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Bayesian Kernel Mixtures for Counts

Antonio Canale∗ & David B. Dunson†

Abstract

Although Bayesian nonparametric mixture models for continuous data are well de-

veloped, there is a limited literature on related approaches for count data. A common

strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not

accounting for distributions having variance less than the mean. Other approaches

include mixing multinomials, which requires finite support, and using a Dirichlet pro-

cess prior with a Poisson base measure, which does not allow smooth deviations from

the Poisson. As a broad class of alternative models, we propose to use nonparametric

mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for

posterior computation, and a simulation study is performed to assess performance. Fo-

cusing on the rounded Gaussian case, we generalize the modeling framework to account

for multivariate count data, joint modeling with continuous and categorical variables,

and other complications. The methods are illustrated through applications to a devel-

opmental toxicity study and marketing data. This article has supplementary material

online.

Keywords: Bayesian nonparametrics; Dirichlet process mixtures; Kullback-Leibler
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Gaussian distribution
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1. INTRODUCTION

Nonparametric methods for estimation of continuous densities are well developed in

the literature from both a Bayesian and frequentist perspective. For example, for

Bayesian density estimation, one can use a Dirichlet process (DP) (Ferguson 1973,

1974) mixture of Gaussians kernels (Lo 1984; Escobar and West 1995) to obtain a

prior for the unknown density. Such a prior can be chosen to have dense support

on the set of densities with respect to Lebesgue measure. Ghosal et al. (1999) show

that the posterior probability assigned to neighborhoods of the true density converges

to one exponentially fast as the sample size increases, so that consistent estimates

are obtained. Similar results can be obtained for nonparametric mixtures of various

non-Gaussian kernels using tools developed in Wu and Ghosal (2008).

In this article our focus is on nonparametric Bayesian modeling of counts using

related nonparametric kernel mixture priors to those developed for estimation of con-

tinuous densities. There are several strategies that have been proposed in the literature

for nonparametric modeling of count distributions having support on the non-negative

integers N = {0, . . . ,∞}. The first is to use a mixture of Poissons

Pr(Y = j |P ) =
∫

Poi(j;λ)dP (λ), j ∈ N , (1)

with Poi(j;λ) = λj exp(−λ)/j! and P a mixture distribution. When P is chosen to

correspond to a Ga(φ, φ) distribution on the Poisson rate parameter, one induces a

negative-binomial distribution, which accounts for over-dispersion with the variance

greater than the mean. Generalizations of (1) to include predictors and random effects

within a log-linear model for λ are widely used. A review of the properties of Poisson

mixtures is provided in Karlis and Xekalaki (2005).

As a more flexible nonparametric approach, one can instead choose a DP mixture

of Poissons by letting P ∼ DP(αP0), with α the DP precision parameter and P0 the
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base measure. As the DP prior implies that P is almost surely discrete, we obtain

Pr(Y = j|π, λ) =
∞∑

h=1

πhPoi(j;λh), λh ∼ P0, (2)

with π = {πh} ∼ Stick(α) denoting that the π are random weights drawn from the

stick-breaking process of Sethuraman (1994). Krnjajic et al. (2008) recently considered

a related approach motivated by a case control study. Dunson (2005) proposed an

approach for nonparametric estimation of a non-decreasing mean function, with the

conditional distribution modeled as a DPM of Poissons. Kleinman and Ibrahim (1998)

proposed to use a DP prior for the random effects in a generalized linear mixed model.

Guha (2008) recently proposed more efficient computational algorithms for related

models. Chen et al. (2002) considered nonparametric random effect distributions in

frequentist generalized linear mixed models.

On the surface, model (2) seems extremely flexible and to provide a natural modifi-

cation of the DPM of Gaussians used for continuous densities. However, as the Poisson

kernel used in the mixture has a single parameter corresponding to both the location

and scale, the resulting prior on the count distribution is actually quite inflexible. For

example, distributions that are under-dispersed cannot be approximated and will not

be consistently estimated. One can potentially use mixture of multinomials instead of

Poissons, but this requires a bound on the range in the count variable and the multi-

nomial kernel is almost too flexible in being parametrized by a probability vector equal

in dimension to the number of support points. Kernel mixture models tend to have

the best performance when the effective number of parameters is small. For example,

most continuous densities can be accurately approximated using a small number of

Gaussian kernels having varying locations and scales. It would be appealing to have

such an approach available also for counts.

An alternative nonparametric Bayes approach would avoid a mixture specification

and instead let yi ∼ P with P ∼ DP(αP0) and P0 corresponding to a base parametric

distribution, such as a Poisson. Carota and Parmigiani (2002) proposed a generaliza-

tion of this approach in which they modeled the base distribution as dependent on
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covariates through a Poisson log-linear model. Although this model is clearly flexible,

there are some major disadvantages. To illustrate the problems that can arise, first

note that the posterior distribution of P given iid draws yn = (y1, . . . , yn)′ is simply

(P | yn) ∼ DP
(

(α + n)
{

αP0 +
∑

i

δyi

})
,

with δy a degenerate distribution with all its mass at y. Hence, the posterior is cen-

tred on a mixture with weight proportional to α on the Poisson base P0 and weight

proportional to n on the empirical probability mass function. There is no allowance

for smooth deviations from the base.

As a motivating application, we consider data from a developmental toxicity study

of ethylene glycol in mice conducted by the National Toxicology Program (Price et al.

1985). As in many biological applications in which there are constraints on the range

of the counts, the data are underdispersed having mean 12.54 and variance 6.78. A

histogram of the raw data for the control group (25 subjects) is shown in Figure 1

along with a series of estimates of the posterior mean of Pr(Y = j) assuming yi ∼ P

with P ∼ DP(αP0), α = 1 or 5, and P0 = Poi(y) as an empirical Bayes choice. To

illustrate the behavior as the sample size increases we take random subsamples of the

data of size ns ∈ {5, 10}. As Figures 1 and 2 illustrates, the lack of smoothing in the

Bayes estimate is unappealing in not allowing borrowing of information about local

deviations from P0. In particular for small sample size as in Figure 2 the posterior

mean probability mass function corresponds to the base measure with high peaks on

the observed y. As the sample size increases, the empirical probability mass function

increasingly dominates the base.

