored physical map (3.9 Gb) was assigned to these regions (Fig. 1 and Supplementary Fig. 11).

Repetitive nature of the barley genome

A characteristic of the barley genome is the abundance of repetitive DNA. We observed that approximately 84% of the genome is comprised of mobile elements or other repeat structures (Supplementary Note 5). The majority (76% in random BACs) of these consists of retrotransposons, 99.6% of which are long terminal repeat (LTR) retrotransposons. The non-LTR retrotransposons contribute only 0.31% and the DNA transposons 6.3% of the random BAC sequence. In the fraction of the genome with a high proportion of repetitive elements, the LTR Gypsy retrotransposon superfamily was 1.5-fold more abundant than the Copia superfamily, in contrast to observations in both Brachypodium and rice. However, gene-bearing BACs were slightly depleted of retrotransposons, consistent with Brachypodium where young Copia retroelements are preferentially found in gene-rich, recombinogenic regions from which inactive Gypsy retroelements have been lost by LTR–LTR recombination. Overall, we see reduced repetitive DNA content within the terminal 10% of the physical map of each barley chromosome arm (Fig. 1). Class I and II elements show non-quantitative reverse-image distribution along barley chromosomes (Fig. 1), a feature shared with other grass genomes and shown by fluorescence in situ hybridization (FISH) mapping. Not surprisingly, the whole-genome shotgun assembly shows a lower abundance of LTR retrotransposons (average 53%) than gene-bearing BACs. That LTR retrotransposons are long (~10 kb), highly repetitive and often nested supports our assumption that short reads either collapsed or did not assemble. Short interspersed elements (SINEs) are short (80–600 bp) non-autonomous retrotransposons that are highly repeated in barley, showed no differential exclusion from the assemblies. However, miniature inverted-repeat transposable elements (MITEs), small non-autonomous DNA transposons, were twofold enriched in the whole-genome shotgun assemblies compared with BES reads or random BACs, consistent with the gene richness of the assemblies and their association with genes. Both MITEs and SINEs are 1.5 to 2-fold enriched in gene-bearing BACs which could indicate that SINEs are also preferentially integrated into gene-rich regions, or because they are older than LTR retroelements, may simply remain visible in and around genes where retro insertions have been selected against.

Transcribed portion of the barley genome

The transcribed complement of the barley gene space was annotated by mapping 1.67 billion RNA-seq reads (167 Gb) obtained from eight stages of barley development as well as 28,592 barley full-length cDNAs to the whole-genome shotgun assembly (Methods, Supplementary Notes 6, 7 and Supplementary Tables 20–22). Exon detection and consensus gene modelling revealed 79,379 transcript clusters, of which 75,258 (95%) were anchored to the whole-genome shotgun assembly (Supplementary Notes 7.1.1 and 7.1.2). Based on a gene-family-directed comparison with the genomes of Sorghum, rice, Brachypodium and Arabidopsis, 26,159 of these transcribed loci fall into clusters and have homology support to at least one reference genome (Supplementary Fig. 16); they were defined as high-confidence genes. Comparison against a data set of metabolic genes in Arabidopsis thaliana indicated a detection rate of 86%, allowing the barley gene-set to be estimated as approximately 30,400 genes. Due to lack of homology and missing support from gene family clustering, 53,220 transcript loci were considered low-confidence (Table 1). High-confidence and low-confidence barley genes exhibited distinct characteristics: 75% of the high-confidence genes had a multi-exon structure, compared with only 27% of low-confidence genes (Table 1). The mean size of high-confidence genes was 3,013 bp compared with 972 bp for low-confidence genes. A total of 14,481 low-confidence genes showed distant homology to plant proteins in public databases (Supplementary Notes 7.1.2, 7.1.4 and Supplementary Fig. 18), identifying them as potential gene fragments known to populate Triticeae genomes at high copy number and that often result from transposable element activity.

