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Abstract

The structure, electronic and dynamic properties of the two layered α (litharge) and β

(massicot) phases of PbO have been studied by density functional methods. The role of London

dispersion interactions as leading component of the total interaction energy between layers has

been addressed by using the Grimme’s approach, in which new parameters for Pb and O atoms

have been developed. Both gradient corrected and hybrid functionals have been adopted using

Gaussian-type basis sets of polarized triple zeta quality for O atoms and small core pseudo-

potential for the Pb atoms. Basis set superposition error (BSSE) has been accounted for by the

Boys-Bernardi correction to compute the interlayer separation. Cross check with calculations

adopting plane waves that are BSSE free have also been performed for both structures and

vibrational frequencies. With the new set of proposed Grimme’s type parameters structures

and dynamical parameters for both PbO phases are in good agreement with experimental data.

1 Introduction

Lead monoxide (PbO) is largely employed for several industrial and techological applications such

as electronic devices,1–3 in special ceramic–glasses,4,5 for X–ray cathodes, for pigments,6,7 in

rubber vulcanization8,9 and in the automotive sector as an essential component for batteries.10,11

PbO is largely found in two polymorhps: a tetragonal P4/nmm phase (α–PbO or litharge) and an

orthorhombic phase Pbcm (β–PbO or massicot).

In α–PbO the Pb2+ ions are pyramidally coordinated by oxygen atoms (see Figure 1a) packed

in a special layered–arrangement that resembles a distorted CsCl structure. This distortion is prin-

cipally caused by free lone–pairs on the Pb2+ ions. The key element in the lone–pairs localizations

is the hybridization of the Pb(6s) and Pb(6p) orbitals with O(2p) states as demonstrated by Wat-

son et al..12,13 Below 200 K the tetragonal α–PbO undergoes a phase transition to orthorhombic

Cmma as observed by Boher et al.;14 where the new a’ and b’ lattice parameters are redefined as

a′ ≈ a+ b, b′ ≈ b− a, where a and b are α–PbO lattice constants. The distorted α–phase can

be regarded as intermediate PbO phase between α–and–β polymorphous. Very few studies are
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Figure 1: a) view along the [010] direction of α–PbO (P4/nmm), and b) along the [001] direction
β–PbO (Pbcm). The inter–layer distance is highlighted as l–l.
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available on β–PbO. This lead oxide polymorph is characterized by zig–zag chains of PbO units

repeated along the b axis of the cell (see Figure 1b). As for litharge, Pb2+ ions are found pyra-

midally–coordinated by oxygen atoms although, forming squares parallel to the bc plane. The

zig–zag chains are then stacked along the a axis forming a layered structure almost unique in na-

ture. While previous theoretical works established the structure of both PbO polymorphs15–17 and

the nature of the Pb lone–pairs,18 in this study we also address the role of dispersion interactions

on the energetic, structure and dynamic properties of both phases.

As depicted in Figure 1 in both lead oxide polymorphs rippled two-dimensional planes are

stacked in a peculiar layered arrangement. The layered nature of α and β–PbO suggest that dis-

persive interactions may play a key role in stabilizing these structures. Differently from classic

post Hartree–Fock methods such as MP2 and CCSD(T), most common DFT-GGA and hybrid

functionals are unable to deal with purely dispersive London forces originating from fluctuating

dipole-dipole interactions. Currently there are three main approaches to include dispersive forces

in DFT:19 i) the design of new functionals derived in a fully ab initio fashion as suggested by

Lundqvist and coworkers;20–23 ii) a highly parametrized functionals of the M0X family as propsed

by Thrular et al.;24,25 iii) an empirical correction to the standard DFT energy and gradient based

on the empirical London formula as repurposed by Grimme and later improved by Tkatchenko et

al.26–30 In this latter scheme, hereafter termed DFT–D2 (Grimme’s correction),26,27 an atom–atom

empirical potential (of the form f (R)C6/R6) accounts for the dispersion on the DFT energy as

follows:

EDFT+D2 = EDFT +ED (1)

where ED is the additive dispersion term.