With this motivation, we propose a general class of kernel mixture models for

count data, with the kernels induced through rounding of continuous kernels. Such

rounded kernels are highly flexible and tend to have excellent performance in small

samples. Methods are developed for efficient posterior computation using a simple

data augmentation Gibbs sampler, which adapts approaches for computation in DPMs

of Gaussians. Simulation studies are conducted to assess performance and the methods
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Figure 1: Histogram of the number of implantation per pregnant mouse in the control group
(black line) and posterior mean of Pr(Y = j) assuming a Dirichlet process prior on the
distribution of the number of implants with α = 1, 5 (grey and black dotted line respectively)
and base measure P0 = Poi(y).

are applied to the developmental toxicity data and a marketing application.

2. UNIVARIATE ROUNDED KERNEL MIXTURE PRIORS

2.1 Rounding continuous distributions

In the univariate case, letting y ∈ N denote a count random variable, our goal is to

specify a prior Π for the probability mass function p of this random variable. Follow-

ing the philosophy of Ferguson (1973), nonparametric priors for unknown distributions

should be interpretable, have large support and lead to straightforward posterior com-

putation. We propose a simple approach that induces Π through first choosing a prior

Π∗ for the density f of a continuous random variable y∗ ∈ Y and then rounding y∗ ∈ Y

to obtain y ∈ N . Here, Y is either the real line R or a measurable subset. As we

will show, this approach clearly leads to all three of the desirable properties mentioned

by Ferguson and additionally is easily generalizable to more complex cases involving

multivariate modeling of counts jointly with continuous and categorical variables and
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Figure 2: Histogram of subsamples (n = 5, 10) of the control group data on implantation in
mice (black line) and posterior mean of Pr(Y = j) assuming a Dirichlet process prior on the
distribution of the number of implants with α = 1, 5 (grey and black dotted line respectively)
and base measure P0 = Poi(y).

nonparametric regression for counts.

Focusing first on the univariate case, let y = h(y∗), where h(·) is a rounding function

defined so that h(y∗) = j if y∗ ∈ (aj , aj+1], for j = 0, 1, . . . ,∞, with a0 < a1 < . . . an

infinite sequence of pre-specified thresholds that defines a disjoint partition of Y. For

example, when Y = R one can simply choose a = {aj}∞j=0 as {−∞, 0, 1, 2, . . . ,∞}. The

probability mass function p of y is p = g(f), where g(·) is a rounding function having

the simple form

p(j) = g(f)[j] =
∫ aj+1

aj

f(y∗)dy∗ j ∈ N . (3)

The thresholds aj are such that a0 = min{y∗ : y∗ ∈ Y}, a∞ = max{y∗ : y∗ ∈ Y} and

hence
∫ a∞
a0

f(y∗)dy∗ = 1.

Relating ordered categorical data to underlying continuous variables is quite com-

mon in the literature. For example, Albert and Chib (1993) proposed a very widely

used class of data augmentation Gibbs sampling algorithms for probit models. In such
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settings, one typically lets a0 = −∞ and a1 = 0, while estimating the remaining k − 2

thresholds, with k denoting the number of levels of the categorical variable. A number

of authors have relaxed the assumption of the probit link function through the use of

nonparametric mixing. For example, Kottas et al. (2005) generalized the multivariate

probit model by using a mixture of normals in place of a single multivariate normal

for the underlying scores, with Jara et al. (2007) proposing a related approach for

correlated binary data. Gill and Casella (2009) instead used Dirichlet process mixture

priors for the random effects in an ordered probit model.

In the setting of count data, instead of estimating the thresholds on the underlying

variables, we use a fixed sequence of thresholds and rely on flexibility in nonparametric

modeling of f to induce a flexible prior on p. In order to assign a prior Π on the

space of count distributions, it is sufficient under this formulation to specify a prior Π∗

on the space L of densities with respect to Lesbesgue measure on Y. In Section 2.3,

we demonstrate that the induced prior p ∼ Π for the count probability mass function

satisfies Ferguson’s desired properties of interpretability and large support.

2.2 Some examples of rounded kernel mixture prior

For appropriate choices of kernel, it is well known that kernel mixtures can accurately

approximate a rich variety of densities, with Dirichlet process mixtures of Gaussians

forming a standard choice for densities on R. Hence, in our setting a natural choice of

prior for the underlying continuous density corresponds to

f(y∗;P ) =
∫

N(y∗;µ, τ−1)dP (µ, τ),

P ∼ Π̃, (4)

where N(y;µ, τ−1) is a normal kernel having mean µ and precision τ and Π̃ is a prior on

the mixing measure P , with a convenient choice corresponding to the Dirichlet process

DP(αP0), with P0 chosen to be Normal-Gamma. Let Π∗ denote the prior on f induced

through (4) and let Π denote the resulting prior on p induced through (3) with the

thresholds chosen as a0 = −∞ and aj = j − 1 for j ∈ {1, 2, . . . }.
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Other choices can be made for the prior on the underlying continuous density, such

as mixtures of log-normal, gamma or Weibull densities with aj = j. However, we

will focus on the class of DP mixtures of rounded Gaussian kernels for computational

convenience and because there is no clear reason to prefer an alternative choice of

kernel or mixing prior from an applied or theoretical perspective. This choice leads to

all three of the desired Ferguson properties of a nonparametric prior.

2.3 Some properties of the prior

Let Π denote the prior on p defined in Section 2.2, with F denoting the cumulative

distribution function corresponding to the density f . As p is a random probability

mass function, it is of substantial interest to define the prior expectation and variance

of p(j). In what follows we show that the prior mean and variance have a simple

form under the proposed prior, leading to ease in interpretation and facilitating prior

elicitation through centering on an initial guess for p. Clearly

E{p(j)} = E

{∫ aj+1

aj

f(y∗;P )dy∗

}
= E{F (aj+1)} − E{F (aj)}.