A total of 15,719 high-confidence genes could be directly associated with the genetically anchored physical map (Supplementary Note 4). An additional 3,743 were integrated by invoking a conservation of synteny model (Supplementary Note 4.5) and a further 4,692 by association...
First, we observed evidence for extensive alternative splicing. Of the intron-containing high-confidence barley genes, 73% had evidence of alternative splicing (55% of the entire high-confidence set). The spatial and temporal distribution of alternative splicing transcripts deviated significantly from the general occurrence of transcripts in the different tissues analysed (Fig. 2c). Only 17% of alternative splicing transcripts were shared among all samples, and 17–27% of the alternative splicing transcripts were detected only in individual samples, indicating pronounced alternative splicing regulation. We found 2,466 premature termination codon-containing (PTC+) alternative splicing transcripts (9.4% of high-confidence genes) (Fig. 2d and Table 2), similar to the percentage of nonsense-mediated decay (NMD)-controlled genes in a wide range of species. Premature termination codons activate the NMD pathway, which leads to rapid degradation of PTC+ transcripts, and have been associated with transcriptional regulation during disease and stress response in human and Arabidopsis, respectively. The distribution of PTC+ transcripts was strikingly dissimilar, both spatially and temporally, with only 7.4% shared and between 31% and 40% exclusively observed in only a single sample (Fig. 2d). Genes encoding PTC+ containing transcripts show a broad spectrum of GO terms and PFAM domains and are more prevalent in expanded gene families. These observations support a central role for alternative splicing/NMD-dependent decay of PTC+ transcripts as a mechanism that controls the expression of many different barley genes.

Second, recent reports have highlighted the abundance of novel transcriptionally active regions in rice that lack homology to protein-coding genes or open reading frames (ORFs). In barley as many as 27,009 preferentially single-exon low-confidence genes can be classified as putative novel transcriptionally active regions (Supplementary Note 7.1.4). We investigated their potential significance by comparing the homology of barley novel transcriptionally active regions with the rice and Brachypodium genomes that respectively represent 50 and 30 million years of evolutionary divergence. A total of 4,830 and 2,450 novel transcriptionally active regions yielded a homology match to the Brachypodium and rice genomes, respectively (intersection of 2,046; BLAST P value ≤ 10−5), indicating a putative functional role in pre-mRNA processing or other RNA regulatory processes.

Natural diversity

Barley was domesticated approximately 10,000 years ago. Extensive genotypic analysis of diverse germplasm has revealed that restricted outcrossing (0–1.8%) combined with low recombination in pericentromeric regions, has resulted in modern germplasm that shows limited regional haplotype diversity. We investigated the frequency and distribution of genome diversity by survey sequencing four diverse barley cultivars (‘Bowman’, ‘Barke’, ‘Igri’ and ‘Haruna Nijo’) and an H. spontaneum accession (Methods and Supplementary Note 8) to a depth of 5–25 fold coverage, and mapping sequence reads against the barley cultivar ‘Morex’ gene space. We identified more than 15 million non-redundant single-nucleotide variants (SNVs). H. spontaneum contributed almost twofold more SNV than each of the cultivars (Supplementary Table 28). Up to 6 million SNV per accession could be assigned to chromosome arms, including up to 350,000 associated with exons (Supplementary Table 29). Approximately 50% of the exon-located SNV were integrated into the genetic/physical framework (Fig. 3, Supplementary Table 30 and Supplementary Fig. 31), providing a platform to establish true genome-wide marker technology for high-resolution genetics and genome-assisted breeding.

We observed a decrease in SNV frequency towards the centromeric and peri-centromeric regions of all barley chromosomes, a pattern that seemed more pronounced in the barley cultivars. This trend was supported by SNV identified in RNA-seq data from six additional cultivars mapped onto the Morex genomic assembly (Supplementary Note 8.2). We attribute this pattern of eroded genetic diversity to low recombination in the pericentromeric regions, which reduces effective population size and consequently haplotype diversity. Whereas

Table 1 | Characteristics of high-confidence and low-confidence gene sets in barley