2 Computational Details

Simulations presented here were performed with CRYSTAL09,31,32 using hybrid and plain func-

tionals. We used three GGA–functionals: PBE,33 PBEsol,34 BLYP35,36 and two hybrid–GGA
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functionals: B3LYP35–37 (20% HF exchange) and PBE038 (25% HF). Oxygen atoms were de-

scribed with an all–electrons basis–set TPZ by Ahlrichs and co-workers (see Ref. 39). Pb core–

electrons were described by an effective small core potential40 along with a VDZ basis–set for

the valence shells.41 We used a Monkhorst–Pack42 grid of 8x8x8 k–points ensuring that the total

energy is well converged. The self–consistent–field (SCF) procedure is converged within 10−8

Hartree. The Coulomb and exchange series were truncated using stringent overlap criteria, i.e.

10−9, 10−9, 10−9, 10−9 and 10−12. Second–order elastic constants, Ci, j, were evaluated using

the analytic total energy gradient and numerical second derivative with respect to the applied

strain around the optimized equilibrium structure.43 According to the symmetry of the second–

order elastic strain tensor, the appropriate number of strains were applied; hence the internal co-

ordinates were relaxed for each strain displacement. Bulk moduli were determined via the elas-

tic constants (for tetragonal Voight averages: 1
9(2C11 + 2C12 + 4C13 +C33), and orthorhombic:

1
9((C11+C22+C33)+2(C12+C13+C23)). For these calculations we reduced the SCF tolerance to

10−9 Hartree, whereas those on the gradient and the rms displacement were 6x10−5 and 1.2x10−4

Hartree bohr−1, respectively.43 The dynamical matrix, at Γ point, was computed by finite dif-

ferences: the atomic displacement was set to 3x10−3 Å, reducing the SCF tolerance to 10−11

Hartree.44

Aware of the spurious basis set superposition error (BSSE) introduced by the LCAO treatment

employed by CRYSTAL09, we performed some PBE–D2 and –DC2 calculations with a pseudopo-

tential plane–wave (PP–PW) code PWscf (a Quantum ESPRESSO package),45 which is BSSE

free. We used ultra–soft pseudopotentials for Pb (fully relativistic and with spin-orbit coupling

correction) and O, whereas remaining valence electrons were described with a plane–wave basis

set with a cutoff of 950 eV, while the total energy was sampled over a 8x8x8 k–point grid. Where

not explicitly stated result were produced using CRYSTAL09.
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3 Dispersive forces

The empirical dispersion contribution ED, of Eq. (1), is defined as:

ED =−s6 ∑
g

∑
i j

Ci j
6

R6
i j,g

fdmp(Ri j,g) (2)

where the summations extend over all atomic pairs i, j and g lattice vectors. Ci j
6 is the dispersion

coefficient, and s6 = 0.75 (see Ref. 27) is a functional dependent scaling factor. Ri j,g is the inter–

atomic distance between atoms i in the reference cell and j in the neighboring cells at distance |g|.

All pairs farther than 25 Å were disregarded in the summations due to their negligible contribu-

tion. Double counting for small inter–atomic distances are avoided using the following damping

function fdmp(Ri j,g) = 1/(1+ e−d(Ri j,g/RvdW−1)) where RvdW are the atomic van der Walls’ radii, d

is the damping function steepness (d = 20).26 In Grimme’s work RvdW were set as the atomic van

der Waals radii, which are 1.767 and 1.342 Å for Pb and O respectively. The definition of the Ci j
6

coefficients of Eq. (3a)26,27 follows the well–known geometrical mean:

Ci j
6 =

√
Ci

6C j
6; (3a)

Ci
6 = 0.05NIi

pα
i. (3b)

In Eq. (3b), N, is the number of the shell electrons, and has values of 2, 10, 18, 36, 54 and 72

for atoms from rows 1–6 of the periodic table. The original Grimme’s Ci
6 parameters were derived

from the atomic polarizabilites, α i, and ionization energies, Ii
p,26,27 leading to 63.16 for Pb and 0.7

for O Jnm6mol−1, respectively. The Ci
6 for heavy elements (e.g. Sn, Pb) were simply extrapolated

from those of lighter elements of the same group,26,27 resulting in rather approximated values.

Furthermore, the electronic nature (covalence or ionicity) of atomic species vary depending on the

local chemical environment, imposing some limitations in the use of the atomic–like parameters. In

order to give a better estimation of the Ci
6 values one should find a way to account for the different
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chemical environments of a given atomic species. Different methods to re–parametrize the Ci
6 for

ionic systems have been proposed,46,47 but, the Ci
6 values were derived ad hoc for each system,

reducing their transferability. In this study we derive the Ci
6 parameters for each ionic species in a

ab initio fashion following as close as possible the protocol suggested by Grimme by enforcing the

role of the specific environment for each atomic species (details in the supplementary material). On

elementary considerations, the net charges of the Pb and O ions should be +2 and -2, respectively.