One can express the expected value of F (aj) marginalizing over the prior P ∼ Π̃ as

E
{
F (aj)} =

∫
F (aj ;P )dΠ̃(P ) =

∫ ∫ aj

−∞
f(y∗;P )dy∗ dΠ̃(P ).

Assuming Π̃ = DP (αP0) with P0 = N(µ;µ0, κτ−1)Ga(τ ; ν/2, ν/2) we have

E{p(j)} = Tν(aj+1;µ0, κ + 1)− Tν(aj ;µ0, κ + 1) (5)

where Tν(·; ξ, ω) is the cdf of a non central Student-t distribution with ν degrees of

freedom, location ξ and scale ω. Hence, the expected probability of y = j is simply

a difference in t cdfs having ν degrees of freedom, mean µ0, and scale κ + 1. Setting

µ0 = 0 and κ = 1 for identifiability, the prior for p can be centered to have expectation

exactly equal to an arbitrary pmf q chosen to represent one’s prior beliefs simply by

moving around the thresholds; a simple iterative algorithm for choosing a to enforce
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E{p(j)} = q(j), for j = 0, 1, . . . is shown below. Although we can conceptually define

an infinite sequence of thresholds, practically it is sufficient to define E{p(j)} = q(j),

for j = 0, 1, . . . , J with
∑J

j=0 q(j) = 1 − ε and let the remaining aj for j = J + 1, . . .

to be equispaced with unit step.

The variance can be computed along similar lines. Let FD(a, b) = F (b) − F (a),

Φ(a; ξ, ω) the cumulative distribution function of a normal with mean ξ and variance

ω, ΦD(a, b; ξ, ω) = Φ(b; ξ, ω)− Φ(a; ξ, ω) and TD,ν(a, b; ξ, ω) = Tν(b; ξ, ω)− Tν(a; ξ, ω),

Var{p(j)} = Var{FD(aj , aj+1)}

= E{FD(aj , aj+1)2} − E{FD(aj , aj+1)}2

=
1

α + 1

[
E
{
ΦD(aj , aj+1;µ, τ−1)2

}
− {TD,ν(aj , aj+1;µ0, κ + 1)}2

]
. (6)

The expected value of the squared normal cdf is with respect to P0 and can be computed

numerically. The derivations are outlined in the supplemental materials.

In the presence of prior information on the random p, one can define the sequence

of aj iteratively in order to let E{p(j)} = q(j), where q is an initial guess for the

probability mass function, defined for all j. Result (5), with µ0 and κ fixed to 0 and

1, leads to define the thresholds iteratively as

a0 = −∞

a1 = T −1
ν (q(0); 0, 2)

a2 = T −1
ν (q(0) + q(1); 0, 2)

. . .

aj = T −1
ν (

j−1∑
i=0

q(i); 0, 2)

From the above, it is clear that the prior is interpretable to the extent that simple

expressions exist for the mean and variance that can be used in prior elicitation. In

addition, as we will show the prior has appealing theoretical properties in terms of

large support and posterior consistency. Large Kullback-Leibler support of the prior Π
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is straightforward if we start from a prior Π∗ with such a property. Lemma 1, in fact,

demonstrates that the mapping g : L → C maintains Kullback-Leibler neighborhoods

and, as is formalised in Theorem 1, this property implies that the induced prior p ∼ Π

assigns positive probability to all Kullback-Leibler neighbourhoods of any p0 ∈ C if at

least one element of the set g−1(p0) is in the Kullback-Leibler support of the prior Π∗.

By using conditions of Wu and Ghosal (2008), the Kullback-Leibler condition becomes

straightforward to demonstrate for a broad class of kernel mixture priors Π∗.

Lemma 1. Assume that the true density of a count random variable is p0 and choose

any f0 such that p0 = g(f0). Let Kε(f0) = {f : KL(f0, f) < ε} be a Kullback-Leibler

neighbourhood of size ε around f0. Then the image g(Kε(f0)) contains values p ∈ C in

a Kullback-Leibler neighbourhood of p0 of at most size ε.

Theorem 1. Given a prior Π∗ on LΠ∗ ⊆ L such that all f ∈ LΠ∗ are in the Kullback-

Leibler support of Π∗, then all p ∈ CΠ = g(LΠ∗) are in the Kullback-Leibler support of

Π.

Theorem 1 follows directly from Lemma 1, because for every f ∈ LΠ∗ by Lemma 1

we have Π(Kε(p)) ≥ Π(g(Kε(f))) = Π∗(Kε(f)) > 0.

A direct consequence of Theorem 1 is that, under the theory of Schwartz (1965),

the posterior probability of any weak neighbourhood around the true data-generating

distribution p0 ∈ CΠ converges to one with Pp0-probability 1 as n →∞.

Theorem 2 points out that in the space of probability mass functions weak consis-

tency implies strong consistency in the L1 sense. This implies that the Kullback-Leibler

condition is sufficient for strong consistency in modeling count distributions.

Theorem 2. Given a prior p ∼ Π for a probability mass function p ∈ C, if the posterior

Π(· | y1, . . . , yn) is weakly consistent, then it is also strongly consistent in the L1 sense.

2.4 A Gibbs sampling algorithm

For posterior computation, we can trivially adapted any existing MCMC algorithm de-

veloped for DPMs of Gaussians with a simple data augmentation step for imputing the
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underlying variables. For simplicity in describing the details, we focus on the blocked

Gibbs sampler of Ishwaran and James (2001), with f(y∗) =
∑N

h=1 πhN(y∗;µh, τ−1
h )

with π1 = V1, πh = Vh
∏

l<h(1 − Vl), Vh independent Beta(1,α) and VN = 1. Modifi-

cations to avoid truncation can be applied using slice sampling as described in Walker

(2007) and Yau et al. (2010). The blocked Gibbs sampling steps are as follows:

Step 1 Generate each y∗i from the full conditional posterior

Step 1a Generate ui ∼ U
(
Φ(ayi ;µSi , τ

−1
Si

),Φ(ayi+1;µSi , τ
−1
Si

)
)

Step 1b Let y∗i = Φ−1(ui;µSi , τ
−1
Si

)

Step 2 Update Si from its multinomial conditional posterior with

Pr(Si = h|−) =
πhp(yi|µh, τ−1

h )∑N
l=1 πlp(yi|µl, τ

−1
l )

,

where p(j|µh, τ−1
h ) = Φ(aj+1|µh, τ−1

h )− Φ(aj |µh, τ−1
h ).