<table>
<thead>
<tr>
<th></th>
<th>High confidence</th>
<th>Low confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of genes</td>
<td>26,159</td>
<td>53,220</td>
</tr>
<tr>
<td>Gene loci positioned on barley cultivar</td>
<td>24,243 (93%)</td>
<td>51,015 (96%)</td>
</tr>
<tr>
<td>Morex assembly*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single exon</td>
<td>5,954 (25%)</td>
<td>37,395 (73%)</td>
</tr>
<tr>
<td>Multi exon</td>
<td>18,289 (75%)</td>
<td>13,620 (27%)</td>
</tr>
<tr>
<td>Number of distinct exons</td>
<td>184,710</td>
<td>107,768</td>
</tr>
<tr>
<td>Mean number of distinct exons per gene</td>
<td>7.62</td>
<td>2.11</td>
</tr>
<tr>
<td>Number of genes with alternative transcript variants</td>
<td>13,299 (55%)</td>
<td>8,214 (16%)</td>
</tr>
<tr>
<td>Total number of predicted transcripts</td>
<td>62,426</td>
<td>69,266</td>
</tr>
<tr>
<td>Mean number of transcripts per gene</td>
<td>2.58</td>
<td>1.36</td>
</tr>
<tr>
<td>Mean gene locus size (first to last exon)</td>
<td>3,013 bp</td>
<td>972 bp</td>
</tr>
<tr>
<td>Mean transcript size (UTR, CDS)</td>
<td>1,878 bp</td>
<td>931 bp</td>
</tr>
<tr>
<td>Mean exon size</td>
<td>454 bp</td>
<td>536 bp</td>
</tr>
<tr>
<td>Gene loci not positioned on barley cv.</td>
<td>1,916 (7%)</td>
<td>2,205 (4%)</td>
</tr>
<tr>
<td>Morex assembly*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tagged by unmapped RNA-seq reads</td>
<td>1,657 (86%)</td>
<td>1,127 (51%)</td>
</tr>
<tr>
<td>Not tagged by unmapped RNA-seq reads</td>
<td>259 (14%)</td>
<td>1,078 (49%)</td>
</tr>
</tbody>
</table>

*Gene locus representatives are (1) RNA-seq based transcript or (2) barley fl-cDNAs that were mapped to the barley cultivar Morex assembly or tagged by RNA-seq based transcript during clustering.
†Exons of two or more transcripts were counted once if they have identical start and stop positions.

©2012 Macmillan Publishers Limited. All rights reserved
Table 2 | Alternative splicing and transcripts containing PTCs in high-confidence genes

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>General statistics of alternative splicing in high-confidence genes</td>
<td>24,243</td>
</tr>
<tr>
<td>High-confidence genes with RNA-seq data to monitor alternative splicing</td>
<td>62,426</td>
</tr>
<tr>
<td>Alternative splicing</td>
<td>170</td>
</tr>
<tr>
<td>Predicted transcripts at high-confidence genes</td>
<td>13,299</td>
</tr>
<tr>
<td>Transcripts with complete CDS structures*</td>
<td>51,482</td>
</tr>
<tr>
<td>Transcripts with partial CDS structures†</td>
<td>51,482</td>
</tr>
<tr>
<td>Predicted transcripts derived from genes with alternative splicing</td>
<td>51,482</td>
</tr>
<tr>
<td>Premature stop codon analysis</td>
<td>41,461 (81%)</td>
</tr>
<tr>
<td>Predicted transcripts used for PTC analysis‡</td>
<td>2,197 (9%)</td>
</tr>
<tr>
<td>Transcripts containing PTC</td>
<td>2,197 (9%)</td>
</tr>
<tr>
<td>PTC caused by intron retention</td>
<td>1,813 (79%)</td>
</tr>
<tr>
<td>PTC+ transscripts predicted to be NMD-sensitive</td>
<td>2,770 (80%)</td>
</tr>
<tr>
<td>Gene loci incorporating PTC+/NMD transscripts</td>
<td>2,770 (80%)</td>
</tr>
</tbody>
</table>

* Entire predicted coding sequence (100%) was transferred to transcript model on barley cultivar Morex contigs.
† Predicted coding sequence could not be completely projected to genomic transcript model (partial mapping of fl-cDNA).
‡ Only transcripts with structures for entire coding sequence on barley cultivar Morex WGS assembly were considered.
CDS, coding sequence.

Discussion

The size of Triticeae cereal genomes, due to their highly repetitive DNA composition, has severely compromised the assembly of whole-genome shotgun sequences and formed a barrier to the generation of high-quality reference genomes. We circumvented these problems by integrating complementary and heterogeneous sequence-based genomic and genetic data sets. This involved coupling a deep physical map with high density genetic maps, superimposing deep short-read whole-genome shotgun assemblies, and annotating the resulting linear, albeit punctuated, genomic sequence with deep-coverage RNA-derived data (full-length cDNA and RNA-seq). This allowed us to systematically delineate approximately 4 Gb (80%) of the genome, including more than 90% of the expressed genes. The resulting genomic framework...
reachable when attempting to link barley genes. Our data also reveal that a complex layer of post-transcriptional regulations suggests this list will expand considerably. For example, infrequent recombination could function to maintain evolutionary selected and co-adapted gene complexes. It will certainly provide a detailed insight into the physical distribution of genes and repetitive DNA and how these features relate to genetic characteristics such as recombination frequency, gene expression and patterns of genetic variation.