Mulliken analysis, albeit quite dependent on the adopted basis set, gives a much reduced values of

+1 and -1, respectively. Nevertheless, Löwdin charges calculated using a PP-PW approach agree

with the Mulliken’s picture. Using a pragmatic approach we compute the ionization potential and

polarizability for the bare Pb+ and Pb2+ ions using a Stuttgart ECP with a QVZ basis set. The

same methodology cannot be adopted for computing these quantities for O− and O2−, since both

species are unstable with respect to the free atom. In the latter case we have adopted a method

proposed for MgO by Tosoni and Sauer48 to set up a proper environment for oxygen in order to

get both O− and O2− as stable species. As described in the supplementary information we average

the values of the polarizabilities over the two Pb+/Pb2+ and O−/O2− states to account for the

semi-ionic nature of the PbO oxides. Since the ionization potentials are intrinsically discontinuous

variables we choose to adopt the values for the Pb2+ and O2− to be used in the definition of the

dispersion coefficient Ci
6. Within this assumption the final Ci

6, with Eq. (3b), for Pb and O, become

36.93 and 0.54 Jnm mol−1, respectively (see supplementary Information). The new Ci
6 are smaller

than the atomic-like ones reported by Grimme. The geometrical mean of the single Ci
6 parameters

(see Eq. (3a)) results in a mean C6 (PbO) equal to 4.48 Jnm mol−1, which is found smaller than

that proposed by Grimme, i.e. 6.64 Jnm mol−1, avoiding the occurrence of spurious over-binding

effects. In summary two flavors of DFT-D2 were employed: i) using the Grimme’s parameters

(PBE–D2) and ii) using the recalculated Ci
6 (PBE–DC2) according to the scheme presented here.

Results are shown in Table 1.
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4 Results and discussion

Results are outlined through three thematic sections: in Section 4.1 we address the description of

the geometrical properties of the PbO phases, while discussing the effect of dispersion on these

materials. This section terminates with an insightful investigation of the lone–pairs nature using

the electric filed gradient. Section 4.2 discuss the elastic properties, while Section 4.3 vibrational

frequencies.

4.1 Geometry

Both α and β–PbO polymorphs crystallize in a layered arrangement.12,13,16–18,49 The PbO layered

stacking and the interlayer distances (l–l, see Figure 1), are controlled by lone–pairs on the Pb–

sites. The resulting deformed electron cloud (of Pb2+) produces an electric dipole that along with

dispersion forces collectively drive the layers to stack. Structures, of Table 1, were obtained after

full structural relaxation (at 0 K) from experimental X–ray data of the PbO phases.50,51

Table 1 shows how the LCAO method reproduces with good accuracy both the experimen-

tal50,51 and previous LDA–DFT data.12,13,16–18,49 With PBE we found the α phase more stable

than β one consistently with experimental evidences (∆E = 3.22 kJ mol−1 per formula unit−1). On

the other hand the distorted α phase, observed at low temperature, is negligibly more stable (at the

PBE level) than the α one for about 0.040 kJ mol−1 per formula unit.

Among the GGA functionals PBE is by far more accurate than BLYP; the latter largely overes-

timates the l–l distance together with the lattice parameters a and c. Eventually B3LYP and PBE0,

further increase the magnitude of the lattice parameters (see Table 1). α–PbO turns into β–PbO at

4.15 GPa with PBE (2.80 GPa with LDA), while experimental data ranges from 3 up to 3.6 GPa.52

From this preliminary evaluation PBE appears to be the best choice and therefore it will be used to

discuss the dispersion effects throughout the paper. Non–surprisingly functionals based on Becke

exchange (BLYP and B3LYP) show an over–repulsive behavior compared to Perdew’s functionals

(PBE, PBE0) in agreement to Ref. 53.
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Table 1: lattice parameters a, b and c (in Å), c/a ratio, Volume (in Å3) and interlayer l–l
distance (see Fig Figure 1, in Å) of α , β–PbO. Data in bracket are BSSE corrected.

