ON GENERALIZED KUMMER OF RANK 3 VECTOR BUNDLES OVER A GENUS 2 CURVE

A. BERNARDI - DAMIANO FULGHESU (completare il nome e indirizzo)

1. Introduction.

Let X be a smooth projective complex curve and let $U_X(r, d)$ be the moduli space of semi-stable vector bundles of rank r and degree d on X (see [8]). It contains an open Zariski subset $U_X(r, d)^\ast$ which is the coarse moduli space of stable bundles, i.e. vector bundles satisfying inequality

$$\frac{d_F}{r_F} < \frac{d_E}{r_E}.$$

The complement $U_X(r, d) \setminus U_X(r, d)^\ast$ parametrizes certain equivalence classes of strictly semi-stable vector bundles which satisfy the equality

$$\frac{d_F}{r_F} = \frac{d_E}{r_E}.$$

Each equivalence class contains a unique representative isomorphic to the direct sum of stable bundles. Furthermore one considers subvarieties $SU_X(r, L) \subset U_X(r, d)$ of vector bundle of rank r with determinant isomorphic to a fixed line bundle L of degree d. In this work we study the variety of strictly semi-stable bundles in $SU_X(3, \mathcal{O}_X)$, where X is a genus 2 curve. We call this variety the generalized Kummer variety of X and denote it by $\text{Kum}_3(X)$. Recall that
the classical Kummer variety of X is defined as the quotient of the Jacobian variety $\text{Jac}(X) = U_X(1,0)$ by the involution $L \mapsto L^{-1}$. It turns out that our $\text{Kum}_3(X)$ has a similar description as a quotient of $\text{Jac}(X) \times \text{Jac}(X)$ which justifies the name. We will see that the first definition allows one to define a natural embedding of $\text{Kum}_3(X)$ in a projective space (see section 4). The second approach is useful in order to give local description of $\text{Kum}_3(X)$ by following the theory developed in [1] (section 3).

We point out the use of [4] for local computations.

We want to tanks Professor Dolgachev for his patient guidance and his generous suggestions and also Professor Ragusa for a good organization of the Pragmatic.

2. Generalized Kummer variety.

Let A be an s-dimensional abelian variety, A' the r-Cartesian product of A, and $A^{(r)} := A'/\Sigma_r$ be the r-symmetric power of A. We can define the usual map $a_r : A^{(r)} \to A$ such that $a_r((x_1, \ldots, x_r)) = x_1 + \cdots + x_r$. This surjective map is just a morphism of varieties since there is no group structure on $A^{(r)}$. However, all fibers of a_r are naturally isomorphic.

Definition 2.1. The generalized Kummer variety associated to an abelian variety A is

$$\text{Kum}_r(A) := a_r^{-1}(0).$$

It is easy to see that

$$\dim(\text{Kum}_r(A)) = s(r - 1).$$

When $\dim A \geq 1$, $A^{(r)}$ is singular. If $\dim A = 2$, $A^{(r)}$ admits a natural desingularization isomorphic to the Hilbert scheme $A^{[r]} := \text{Hilb}(A)^{[r]}$ of 0-dimensional subschemes of A of length r (see [5]). Let $pr : A^{[r]} \to A^{(r)}$ be the usual projection. It is known that the restriction of pr over $\text{Kum}_r(A)$ is a resolution of singularities. Also $\text{Kum}_r(A)$ admits a structure a holomorphic symplectic manifold (see [1]).

2.1 The Kummer variety of Jacobians.

Let X be a smooth connected projective curve of genus g and $\text{SU}_X(r, L)$ be the set of semi-stable vector bundles on X of rank r and determinant which is

\[^1\] here \{x_1, \ldots, x_r\} mean an unordered set of r elements.
isomorphic to a fixed line bundle L. Let $\text{Jac}(X)$ be the Jacobian variety of X which parametrizes isomorphism classes of line bundles on X of degree 0, or, equivalently the divisor classes of degree 0. We have a natural embedding:

$$\text{Kum}_r(\text{Jac}(X)) \hookrightarrow \text{SU}_X(r, \mathcal{O}_X)$$

where $L_{a_i} := \mathcal{O}_X(a_i)$. Obviously, the condition $a_1 + \ldots + a_r = 0$ means that $\det(L_{a_1} \oplus \ldots \oplus L_{a_r}) = 0$ and $\text{deg}(L_{a_i}) = 0$ for all $i = 1, \ldots, r$. Consequently the Kummer variety $\text{Kum}_r(\text{Jac}(X))$ describes exactly the completely decomposable bundles in $\text{SU}_X(r, \mathcal{O}_X)$ (from now on we’ll write only $\text{SU}_X(r)$ instead of $\text{SU}_X(r, \mathcal{O}_X)$).