The centromeric and peri-centromeric regions of barley chromosomes contain a large number of functional genes that are locked into recombinationally ‘inert’ genomic regions. The gene-space distribution highlights that these regions expand to almost 50% of the physical length of individual chromosomes. Given well-established levels of conserved synteny, this will probably be a general feature of related grass genomes that will have important practical implications. For example, infrequent recombination could function to maintain evolutionary selected and co-adapted gene complexes. It will certainly restrict the release of the genetic diversity required to decouple advantageous from deleterious alleles, a potential key to improving genetic gain. Understanding these effects will therefore have important consequences for crop improvement. Moreover, for gene discovery, forward genetic strategies based on recombination will not be effective in these regions. Whereas alternative approaches exist for some targets (for example, by coupling resequencing technologies with collections of natural or induced mutant alleles), for most traits it remains a serious impediment. Some promise may lie in manipulating patterns of recombination by either genetic or environmental intervention. Quite strikingly, our data also reveal that a complex layer of post-transcriptional regulation will need to be considered when attempting to link barley genes to functions. Connections between post-transcriptional regulation such as alternative splicing and functional biological consequences remain limited to a few specific examples, but the scale of our observations suggests this list will expand considerably.

In conclusion, the barley gene space reported here provides an essential reference for genetic research and breeding. It represents a hub for trait isolation, understanding and exploiting natural genetic diversity and investigating the unique biology and evolution of one of the world’s first domesticated crops.

METHODS SUMMARY

Methods are available in the online version of the paper.

Full Methods and any associated references are available in the online version of the paper.

Received 2 May; accepted 30 August 2012.

Published online 17 October 2012.

Supplementary Information is available in the online version of the paper.

Acknowledgements This work has been supported from the following funding sources: German Ministry of Education and Research (BMBF) grant 0314000 “BARLEX” to K.F.X.M, M.P., U.S.-N. and L.N.; Biotechnology Sector-wide Initiative (SSI) grant to P.J.K.; European project of the 7th framework programme “Tritecea Genomics” grant 288960 to K.F.X.M., M.P., I.M.T. and S.S.; SFB F3705 of the Austrian Science Fund (FWF) to K.F.X.M.; ERA-NET PG project “BARCODE” grant to M.M., P.H., M.C., and P.L.; National Science Foundation grant DBI 0517557 “Patterns of polymorphism and linkage equilibrium in cultivated barley” to T.J.C., Theor. Appl. Genet. 122, 523–531 (2011).

Martinez-Perez, E. & Moore, G. To check or not to check? The application of meiotic genotyping in barley. BMC Genomics 15, 582 (2009).

METHODS

Building the physical map. BAC clones of six libraries of cultivar ‘Morex’44–46 were analysed by high information content fingerprinting (HICF)47. A total of 571,000 edited profiles was assembled using FPC v9.2 (Supplementary Table 2) (Sulston score threshold of 10^{-90}, tolerance = 5, tolerated Q clones = 10%). Nine iterative automated re-arrangements were performed at successively reduced stringency (Sulston score of 10^{-85} to 10^{-89}). A final step of manual merging of FPC contigs was performed at lower stringency (Sulston score threshold 10^{-90}) considering genetic anchoring information for markers with a genetic distance ≤ 5 cm. This produced 9,265 FPC contigs (approximately 14-fold haploid genome coverage) (Supplementary Table 2).

Genomic sequencing. BAC-end sequencing (BES). BAC insert ends were sequenced using Sanger sequencing (Supplementary Note 2.1). Vector and quality trimming of sequence trace files was conducted using LUCY48 (http://www.jcvi.org/cms/research/software/). Short reads (that is, < 100 bp) were removed. Organelar DNA and barley pathogen sequences were filtered by BLASTN comparisons to public sequence databases (http://www.ncbi.nlm.nih.gov/).

