Looking for Candida nivariensis and C. bracarensis among a large Italian collection of C. glabrata isolates: results of the FIMUA working group

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/127459 since 2017-05-25T18:29:11Z

Published version:
DOI:10.1111/myc.12026

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is an author version of the contribution published on:

The definitive version is available at:
RESEARCH NOTE

Looking for *Candida nivariensis* and *C. bracarensis* among a large Italian collection of *C. glabrata* isolates: results of the FIMUA working group.

M.C. Esposto¹, A. Prigitano¹, O. Romeo², G. Criseo², L.Trovato³, V. Tullio⁴, M.E. Fadda⁵, ¹
A.M. Tortorano¹ and FIMUA Working Group

¹ Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano; ² Dipartimento di Scienze della Vita, Università degli Studi di Messina; ³ Dipartimento di Scienze Biomediche, Università degli Studi di Catania; ⁴ Dipartimento di Scienze della Salute e Pediatriche, Università degli Studi di Torino; ⁵ Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Università degli Studi di Cagliari

Running title: *Candida nivariensis* and *C. bracarensis* in an Italian collection

Corresponding Author

Anna Maria Tortorano
Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano via Pascal 36 – 20133 Milano, Italy
Email: annamaria.tortorano@unimi.it
Tel +39 02 503 15145
Fax +39 02 503 15146
Abstract

Two recently described pathogenic Candida species, *C. nivariensis* and *C. bracarensis*, share many phenotypic characteristics with *C. glabrata* and are easily misidentified as such. The aim of this study was to determine the occurrence of these cryptic species in Italy. One thousand yeast isolates collected in 14 Italian regions and identified as *C. glabrata* by phenotypic and biochemical methods were included in this study: 928 were screened on CHROMagar and 72 were analysed by a multiplex PCR. None of these cryptic species was identified despite the nationwide distribution and the variety of biological origin of the isolates.

Keywords: *Candida nivariensis*, *Candida bracarensis*, *Candida glabrata*
Although *Candida albicans* remains the predominant agent of superficial as well as deep-seated candidosis, non-*albicans* Candida species have emerged in the recent years as significant opportunistic pathogens, and especially *C. glabrata* characterised by a rapidly acquired resistance to fluconazole [1].

Two new species, *C. nivariensis* and *C. bracarensis*, were recently identified molecularly within the *C. glabrata* clade [2,3]. These species are difficult to separate by the use of the conventional phenotypic identification methods due to the several overlapping traits. However they yield white colonies on CHROMagar in contrast to the pink colonies usually exhibited by *C. glabrata*.

Different molecular approaches for the detection of these closely related species were applied: sequencing the ITS region and the D1-D2 region of the 26S rRNA gene [2,4], fingerprinting profiles using GTG5 and M13 primers [5], species-specific peptide nucleic acid fluorescence in situ hybridization (PNA FISH) [6], pyrosequencing of the ITS2 region [7]. Recently was developed a multiplex PCR protocol for the rapid identification of *C. glabrata* and its phylogenetically related species *C. nivariensis* and *C. bracarensis* [8].

Following the description of these new potentially pathogenic *Candida* species [2,9], cases of infection have been anecdotally reported [5,10,11] and their occurrence in collections of clinical isolates investigated. A total of 16 isolates of *C. nivariensis* were received at the United Kingdom Mycology Reference Laboratory over a 12-month period [7] Three of 137 initially identified as *C. glabrata* isolates were positive with the *C. bracarensis* probe and none with the *C. nivariensis* probe at the Johns Hopkins Hospital of Baltimora, USA [6]. Three of 143 *C. glabrata* clinical strains sent to the Spanish Reference Laboratory in 2008-2009 were identified as *C. bracarensis* by DNA sequencing while none as *C. nivariensis*.