α–PbO P4/nmm a c V c/a l–l
Exp.a 3.975 5.023 39.7 1.263 2.6
PBEb 4.097 5.096 (5.600) 41.9 1.221(1.367) 3.0
PBE–PWc 3.985 5.579 45.8 1.400 3.2
PBE–D2b 4.049 4.584 (4.766) 37.6 1.132 (1.180) 2.4
PBE–D2–PWc 3.985 4.762 37.8 1.195 2.4
PBE–DC2b 4.066 4.648 (4.848) 38.4 1.143 (1.192) 2.5
PBE–DC2–PWc 3.980 4.835 38.9 1.215 2.5
PBEsolb 4.035 4.690 38.2 1.162 2.3
PBE0b 4.021 4.996 40.4 1.242 2.6
BLYPb 4.144 5.746 49.3 1.386 3.3
B3LYPb 4.073 5.691 47.2 1.397 3.3
LDA–PZd 3.956 4.874 38.1 1.232 –
LDA–PZe 3.953 4.988 – – –
LDA–PZf 3.910 4.930 – – –
β–PbO Pbcm a b c V l–l
Exp.g 5.893 5.490 4.753 153.8 3.2
PBEb 6.213 5.587 4.823 167.4 3.5
PBE–PWc 6.293 5.805 4.800 147.9 3.6
PBE–D2b 5.499 5.324 4.732 145.3 2.8
PBE–D2–PWc 5.541 5.388 4.846 144.7 2.8
PBE–DC2b 5.688 5.413 4.836 148.9 2.9
PBE–DC2–PWc 5.636 5.445 4.836 148.4 2.9
PBEsolb 5.962 5.302 4.762 150.5 3.2
PBE0b 6.174 5.586 4.704 162.2 3.4
BLYPb 6.554 5.868 4.879 187.7 3.8
B3LYPb 6.471 5.798 4.791 179.8 3.7
LDA–PZf 5.770 5.380 4.680 – –

aRef.50 X–Ray; bThis work, LCAO; cThis work, PP–PW; dRef.12,13 PP–PW; eRef.18 PP–PW;
f Ref.16 augmented spherical–waves; gRef.51 X–Ray.

4.1.1 The effect of the dispersion

While dispersion is accounted for both phases, the detailed discussion only concerns α-PbO. In-

sights on the layered structure of PbO is given by ∆Ely, which determines the extent of the interac-

tion between two PbO sub–layers:

∆Ely = Ec−E∞ (4)
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where Ec is the energy of two PbO layers, with atoms in the same geometrical relationships as

in the bulk structure, at a given inter–layer distance (see l–l in Figure 1) and E∞ is the energy of two

PbO layers well separated and non–interacting. ∆Ely is the energy cost of extracting a PbO sheet

from the bulk (see Figure 1). Practically, this is done by running several SCF points at increasing

lattice parameters (i.e. c for α-PbO), eventually affecting the l–l distance between 2 PbO layers.

The real effect of the dispersion contribution, introduced by DFT–D2 or DFT–DC2, should only

affect the ∆Ely magnitude. Figure 2 shows the behavior of ∆Ely at increasing lattice parameters c

in α–PbO.

Figure 2: ∆Ely, and ∆EC
ly vs. c for α–PbO using the PBE, PBE–D2 and PBE–DC2. ∆Ely in kJ

mol−1 and c in Å. The current graph is shortened at 7 Å, but SCF calculations were run up to 40 Å
(c) where ∆Ely is null.

10



In Figure 2, ∆Ely changes dramatically when the D correction is introduced (see both PBE–

D2 and PBE–DC2 cases). The PBE curve presents a very shallow minimum of -10.6 kJ mol−1.

The correction introduced on Ely by PBE–D2, -58.0 kJ mol−1, is of 47.4 kJ mol−1 with respect to

plain PBE. The PBE–DC2 data lies between the PBE and the PBE–D2 curves (-38.4 kJ mol−1, see

Figure 2). The empirical dispersion term, ED of Eq. (1) and Eq. (2), to the total energy promotes

the inter-layer interaction forcing a decrease in the interlayer spacing. In α-PbO the reduction of

the c lattice constant is the clear evidence of an increase in the layer-layer interaction. The final

magnitude relies totally on the size of the Ci
6 parameters that enters Eq. (2). The large binding

contribution of PBE–D2 and the PBE–DC2, is affected by the BSSE. The BSSE has a two–fold

effect: i) it reduces the relative ∆Ely (i.e. shifting the binding–curve to more negative ∆Ely values

over–binding PbO layers), ii) artificially reduces the magnitude of c. The BSSE was calculated

using the counterpoise correction, and was practically done by introducing ghost functions on the

two PbO layers while they were progressively separated. Knowing the magnitude of the BSSE

one can re-calculate the corrected dispersion curve, whose minimum results shifted from the non-

corrected one. The PBE BSSE corrected c value is 5.600 Å, which is largely overestimated with

respect to the experimental value (see Table 1, data in parentheses). Calculations with the PBE

functional using PWscf (BSSE free) confirmed our findings with the LCAO method. Summarizing,

the PBE functional largely overestimates the lattice parameters involved in the stacking process.