BAC shotgun sequencing (BAGseq). Seed BACs of the FPC map were sequenced to reveal gene sequence information for physical map anchoring. 4,095 BAC clones were shotgun sequenced in pools of 2 × 48 individually barcoded BACs on Roche/454 GS FLX or FLX Titanium51,52. Sequences were assembled using MIRA v3.2.0 (http://www.jcvi.org/projects_mira.html) at default parameters with features ‘accurate’, ‘454’, ‘genome’, ‘denovo’. An additional 2,183 gene-bearing BACs (Supplementary Note 3.2) were sequenced using Illumina HiSeq 2000 in 91 combinatorial pools13. Deconvoluted reads were assembled using VELVET53. Assembly statistics are given in Supplementary Table 4.

Whole-genome shotgun sequencing. Illumina paired-end (PE; fragment size ~ 350 bp) and mate-pair (MP; fragment size ~ 2.5 kb) libraries were generated from fragmented genomic DNA of different barley cultivars (‘Morex’, ‘Barke’, ‘Bowman’, ‘Igri’) and an S3 single-seed selection of a wild barley accession B1K-04-1255 (Hordeum vulgare ssp. spontaneum). Libraries were sequenced by Illumina GAIIx and HiSeq 2000. Genomic DNA of cultivar ‘Haruna Nijo’ (size range of 600–1000 bp) was sequenced using Roche 454 GSFLX Titanium chemistry.

Whole-genome shotgun assembly sequence. PE and MP whole-genome shotgun libraries were calibrated for fragment sizes by mapping pairs against the plastome sequence of barley (NC_008590) using BWA48. Sequences were quality trimmed and de novo assembled using CLC Assembly Cell v3.2.2 (http://www.ccbio.com/). Independent de novo assemblies were performed from data of cultivars ‘Morex’, ‘Bowman’ and ‘Barke’.

Transcriptome sequencing. Eight tissues of cultivar ‘Morex’ (three biological replications each) earmarking stages of the barley life cycle from germinating grain to maturing caryopsis were selected for deep RNA sequencing (RNA-seq). Plant growth, sampling and sequencing is detailed in Supplementary Information (Supplementary Note 6). Further mRNA sequencing data was generated from eight additional spring barley cultivars within a separate study and was used here for sequence diversity analysis (Supplementary Note 8.2).

Genetic framework of the physical map. The genetic framework for anchoring the physical map of barley was built on a single-nucleotide variation (SNV) map39 (Supplementary Note 4.3) which provided the highest marker density (3,973) and resolution (N = 360, RIL/F8) for a single bi-parental mapping population in barley. Additional high-density genetic marker maps (Supplementary Note 4.3) were compared and aligned on the basis of shared markers. Furthermore, we used genotyping-by-sequencing (GBS)38 to generate high-density genetic maps comprising 34,396 SNVs and 21,384 SNVs as well as 241,159 and 184,796 dominant SNPs (Supplementary Note 4). 4,556 FPC contigs (S = 3.9 Gb) were anchored to the genetic framework.

Analysis of repetitive DNA and repeat masking. Repeat detection and analysis was undertaken as previously described36,37 with the exception of an updated repeat library complemented by de novo detected repetitive elements from barley (Supplementary Note 5).

Gene annotation, functional categorization and differential expression. Publicly available barley full-length cDNAs10 and RNA-seq data generated in the project (Supplementary Note 6) were used for structural gene calling (Supplementary Note 7.1.2). Full-length cDNAs and RNA-seq data were anchored to de novo whole-genome shotgun contigs using GenomeThreader49 and Cufflinks50, respectively, the latter providing also information of alternatively spliced transcripts. Structural gene calls were combined and the longest ORF for each locus was used as representative for gene family analysis (Supplementary Note 7.1.2).

Gene family clustering was undertaken using OrthoMCL (Supplementary Note 7.1.3) by comparing against the genomes of Oryza sativa (RAP2), Sorghum bicolor, Brachypodium distachyon (v 1.4) and Arabidopsis thaliana (TAIR10 release). Analysis of differential gene expression (Supplementary Note 7.2) was performed on RNA-seq data using CuffDiff45.

Analysis of sequence diversity. Genome-wide SNV was assessed by mapping (BWA v0.5.9-r165) the original sequence reads of sequenced genotypes to de novo assembly of cultivar ‘Morex’. Sequence reads from RNA-seq were mapped against the ‘Morex’ assembly. Details are provided in Supplementary Note 8.