Step 3 Update the stick-breaking weights using

Vh ∼ Be

(
1 + nh, α +

N∑
l=h+1

nl

)

Step 4 Update (µh, τh) from its conditional posterior

(µh, τ−1
h ) ∼ N(µ̂h, κ̂hτ−1

h )Ga(âτh
, b̂τh

)

with âτh
= aτ +nh/2, b̂τh

= bτ +1/2(
∑

i:Si=h(y∗i − ȳ∗h)+nh/(1+κnh)(ȳ∗h−µ0)2),

κ̂h = (κ−1 + nh)−1 and µ̂h = κ̂h(κ−1µ0 + nhȳ∗h).

2.5 Simulation study

To assess the performance of the proposed approach, we conducted a simulation study.

Four different approaches for estimating the probability mass function were compared

to our proposed rounded mixture of Gaussians (RMG): the empirical probability mass

function (E), two Bayesian nonparametric approaches, with the first assuming a Dirich-

let process prior with a Poisson base measure (DP) and the second using a Dirichlet
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process mixture of Poisson kernels (DPM-Pois), and lastly the maximum likelihood

estimate under a Poisson model (MLE). Several simulations have been run under dif-

ferent simulation settings leading to qualitatively similar results. In what follows we

report the results for four scenarios. The first simulation case, henceforth scenario

(a), assumed the data were simulated as the floor of draws from the mixture of Gaus-

sians: 0.4N(25, 1.5) + 0.15N(20, 1) + 0.25N(24, 1) + 0.2N(21, 2), the second scenario

(b), assumed a simple Poisson model with mean 12, the third (c) assumed the mixture

of Poissons given by 0.4Poi(1) + 0.25Poi(3) + 0.25Poi(5) + 0.1Poi(13), while the last

one (scenario (d)) assumed an underdispersed probability mass function, the Conway-

Maxwell-Poisson distribution (Shmueli et al. 2005) with parameters λ = 30 and ν = 3.

For each case, we generated sample sizes of n = 10, 25, 50, 100, 300. Each of the

five analysis approaches were applied to R = 1, 000 replicated data sets under each

scenario. The methods were compared based on a Monte Carlo approximation to the

mean Bhattacharya distance (BCD) and Kullback-Leibler divergence (KLD) calculated

as

BCD =
1
R

R∑
r=1

 max(y)+B∑
j=max(0,min(y)−B)

− log
(√

p(j)p̂r(j)
) ,

KLD =
1
R

R∑
r=1

 max(y)+B∑
j=max(0,min(y)−B)

p(j) log
(
p(j)/p̂r(j)

) .

where we take the sums across the range of the observed data ± a buffer of 10.

In implementing the blocked Gibbs sampler for the rounded mixture of Gaussians,

the first 1, 000 iterations were discarded as a burn-in and the next 10, 000 samples were

used to calculate the posterior mean of p̂(j). For the hyperparameters, as a default

empirical Bayes approach, we chose µ0 = y, the sample mean, and κ = s2, the sample

variance, and aτ = bτ = 1. The precision parameter of the DP prior was set equal to

one as a commonly used default and the truncation level N is set to be equal to the

sample size of each sample. We also tried reasonable alternative choices of prior, such

as placing a gamma hyperprior on the DP precision, for smaller numbers of simulations
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and obtained similar results. The values of p(j) for a wide variety of js were monitored

to gauge rates of apparent convergence and mixing. The trace plots showed excellent

mixing, and the Geweke (1992) diagnostic suggested very rapid convergence.

The DP approach used Poi(ȳ) as the base measure, with α = 1 or α ∼ Ga(1, 1)

considered as alternatives. For fixed α, the posterior is available in closed form, while

for α ∼ Ga(1, 1) we implemented a Metropolis-Hastings normal random walk to update

log α, with the algorithm run for 10, 000 iterations with a 1, 000 iterations burn-in.

The blocked Gibbs sampler (Ishwaran and James 2001) was used for posterior

computation in the DPM-Pois model, with the first 1,000 iterations discarded as a

burn-in and the next 10,000 samples used to calculate the posterior mean p̂(j). A

gamma base measure with hyperparameters a = b = 1 was chosen within the DP while

the precision parameter was fixed to α = 1.

The results of the simulation are reported in Table 1. The proposed method per-

forms better, in terms of BCD and KLD, than the other methods when the truth is

underdispersed and clearly not Poisson, as in the first scenario. As expected, when

we simulated data under a Poisson model the MLE under a Poisson model and the

DPM of Poissons performs slightly better than the proposed RMG approach in very

small samples. However, even in modest sample sizes of n = 25, the RMG approach

was surprisingly competitive when the truth was Poisson. Interesting, when the truth

was a mixture of Poissons (case 3) we obtained much better performance for the RMG

approach than the DPM-Pois model. The ∞ recorded for the empirical estimation is

due to the presence of p(j) exactly equal to zero if we do not observe any y = j.

We also calculated the empirical coverage of 95% credible intervals for the p(j)s.