In addition none of the 31 isolates from a Spanish population-based surveillance study of candidaemia were found to belong to these cryptic species [12]. The largest study analyses isolates collected as a part of the ARTEMIS antifungal surveillance program in 28
countries on six continents: PNA-FISH identified only two *C. bracarensis* and one *C. nivariensis* among the 1598 isolates phenotypically identified as *C. glabrata* [13].

The aim of the present study was to determine the occurrence of these two cryptic species in Italy.

A total of 1000 yeast isolates, collected between January 2009 and November 2011 from 18 medical centres in 14 Italian regions, were included in this study. These isolates had been identified as *C. glabrata* by phenotypic and biochemical methods.

A total of 928 isolates were screened on CHROMagar™ *Candida* medium (PBI International, Milan) and colony colour scored as either pink or white. The remaining 72 isolates were analysed by a multiplex PCR using four primers targeting the ITS1 region and the 5.8S ribosomal RNA gene, as previously reported [8]. The combination of these primers allows discrimination among *C. glabrata*, *C. nivariensis* and *C. bracarensis* [8]. *C. nivariensis* (CN 5907-63) and *C. bracarensis* (NCYC3133) were used as control isolates in both the screenings.

The characteristics of the analysed isolates are reported in Table 1. A total of 645 isolates were isolated in centres of Northern Italy (total population 27 568 435), 146 and 209 in centres of Central (population 11 890 464) and Southern Italy (population 20 881 429), respectively.

All the tested isolates screened on CHROMagar yielded pink colonies and all the 72 isolates submitted to multiplex PCR using the four primers targeting the ITS1 region and the 5,8 S ribosomal RNA gene were identified as *Candida glabrata*.

In conclusion, among the 1000 isolates examined none was identified as *C. nivariensis* or *C. bracarensis*, despite the nationwide distribution and the variety of biological origin of the isolates. These results are consistent with the results of a recent analysis of a global collection of 1598 isolates reporting a prevalence of 0.2% [13]. However, because of the documented increase of these cryptic species in some European countries and their
propensity to exhibit antifungal resistance, it would be prudent to continue monitoring these emerging pathogens.

Acknowledgements

FIMUA Working Group: C. Ossi (Milano), A. Grancini (Milano), S. Grandesso (Mestre), M. Sanguinetti (Roma), M.T. Montagna (Bari), E. Manso (Ancona), M.L. Deiana (Trieste), L. Pitzurra (Perugia), S. Mazzoli (Firenze), A. Tavanti (Pisa), C. Venturelli (Modena) G. Lo Cascio (Verona), P. Innocenti (Bolzano).

A. Prigitano received a research grant “Dote ricerca”: FSE, Regione Lombardia.

References

1. Falagas ME, Roussos N, Vardakas Kz. Relative frequency of *albicans* and the various non-*albicans* *Candida* *spp* among candidemia isolates from inpatients in various parts of the world: a systematic review. *Int J Infect Diseases* 2010; 14: e954-966.

5. Wahyuningsih R, Sah Bandar IN, Theelen B, Hagen F, Poot G, Meis JF et al. *Candida nivariensis* isolated from an Indonesian human immunodeficiency virus-

13. Lockhart SR, Messer SA, Gherna M, Bishop JA, Merz WG, Pfaller MA et al.

TABLE 1. Characteristics of the 1000 analysed isolates.

<table>
<thead>
<tr>
<th>Body origin of isolates</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>blood</td>
<td>177</td>
</tr>
<tr>
<td>other sterile sites</td>
<td>57</td>
</tr>
<tr>
<td>vaginal exudate</td>
<td>229</td>
</tr>
<tr>
<td>other</td>
<td>531</td>
</tr>
<tr>
<td>unknown</td>
<td>6</td>
</tr>
</tbody>
</table>

Demographic characteristics

<table>
<thead>
<tr>
<th>Sex</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>female/male</td>
<td>1.7/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>63.5 year</td>
</tr>
<tr>
<td>range</td>
<td>2 days-100 years</td>
</tr>
</tbody>
</table>