All LCAO data of Table 1 when corrected for BSSE are shifted to larger values. PBE–D2 over–

binds the α–PbO structure (c = 4.584 Å, see Table 1), whereas when corrected for the BSSE, the

c value (4.766 Å) moves towards the experimental value (5.023 Å) but still underestimated. This

is confirmed by the PP–PW calculations. On the other hands the re–parametrization of Grimme’s

coefficients introduces a visible improvement in the geometry description of α–PbO. The c value

(after correcting for the BSSE) is found in good agreement with the experimental value (4.848 Å).

This also agrees with PP–PW calculations (c = 4.835 Å). With PBE–DC2 α–PbO is more stable

than the β phase by 3.6 kJ mol−1 per formula unit and also comparable with the PBE value 3.2

kJ mol−1 per formula unit. This shows that dispersion is very similar for the two PbO phases.
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Although we did not calculate the ∆Ely for the β polymorph a very similar behavior of Figure 2

is expected. In the next sections only data obtained with PBE and PBE–DC2 will be considered,

disregarding the PBE–D2.

Although the reproduction of band-gap is not appropriate with DFT, the introduction of the

dispersion reduces the band-gap simply through the decrease of the the c parameter, which for α-

PbO is 2.9 eV with PBE and it becomes 2.8 eV PBE-DC2 and 2.2 eV with PBE-D2. As observed

by Allen et al.47 the band-gap decrease is concomitant with the reduction of the c parameter. This

is the only effect noticeable by looking at the band structure and density of state plots (not reported

here).

4.1.2 Electric field gradient and quadrupole coupling constants

The electric field gradient tensor (EFG) is beneficial to understand how the PbO lone–pairs arrange

within the interlayer space (see distance l–l in Figure 1).54 EFG components: V11, V22 and V33

are ordered according to their magnitudes V11 ≤ V22 < V33. Relevant is the EFG asymmetry, η ,

calculated as η = |V22|−|V11|
|V33| , whereas the quadrupole coupling constant (QCC) is computed from

V33:

QCC =
e2qmQ

h
=

eQV33

h
(5)

with e the electron charge and Q the atomic quadrupole moment. EFG tensor components, η ,

and QCC values for 17O and 204Pb are shown in Table 2 and Figure 3.

V33 in α–PbO confirms that the lone–pair is oriented along the c axis as previously observed

with electron localization functions (ELF) plots.18 The lone–pair of Pb atoms in the β–phase is

found at an angle of 125.9, 38.2 and 101.5 degrees with respect to lattice constants a, b and c,

respectively. Differently from the α–phase in β–PbO the Pb lone–pairs are not entirely oriented in

one direction and similar evidences were discussed by Rault et al.18 Friedemann et al.55 affirmed

that the QQC for the β–polymorph (158.96 MHz) is larger than the corresponding QCC (96.82

MHz) value in the α–phase, which agrees with our results. Our ab initio data is also confirmed by
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Table 2: PBE EFG components, η and QCC for the following nuclei: 17O and 204Pb of α

and β–PbO. Z for nucleus. Vxx are expressed in 10−1 e a.u.−3 (1 e a.u.−3 = 9.717x1021 Vm−2),
QCC in MHz.

Z V11 V22 V33 QCC η

α–PbO P4/nmm
Pba -5.00 -5.00 10.00 104.17 0.00
Ob -1.88 -1.88 3.76 1.13 0.00

β–PbO Pbcm
Pba -3.16 -9.32 12.50 130.21 0.16
Ob -0.49 1.14 2.14 1.64 0.06
aRef.55 experimental Q(204Pb) = 4.42x10−29 m2; bRef.56 experimental Q(17O) = -2.56x10−30 m2.

a

c

b b

a

c
12.50

-9.32
10.00

-5.00

Figure 3: EFG principal components (arrows) superimposed on the two PbO structures, a) α , b)
β , respectively. V11, V22 and V33 refers to data in Table 2 and are in 10−1 e a.u.−3. Orange circles
represent the lone–pairs within the interlayer zone.