These intervals were estimated as the 2.5th to 97.5th percentiles of the samples collected

after burn-in for each p(j), with a small buffer of ±1e − 08 added to accommodate

numerical approximation error. The plots in Figure 3 report the results with j on the

x-axis for the second and third scenario and sample size n = 50. We found qualitatively

similar results for other scenarios and sample sizes and we report a plot for each of

them in the summplemental materials. The effective coverage of the credible intervals
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Table 1: Bhattacharya coefficient and Kullback-Leibler divergence from the true distribution
for samples from the four scenarios

Scenario (a) Scenario (b) Scenario (c) Scenario (d)
n Method BCD KLD BCD KLD BCD KLD BCD KLD
10 RMG 0.04 0.16 0.04 0.17 0.03 0.11 0.04 0.12

E 0.24 ∞ 0.35 ∞ 0.39 ∞ 0.09 ∞
DP (α = 1) 0.14 0.68 0.19 0.9 0.16 1.14 0.06 0.25
DP (α ∼ Ga(1, 1)) 0.11 0.47 0.11 0.49 0.12 0.87 0.05 0.22
MLE 0.13 0.37 0.01 0.05 0.11 0.78 0.07 0.21
DPM-Pois 0.26 0.69 0.09 0.29 0.15 0.43 0.26 0.67

25 RMG 0.02 0.08 0.02 0.08 0.02 0.06 0.02 0.06
E 0.09 ∞ 0.14 ∞ 0.23 ∞ 0.03 ∞
DP (α = 1) 0.07 0.34 0.10 0.57 0.10 0.90 0.02 0.11
DP (α ∼ Ga(1, 1)) 0.06 0.24 0.06 0.29 0.08 0.68 0.02 0.10
MLE 0.13 0.36 0.01 0.02 0.11 0.76 0.06 0.20
DPM-Pois 0.18 0.5 0.02 0.06 0.02 0.10 0.21 0.55

50 RMG 0.01 0.05 0.01 0.04 0.01 0.04 0.01 0.04
E 0.04 ∞ 0.07 ∞ 0.17 ∞ 0.02 ∞
DP (α = 1) 0.03 0.16 0.06 0.33 0.06 0.69 0.01 0.06
DP (α ∼ Ga(1, 1)) 0.03 0.12 0.04 0.18 0.05 0.54 0.01 0.05
MLE 0.13 0.35 > 0.01 0.01 0.11 0.75 0.06 0.19
DPM-Pois 0.16 0.44 0.03 0.09 0.12 0.28 0.19 0.51

100 RMG 0.01 0.03 0.01 0.02 > 0.01 0.02 0.01 0.03
E 0.02 ∞ 0.03 ∞ 0.13 ∞ 0.01 ∞
DP (α = 1) 0.02 0.08 0.03 0.18 0.03 0.47 0.01 0.03
DP (α ∼ Ga(1, 1)) 0.02 0.07 0.02 0.11 0.03 0.37 0.01 0.03
MLE 0.13 0.35 >0.01 0.01 0.11 0.75 0.06 0.19
DPM-Pois 0.54 1.41 >0.01 0.01 0.01 0.03 0.18 0.48

300 RMG >0.01 0.01 >0.01 0.01 >0.01 0.01 >0.01 0.02
E 0.01 ∞ 0.01 ∞ 0.10 ∞ >0.01 ∞
DP (α = 1) 0.01 0.03 0.01 0.07 0.01 0.17 0.26 2.29
DP (α ∼ Ga(1, 1)) 0.05 0.29 0.01 0.35 0.05 0.74 0.03 0.16
MLE 0.13 0.35 >0.01 >0.01 0.10 0.74 0.06 0.19
DPM-Pois 0.14 0.40 0.01 0.05 0.10 0.21 0.17 0.47

for p(j) for the RMG fluctuates around the nominal value for all the scenarios and

sample sizes. However using the Dirichlet process prior we get an effective coverage

that is either strongly less than the nominal levels, or much too high, due to too wide

credible intervals. For DP-Pois, we obtain coverage close to the nominal level only at

the values of j such that the true p(j) is high enough so that substantial numbers of

observations fall at that value.
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Figure 3: Coverage of 95% credible intervals for p(j) under the (a) second and (b) third
scenario. Points represent the RMG method, cross-shaped dots the DP with α = 1, triangles
the DP with α ∼ Ga(1, 1) and x-shaped dots the DPM of Poisson.

3. MULTIVARIATE ROUNDED KERNEL MIXTURE PRIORS

3.1 Multivariate counts

Multivariate count data are quite common in a broad class of disciplines, such as

marketing, epidemiology and industrial statistics among others. Most multivariate

methods for count data rely on multivariate Poisson models (Johnson et al. 1997)

which have the unpleasant characteristic of not allowing negative correlation.

Mixtures of Poissons have been proposed to allow more flexibility in modeling multi-

variate counts (Meligkotsidou 2007). A common alternative strategy is to use a random

effects model, which incorporates shared latent factors in Poisson log-linear models for

each individual count (Moustaki and Knott 2000; Dunson 2000, 2003). A broad class

of latent factor models for counts is considered by Wedel et al. (2003).

Copula models are an alternative approach to model the dependence among mul-

tivariate data. A p-variate copula C(u1, . . . , up) is a p-variate distribution defined on

the p-dimensional unit cube such that every marginal distribution is uniform on [0, 1].
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Hence if Fj is the CDF of a univariate random variable Yj , then C(F1(y1), . . . , Fp(yp))

is a p-variate distribution for Y = (Y1, . . . , Yp) with Fjs as marginals. A specific cop-

ula model for multivariate counts is recently proposed by Nikoloulopoulos and Karlis

(2010). Copula models are built for a general probability distribution and can hence

be used to model jointly data of diverse type, including counts, binary data and con-

tinuous data. A very flexible copula model that considers variables having different

measurement scales is proposed by Hoff (2007). This method is focused on modeling

the association among variables with the marginals treated as a nuisance.

We propose a multivariate rounded kernel mixture prior that can flexibly charac-

terize the entire joint distribution including the marginals and dependence structure,

while leading to straightforward and efficient computation. The use of underlying

Gaussian mixtures easily allows the joint modeling of variables on different measure-

ment scales including continuous variables, categorical and counts. In the past, it

was hard to deal with counts jointly using such underlying Gaussian models unless

one inappropriately treated counts as either categorical or continuous. In addition we

can naturally do inference on the whole multivariate density, on the marginals or on

conditional distributions of one variable given the others.

3.2 Multivariate rounded mixture of Gaussians

Each concept of Section 2 can be easily generalized into its multivariate counterpart.