LAPW simulations (β–QQC 151.55 α–QCC 93.55 MHz, respectively).55 Le Bellac et al.57 also

observed that the phase transition α −→ β is accompanied by an evident change in orientation of

the lone–pair. PBE–DC2 EFG components are equal to those calculated with plain PBE showing

that dispersion interactions are too weak to alter the component of the electron density at nuclei.

4.2 Elastic properties

Table 3 shows the elastic constants and bulk moduli of α and β–PbO calculated with the PBE and

PBE–DC2 functionals.
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Table 3: PBE, PBE–DC2 elastic constants Ci j and bulk moduli B (calculated via elastic con-
stants), in GPa, for α and β -Pb. DC2 refers to PBE–DC2.

C11 C22 C33 C44 C55 C66 C12 C13 C23 B
α–PbO P4/nmm

PBEa 64.7 64.7 16.3 10.9 10.9 54.4 64.6 14.7 14.7 36.9
PBE–DC2a 53.2 53.2 30.2 18.7 18.7 44.2 51.3 20.0 20.0 35.5
LDAb – – – – – – – – – 24.0
Exp.c – – – – – – – – – 23.1

β–PbO Pbcm
PBEa 42.1 45.5 96.6 39.8 7.8 1.8 6.9 11.9 27.0 30.6
PBE–DC2a 48.4 47.3 102.2 30.6 22.5 2.9 7.2 12.8 25.4 32.1
LDAd – – – – – – – – – 31.1

aThis work, LCAO; bRef.12,13 PP–PW; cRef.52 Exp.; dRef.17 PP–PW.

Bulk moduli of Table 3 are very similar to previous LDA simulations and experimental value

in the case of α-PbO,12,13,17,52 confirming the soft nature of these materials. Previous LDA simu-

lations12,13 behave slightly better than our PBE results. Bulk moduli for the β–phase are in closer

agreement with the experimental data. Although the calculated elastic constants are consistent

with the geometries of the PbO–phases, the experimental values are currently not available. For

α–PbO C11, C22 (64.7 GPa) are larger than C33 (16.3 GPa) suggesting that the distortion along the

[001] direction is easier (see Table 3), which agrees with the layered–structure. The inverse trend

is obtained for α–PbO shear stresses. The effect exerted by the lone–pair on β–PbO is smaller

than in the α–phase; in fact C11 (42.1 GPa) acting orthogonally to the [100] direction (i.e. the a

direction) is similar to C22 (45.5 GPa), which acts along the zig–zag chains. The strain along the

C33 (96.6 GPa) remains the hardest one according to the structural arrangement. Mixed strains

(C12, C13, and C23) and pure shear stresses (C44, C55 and C66) are consistent with the geometry

definition of both lead oxide–phases. We observed that PbO macroscopic densities increase when

the α phase is irreversibly transformed into its β one. Bulk moduli and elastic constants calculated

with PBE–DC2 are similar to PBE. PBE–DC2 improves the bulk modulus of α PbO toward the

experimental value.
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4.3 Phonon frequencies at the Γ point

Γ point phonon frequencies were computed by using PBE and PBE–DC2. The relevant infrared

(IR), Raman frequency window for both monoxides, is relatively narrow: 100–500 cm−1.58 This

is likely to cause overlapping between near bands as confirmed by Adams et al..58 α–PbO, with

space group P4/nmm (D7
4h) gives rise to 9 vibrational modes (see Eq. (6)). The PbO–β phase

Pbcm (D11
2h) shows 21 vibrational modes (see Eq. (6)).

Γ
α = A1g +A2g +B1g +B2g +2Eg +

+ A1u +A2u +B2u +2Eu (6a)

Γ
β = 3B2u +4B1g +4Ag +2B2g

+ 3B3u +2Au +B1u +2B3g (6b)

Vibrational frequencies calculated within the LCAO approximation are intrinsically affected

by the BSSE error. To understand the magnitude of the BSSE on the final result we have compared

the IR/Raman frequencies computed with Gaussian basis–set calculations with those obtained with

a PP–PW approach (i.e. PWscf ). Results reported in the supplementary material show a good

agreement between the two dataset implying that BSSE does not dramatically affect the vibrational

frequencies.