First assume that the multivariate count vector y = (y1, . . . , yp) is the transformation

through a threshold mapping function h of a latent continuous vector y∗. In a general

setting we have

y = h(y∗)

y∗ = (y∗1. . . . , y
∗
p) ∼ f(y∗) =

∫
Kp(y∗; θ, Ω)dP(θ, Ω),

P ∼ Π̃, (7)

where Kp(·; θ, Ω) is a p-variate kernel with location θ and scale-association matrix Ω

and Π̃ is a prior for the mixing distribution. The mapping h(y∗) = y implies that the
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probability mass function p of y is

p(y1 = J1, . . . , yp = Jp) = p(J) = g(f)[J] =
∫

AJ

f(y∗)dy∗ J ∈ N p (8)

where AJ = {y∗ : a1,J1 ≤ y∗1 < a1,J1+1, . . . , ap,Jp ≤ y∗p < ap,Jp+1} defines a disjoint

partition of the sample space. Marginally this formulation is the same of that in (3).

Remark 1. Lemma 1 and Theorem 1 demonstrate that in the univariate case the

mapping g : L → C maintains Kullback-Leibler neighborhoods and hence the induced

prior Π assigns positive probability to all Kullback-Leibler neighbourhoods of any p0 ∈ C.

This property holds also in the multivariate case.

The true p0 is in the Kullback-Leibler support of our prior, and hence we obtain

weak and strong posterior consistency following the theory of Section 2, as long as there

exists at least one multivariate density f0 = g−1(p0) that falls in the KL support of the

mixture prior for f described in (6). In the sequel, we will assume that Kp corresponds

to a multivariate Gaussian kernel and Π̃ is DP(αP0), with P0 corresponding to a normal

inverse-Wishart base measure. Wu & Ghosal (2008) showed that certain DP location

mixtures of multivariate Gaussians support all densities f0 satisfying a mild regularity

condition. The size of the KL support of the DP location-scale mixture of multivariate

Gaussians has not been formalized (to our knowledge), but it is certainly very large,

suggesting informally that we will obtain posterior consistency at almost all p0.

3.3 Out of sample prediction

Focusing on Dirichlet process mixtures of underlying Gaussians, we let the mixing dis-

tribution in (7) be P ∼ DP(αP0) with base measure P0 = Np(µ;µ0, κ0Σ)Inv-W(Σ; ν0,S0).

To evaluate the performance, we simulated 100 data sets from two scenarios. The first

is the mixture

y∗i ∼
3∑

h=1

πhN(µh,Σh),
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with π = (π1, π2, π3) = (0.14, 0.40, 0.46), µ1 = (35, 82, 95), µ2 = (−2, 1, 2.5), µ3 =

(12, 29, 37) and variance-covariance matrices

Σ1 =


3 −0.6 0.25

−0.6 3 0.7

0.25 0.7 2

 , Σ2 =


1 0.5 0.4

0.5 1 −0.4

0.4 −0.4 0.7

 , Σ3 = 7.5 · Σ2,

with the continuous observation floored and all negative values set equal to zero leading

to a multivariate zero-inflated count distribution. The second scenario is a mixture of

multivariate Poisson distributions (Johnson et al. 1997)

π mPoi(λ1, λ01) + (1− π) mPoi(λ2, λ02)

with λ1 = (1, 8, 15), λ2 = c(8, 1, 3), λ−1
01 = λ02 = 2 and π = 0.7.

The samples were split into training and test subsets containing 50 observations

each, with the Gibbs sampler applied to the training data and the results used to

predict yi1 given yi2 and yi3 in the test sample. This approach modifies Müller et al.

(1996) to accomodate count data.

The hyperparameters were specified as follows:

µ0 ∼ N3(ȳ∗, Ŝ), S0 ∼ InvWishart(4,Ψ0),

Ψ0 = I3, ν0 = 4, κ0 ∼ Gamma(0.01, 0.01), α = 1 (9)

with y∗ = (1 − p̂0)y+ − p0y+, p̂0 the proportion of zeros in the training sample, y+

the mean of the non-zero values and Ŝ = diag(s2
1, s

2
2, s

3
3) with sj the empirical variance

of yij , i = 1, . . . , n. The Gibbs sampler reported in the Appendix was run for 10, 000

iterations with the first 4, 000 discarded. We assessed predictive performance using the

absolute deviation loss, which is more natural than squared error loss for count data.

Under absolute deviation loss, the optimal predictive value for yi1 corresponded to the

median of the posterior predictive distribution.

We compare our approach with prediction under an oracle based on the true models,
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Poisson log-linear regressions fit with maximum likelihood, generalized additive models

(GAM) (Hastie et al. 2001) with spline smoothing function and generalized latent trait

model (GLTM) (Moustaki and Knott 2000; Dunson 2003) with Poisson responses.

The generalized latent trait model assumed a single latent variable which was assigned

a standard normal prior, while a vague normal prior with mean 0 and variance 20

was assigned to the factor loadings with one of them constrained to be positive for

identifiability. The out of sample prediction was made taking the median of a MCMC

chain of length 12, 000 after a burn in of 3, 000 iterations from the posterior predictive

distribution of yi1 in the test set. The results are reported in Table 2.

Table 2: Mean absolute deviation errors for the prediction obtained with the rounded mixture
of Gaussian prior, the Oracle prediction, the linear regressions and the generalized latent trait
model.

Scenario 1 Scenario 2
RMG 2.44 1.42
oracle 1.36 1.28
GAM 2.72 1.55
GLM 5.34 1.98
GLTM 9.68 4.98

An additional gain of our approach is a flexible characterization of the whole predic-

tive distribution of yi1 given yi2, yi3 and not just the point prediction ŷi1. In addition

to median predictions, it is often of interest in applications to predict subjects having

zero counts or counts higher than a given threshold q. Based on our results, we ob-

tained much more accurate predictions of both yi1 = 0 and yi1 > q than either the

log-linear Poisson model or the GAM approach when the true model is not a mixture of

multivariate Poissons and prediction with similar degree of precision when the truth is

a mixture of multivariate Poissons. As an additional competitor for predicting yi1 = 0

and yi1 > q, we also considered logistic regression, logistic GAM and a logistic latent

trait model with the same prior specification as before fitted to the appropriate di-

chotomized data. Based on a 0-1 loss function that classified yi1 = 0 if the probability

(posterior for our Bayes method and fitted estimate for the logistic GLM and GAM)

exceeded 0.5, we compute the misclassification rate out-of-sample in Table 3.
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Table 3: Misclassification rate out-of-sample based on the proposed method, GAM, general-
ized linear regressions, oracle and generalized latent trait models for samples under scenario
1 (S1) and scenario 2 (S2).

RMG GAM GLM Oracle GLTM
Mediana 0-1 Lossb Poisson Logistic Poisson Logistic - 0-1 Lossb

S1 yi1 = 0 0.02 0.08 0.42 0.14 0.42 0.20 0.00 0.44
yi1 > 20 0.02 0.10 0.02 0.40 0.08 0.30 0.00 0.50
yi1 > 25 0.04 0.02 0.04 0.06 0.06 0.08 0.02 0.56
yi1 > 35 0.06 0.06 0.06 0.08 0.06 0.14 0.06 0.48

S2 yi1 = 0 0.14 0.12 0.12 0.12 0.12 0.12 0.12 0.86
yi1 > 10 0.16 0.12 0.16 0.12 0.16 0.12 0.12 0.50

a = prediction based on posterior median, b = prediction based on 0-1 loss

4. APPLICATIONS

4.1 Application to developmental toxicity study

As a first application, we consider the developmental toxicity study mentioned in Sec-

tion 1. Pregnant mice were assigned to dose groups of 0, 750, 1,500 or 3,000 mg/kg

per day, with the number of implants measured for each mouse at the end of the ex-

periment. Group sizes are 25, 24, 23 and 23, respectively. The scientific interest is in

studying a dose response trend in the distribution of the number of implants. To ad-

dress this, we first estimate the probability mass function within each group using the

RMG methodology of Section 2. Trace plots showed rapid convergence and excellent

mixing, with the Geweke (1992) diagnostic failing to show lack of convergence.

Figure 4 shows the estimated and empirical cumulative distribution functions in

each group along with 95% pointwise credible intervals and the estimates from a DPM

of Poissons analysis. Clearly, the DPM of Poissons provided a poor fit to the data and

hence poor characterization of changes with dose, while the proposed RMG method

provided an excellent fit for each group. To summarize changes in the distribution of the

number of implants with dose, we estimated summaries of the posterior distributions for

changes in each percentile between the control group and each of the exposed groups,

with the results shown in Figure 5. In each of the dose levels, the exposure led to a

stochastic decrease in the distribution of the number of implants, with an estimated

decrease in the number of implants at each percentile (there is a minor exception
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at high percentiles in the 750 mg/kg group). The estimated posterior probabilities

of a negative average change across the percentiles was 0.72, 0.99 and 0.94 in the

750, 1,500 and 3,000 mg/kg groups, respectively. These results were consistent with

Mann-Whitney pairwise comparison tests that had p-values of 0.23, 0.04 and 0.06 for

stochastic decreases in the low, medium and high dose groups. In contrast, likelihood

ratio tests under a Poisson model failed to test any significant differences between the

control and exposed groups.

4.2 Application to Marketing Data

Telecommunication companies every day store plenty of information about their cus-

tomer behaviour and services usage. Mobile operators, for example, can store the daily

usage stream such as the duration of the calls or the number of text and multimedia

messages sent. Companies are often interested in profiling both customers with high

usage and customers with very low usage. Suppose that at each activation a customer

is asked to simply state how many text messages (SMS), multimedia messages (MMS)

and calls they anticipate making on average in a month and the company wants to

predict the future usage of each new customer.

We focus on data from 2, 050 SIM cards from customers having a prepayed con-

tract, with a multivariate yi = (yi1, . . . , yip) available representing usage in a month

for card i. Specifically, we have the number of outgoing calls to fixed numbers (yi1),

to mobile numbers of competing operators (yi2) and to mobile numbers of the same

operator (yi3), as well as the total number of MMS (yi4) and SMS (yi5) sent. Jointly

modeling the probability distribution f(·) of the multivariate y using a Bayesian mix-

ture and assuming an underlying continuous variable for the counts, we focus on the

forecast of yi1, using data on yi2, . . . , yi5. Some descriptive statistics of the dataset

show the presence of a lot of zeros for our response variable y1. Such zero-inflation

is automatically accommodated by our method through using thresholds that assign

negative underlying y∗ij values to yij = 0 as described in Section 2.3. Excess mass at

zero is induced through Gaussian kernels located at negative values.

We can model the data assuming the model in (7) with hyperparameters specified
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Figure 4: Posterior estimates for the cumulative distribution function for (a) the control
group and (b)–(d) the dose groups. Black solid line for the empirical cumulative distribution
function, dashed line for the RMG estimation and dotted for the DPM of Poisson. Gray
shading for 95% posterior credible bands for the RMG
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Figure 5: Posterior mean for the changes in the percentiles (x-axis) between the control
group and 750 mg/kg (continuous line), 1,500 mg/kg (dash-dotted line) and 3,000 mg/kg
(dotted line) dose groups.

as in (9) and computation implemented as in Section 3.3. A training and test set

of equal size are chosen randomly. Trace plots of yi1 for different individuals exhibit

excellent rates of convergence and mixing, with the Geweke (1992) diagnostic providing

no evidence of lack of convergence.

Our method is compared with Poisson GLM and GAM as in Section 3.3 and with a

generalized latent trait model with prior as in Section 3.3. The out-of-sample median

absolute deviation (MAD) value was 8.08 for our method, which is lower than the

8.76 obtained for the best competing method (Poisson GAM). The generalized latent

trait model turns out to have a too restrictive structure with poor performance both

computationally and in terms of prediction (MAD of 10.63). These results were similar

for multiple randomly chosen training-test splits. Suppose the interest is in predicting

customers with no outgoing calls and highly profitable customers. We predict such

customers using Bayes optimal prediction under a 0-1 loss function. Using optimal

prediction of zero-traffic customers, we obtained lower out-of-sample misclassification

rates than the Poisson GAM, but had comparable results to logistic GAM as illustrated
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in the ROC curve in Figure 5 (a). Our expectation is that the logistic GAM will have

good performance when the proportion of individuals in the subgroup of interest is

≈ 50%, but will degrade relative to our approach as the proportion gets closer to 0% or

100%. In this application, the proportion of zeros was 69% and the sample size was not

small, so logistic GAM did well. The results for predicting highly profitable customers

having more than 40 calls per month are consistent with this, as illustrated in Figure

5 (b). It is clear that our approach had dramatically better predictive performance.
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Figure 6: ROC curves for predicting customers having outgoing calls to fixed numbers equal
to zero (a) or more than 40 (b). The continuous line is for our proposed approach and the
dotted lines are for the logistic GAM. Both classifications are based on a 0-1 loss function
that classify yi1 = 0 or yi1 > 40 if the posterior (estimated) probability is greater than 1/2.