4.3.1 α–PbO

Of the nine modes of α–PbO two are IR active (A2u and Eu); while Raman spectrum consists of

four modes (A1g, B1g and 2Eg). E modes degenerate showing same atomic displacements, but

orthogonal one another. Table 4 compares the calculated IR and Raman frequencies with the

experimental data and their graphical representation is shown in Figure 4.

Raman modes A1g and B1g involve only the motion of lead and oxygen atoms parallel to the

c axis, while the A2u mode is an anti–phase motion of Pb and O atoms. Eu and 2Eg show atomic
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Table 4: IR, Raman (R) frequencies, in cm−1, of α–PbO. Simulated intensities are only avail-
able for IR modes (in km mol−1). A. for activity, Irep. for irreducible representation, Int. for
intensity, E for experimental. Experimental IR and Raman frequencies were measured by
Adams et al.,58 while theoretical data is only available for IR.49 Whenever the experimental
data is available ∆ν is calculated from this value.

Irep. A. ν ∆ν IR Int.
– – PBE PBE–DC2 LDAa E IRb E Rb PBE PBE–DC2 PBE PBE–DC2

Eg R 405 413 – – 321 84 92 – –
A2u IR 387 366 399 470 – -83 -104 655 810
B1g R 332 340 – – 338 -6 2 – –
Eu IR 230 264 275 243 – -13 21 2269 2789
A1g R 149 154 – – 146 3 8 – –
Eg R 79 101 – – 81 2 22 – –

aRef.49 PP–PW; bRef.58 single crystal specimen at 295 K.

displacements in the ab planes. Possible overlapping between IR and Raman bands is well docu-

mented in the previous literature.58,59 For example in the α-PbO IR spectrum, mode A2u falls over

the Eu one forming a broad band around 29059 and 278 cm−1.58 Reflectance IR spectroscopy58

successfully resolved the single bands in two distinct peaks:1 i.e. 470 cm−1 (A2u) and 243 cm−1

(Eu, see Table 4). A rather large discrepancy is seen for the PBE A2u mode (-83 cm−1), which

gets even worse with PBE–DC2 (-104 cm−1). For the Eu mode a much better agreement is seen

with some influence of dispersion. In general, the inclusion of disperive interactions via PBE-DC2

does not introduces substantial changes to the IR and Raman modes. As noticed by Ugliengo et.

al.,60 there is no direct dispersion correction to the vibrational frequencies as they only change

due to a different optimum geometry. Theoretical LDA IR frequencies (see Table 4),49 agree with

our PBE and PBE–DC2 data. Degeneracy occurring for Eu modes make them more intense than

the A2u peak as demonstrated by PBE and PBE–DC2 IR intensities. PBE and PBE–DC2 Raman

frequencies are in much better agreement with experimental data than the IR ones. This excludes

the Eg mode, which suffers a large ipso–chromic shift inverting the experimental order B1g > Eg.

However, the experimental intensity of this mode is very weak.58

1Here, only transversal modes are discussed.
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149 (154) 332 (340) 405 (413)

Figure 4: active IR (on the top part) and Raman (on the bottom part) modes for α-PbO in cm−1.
Only one degeneracy is shown for vibrational modes classified as E. PBE–DC2 values in brackets

4.3.2 β–PbO

For β–PbO IR active modes are all those ungerade (anti–phase deformation) such as 3B2u, 3B3u

and B1u, whereas the Raman activities are all gerade (in phase deformation) 4B1g, 2B2g, 2B3g and

4Ag. 2Au modes are neither IR nor Raman active, hence they will be not discussed. In Figure 5 are

only shown the graphical atomic displacements of certain modes, which fall at “high–frequencies”

(500–200 cm−1, exception is B1u) i.e. B2u, B3u for IR, B1g, Ag, B2g and Au for Raman modes.

An electric vector along b stimulates the B2u modes, whereas a vector along c the B1u; both
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Figure 5: Selection of active IR (on the top part) and Raman (on the bottom part) modes for β–PbO
in cm−1. Dash line separates modes with different cell–orientation. PBE–DC2 values in brackets.

vectors laid normal to the planes formed by the sandwiched arrangement of β–PbO (see Figure 5

and Figure 1b). Table 5 compares the present results with previous experimental works the IR

(along with is simulated intensities), Raman frequencies.

Adams et al.,58 assigned the main bands to their respective vibrational modes. Simulated fre-
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Table 5: IR, Raman (R) frequencies, in cm−1, of α–PbO. Simulated intensities are only avail-
able for IR modes and expressed in km mol−1. A. stands for activity, i for inactive, Irep. for
irreducible representation, Int. for intensity, E is for experimental. Experimental IR and
Raman frequencies values were measured by Adams et al..,58 while theoretical values are
only available for IR.49 Whenever the experimental data is available ∆ν is calculated from
this value.

Irep. A ν ∆ν IR Int.
– – PBE PBE–DC2 LDAa E IRb E Rb PBE PBE–DC2 PBE PBE–DC2

B2u IR 401 389 418 356 – 45 33 1391 1913
B1g R 389 377 – – 385 4 8 – –
Ag R 360 367 – – 349 11 18 – –
B2g R 355 336 – – – – – – –
B2u IR 350 337 281/360 290 – 60 45 65 168
B3u IR 319 336 281/360 424/500 – -181 -165 816 795
B1g R 310 313 – 250 – 60 63 – –
Au i 293 272 – – – – – – –
Ag R 279 270 – 289 – -10 -19 – –
B3u IR 266 270 281/360 424 – -158 -154 1219 1538
B3g R 222 235 – 171 – 51 64 – –
B2u IR 122 136 – 146 – -24 -10 0 0
Ag R 90 100 – 87 – 3 13 – –
B2g R 86 111 – 72 – 14 39 – –
B1g R 68 74 – 52 – 16 22 – –
B1u IR 67 64 78 – – -11 -14 2947 3321
Au i 65 83 – – – – – – –
B3u IR 59 64 – – – – – 14 21
B3g R 56 76 – – – – – – –

aRef.49 PP–PW; bRef.58 single crystal specimen at 295 K.
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quencies below 68 cm−1 are reported in Table 5, however they were not revealed experimentally.

PBE and PBE–DC2 IR frequencies are similar to both experimental58 and previous theoretical

ones.49 This is particularly true for the B2u mode that suffers a small ipso–chromic shift from the

experimental value. Waghmare et al. found the same trend using a PP–PW approach.49 Puzzling

is the comparison of the B3u modes, which seems underestimated by PBE by 181 cm−1. This

mode involves the motion of both Pb and O right across the layered structure (see Figure 5). The

PBE–DC2 slightly improve this mode. The correct assignment of the B3u modes is also not very

clear from the experimental point of view, since other modes such Ag and B3g would overlap and

mix with this modes. Adams et al. claimed that these bands could be assigned to overtones.58

Waghmare and co–workers addressed this issue reporting a possible spectral window 281–360

cm−1,49 underestimating the experimental values. Raman frequencies agree very well with those

assigned experimentally. The B1g mode suffers of a small up–shift. The other modes fell below

this threshold, concluding that our simulation describe the Raman spectrum with good accuracy.

5 Conclusion

We demonstrated the use of LCAO approach within the DFT framework to address different prop-

erties of lead monoxide polymorphs. We tested several GGA and hybrid functionals, in order, to

predict as good as possible the PbO geometrical properties. Among the adopted functionals PBE is

the best option as Becke’s exchange based functionals (BLYP and B3LYP) largely overestimated

the cell parameters. The correct geometry is, however, only reproduced when the dispersion inter-

action is included. In that respect, a new strategy to re–parametrize Grimme’s coefficients for Pb

and O in PbO is presented, which can be extended also to other semi-ionic solids. This is based on

the use of ab initio polarizabilities and ionization potentials, which account for the crystalline envi-

ronments experienced by the ions. The introduction of dispersive interactions was found essential

to reproduce the experimental cell parameters for both PbO polymorphs and shown to be the ma-

jor component of the inter-layer interaction. In accordance with previous computational works our
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data justify different anisotropy of the Pb lone–pair within the two lead monoxide polymorphs, and

this is further confirmed by the quadrupolar coupling constants. Elastic constants clearly show how

the α–phase is affected by a larger anisotropy than β one, which eventually reflects the lone–pair

orientation within the two PbO–phases. The PBE PbO phonons, at the Γ–point, for both phases are

only in moderate agreement with the experiment and inclusion of dispersion at PBE–DC2 slightly

worsen the agreement for the alpha-phase while it remains almost the same for the beta one. As

anharmonicity should not play a key role for these systems we suspect that the Grimme’s approach

to account for dispersion does not improve frequencies as it has has only an indirect effect through

the change in the equilibrium geometry. Further study is needed to clarify this matter.
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