5. DISCUSSION

The usual parametric models for count data lack flexibility in several key ways, and

nonparametric alternatives have clear disadvantages. Our proposed class of Bayesian

nonparametric mixtures of rounded continuous kernels provide a useful new approach

that can be easily implemented in a broad variety of applications. We have demon-

strated some practically appealing properties including simplicity of the formulation,
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ease of computation and straightforward joint modeling of counts, categorical and con-

tinuous variables from which is it possible to infer conditional distributions of response

variables given predictors as well as marginal and joint distributions. The proposed

class of conditional distribution models allows a count response distribution to change

flexibly with multiple categorical, count and continuous predictors.

Our approach has been applied to a marketing application using a DP mixture of

multivariate rounded Gaussians. The use of an underlying Gaussian formulation is

quite appealing in allowing straightforward generalizations in several interesting direc-

tions. For example, for high-dimensional data instead of using an unstructured mixture

of underlying Gaussians, we could consider a mixture of factor analyzers (Gorur and

Rasmussen 2009). As an alternative we considered generalized latent trait models,

which induce dependence through incorporating shared latent variables in generalized

linear models for each response type. However, this strategy would rely on mixtures

of Poisson log-linear models for count data, which restrict the marginals to be over-

dispersed and can lead to a restrictive dependence structure as pointed out in the

simulation and in the real data application. It also becomes straightforward to accom-

modate time series and spatial dependence structures through mixtures of Gaussian

dynamic or spatially dependent models.In addition, we can easily adapt any method

for density regression for continuous responses to include rounding such as dependent

Dirichlet processes (MacEachern 1999, 2000), kernel stick-breaking processes (Dunson

and Park 2008), or probit stick-breaking processes (Chung and Dunson 2009).
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APPENDIX

Proof of Lemma 1. Let f a general element of Kε(f0) and denote p = g(f) its image

on C, hence

KL(f0, f) =
∫ a∞

a0

f0(x) log
(

f0(x)
f(x)

)
dx < ε. (10)

If we discretizise the integral (10) in the infinite sum of integrals on disjoint subset of

the domain of f we have

∞∑
h=0

∫ ah+1

ah

f0(t) log
(

f0(t)
f(t)

)
dt < ε.

Using the condition (see Theorem 1.1 of Ghurye (1968))

∫
A

g1(t)dt× log
(∫

A g1(t)dt∫
A g2(t)dt

)
≤
∫

A
g1(t) log

(
g1(t)
g2(t)

)
dt

for each A ∈ A, countable family of disjoint measurable sets of Y and g1, g2 ∈ L, we get

p0(j) log
p0(j)
p(j)

≤
∫ aj+1

aj

f0(t) log
(

f0(t)
f(t)

)
dt

and hence

∞∑
j=0

p0(j) log
p0(j)
p(j)

≤
∫ a∞

a0

f0(x) log
(

f0(x)
f(x)

)
dx < ε,

that gives the result.

Proof of Theorem 2. In C weak convergence of sequences implies pointwise convergence

by definition. In addition, Schur’s property holds in C and hence weak convergence

of sequences implies also strong convergence. Weak and strong metrics are hence

topologically equivalent since pn → p weakly iff pn → p in L1. Topologically equivalent

metrics generate the same topology and this implies that the balls nest, i.e. that for

any p ∈ C and radius r > 0, there exist positive radii r1 and r2 such that

Sr1(p) ⊆ Wr(p) and Wr2(p) ⊆ Sr(p)
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where Sr(p) and Wr(p) are respectively strong and weak open neighborhoods of p of

radius r. It follows that for any L1 neigborhood S there exists a weak neighborhood

W such that SC ⊆ WC . Hence the posterior probability of SC is

Π(SC | y1, . . . , yn) ≤ Π(WC | y1, . . . , yn).

Since the right hand side of the last equation goes to zero with Pp0-probability 1,

it follows that also

Π(SC
r | y1, . . . , yn) → 0

with Pp0-probability 1 and this concludes the proof.

Multivariate Gibbs Sampler

For the multivariate rounded mixture of Gaussians we adopt the Gibbs sampler

with auxiliary parameters of Neal (2000), and more precisely the Algorithm 8 with

m = 1. The sampler iterates among the following steps:

Step 1 Generate each y∗i from the full conditional posterior

for j in 1, . . . , p

Step 1a Generate uij ∼ U
(
Φ(ayij−1; µ̃i,j , σ̃

2
i,j),Φ(ayij ; µ̃i,j , σ̃

2
i,j)
)
, where

µ̃i,j = µSi,j + ΣSi,12Σ
−1
Si,22

(y∗−j − µSi,−j)

σ̃2
i,j = σ2

Si,j − ΣSi,12Σ
−1
Si,22

ΣSi,21

are the usual conditional expectation and conditional variance of the multi-

variate normal.

Step 1b Let y∗ij = Φ−1(uij ; µ̃i,j , σ̃
2
i,j)

Step 2 Update Si as in Algorithm 8 of Neal (2000) with m = 1.

Step 3 Update (µh,Σh) from their conditional posteriors.
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SUPPLEMENTARY MATERIALS

Additional results This appendix presents an additional result needed to prove

Lemma 1, the algebraic details to obtain the results in Section 2.3 and the plots

for the empirical coverage of 95% credible intervals for the p(j)s for all scenarios

of the simulation study in Section 2.5
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