In this paper we restrict ourselves with the case $g = 2$ and rank $r = 3$. In this case $\text{Kum}_3(\text{Jac}(X))$ is a 4-fold.

3. Singular locus of $\text{Kum}_3(\text{Jac}(X))$.

From now we let A denote $\text{Jac}(X)$. Let us define the following map:

$$\pi : A^{(2)} \rightarrow \text{Kum}_3(A)$$

$$\{a, b\} \mapsto L_a \oplus L_b \oplus L_{-a-b}.$$

This map is well defined and it is a $(3 : 1)$-covering of $\text{Kum}_3(A)$. Let now $\rho : A^2 \rightarrow A^{(2)}$ be the $(2 : 1)$-map which sends $(x, y) \in A^2$ to $\{x, y\} \in A^{(2)}$. If we consider the map:

$$p := (\pi \circ \rho) : A^2 \rightarrow A^{(2)} \rightarrow \text{Kum}_3(A) \subset A^{(3)}$$

we get a $(6 : 1)$-covering of $\text{Kum}_3(A)$.

Notations: Let X and Y be two varieties and $f : X \rightarrow Y$ be a finite morphism. We let $\text{Sing}(X)$ denote the singular locus of X, $B_f \subseteq Y$ the branch locus of f and $R_f \subseteq X$ the ramification locus of f.

Observation: $B_\pi = \pi(B_\rho)$.

Proof. Since $B_\rho = \{(x, y) \in A^{(2)} | x = y\}$ and $\pi((x, x)) = \{x, x, -2x\} \in B_\pi$ we obviously get that $\pi(B_\rho) \subset B_\pi$.

Conversely, for any point $\{x, y, z\}$ of B_π, at least two of the three elements x, y, z are equal to some t. Therefore $\pi(\{t, t\}) = \{x, y, z\}$, and hence $B_\pi \subset \pi(B_\rho)$. \square
Since A^2 is smooth, we have $\text{Sing}(A^{(2)}) \subset B_\rho$. Obviously $B_\rho \subset R_\pi$, hence $\text{Sing}(\text{Kum}_3(A)) \subset B_\pi$. As a consequence we obtain that $\text{Sing}(\text{Kum}_3(A)) \subseteq B_\pi$. Therefore we have to study the $(3 : 1)$-covering $\pi : A^{(2)} \to \text{Kum}_3(A)$.

Since π is not a Galois covering, in order to give the local description at every point $Q \in \text{Kum}_3(A)$, we have to consider the following three cases separately:

1. $Q \in \text{Kum}_3(A)$ s.t. $\pi^{-1}(Q)$ is just a point;
2. $Q \in \text{Kum}_3(A)$ s.t. $\pi^{-1}(Q)$ is a set of two different points;
3. $Q \in \text{Kum}_3(A)$ s.t. $\pi^{-1}(Q)$ is a set of exactly three points.

Let us begin studying these cases.

Case 3. When $Q \in \text{Kum}_3(A)$ s.t. $\pi(\pi^{-1}(Q)) = 3$ we have that $Q \notin B_\pi$. Since $\pi(B_\rho) = B_\pi$ any point of $\pi^{-1}(Q)$ is smooth in $A^{(2)}$. Then Q is a smooth point of the Kummer variety.

Case 2. When $Q \in \text{Kum}_3(A)$ s.t. $\pi(\pi^{-1}(Q)) = 2$ we fix the two points $P_1, P_2 \in A^{(2)}$ s.t. $\pi(P_1) = \pi(P_2) = Q$. In this case $Q = \{x, x, -2x\}$ with $x \neq -2x$: let us fix $P_1 = \{x, x\}, P_2 = \{x, -2x\}$. Let $U \subset \text{Kum}_3(A)$ be a sufficiently small analytic neighborhood of Q such that $\pi^{-1}(U) = U_1 \cup U_2$ where U_1 and U_2 are respectively analytic neighborhoods of P_1 and P_2 and also $U_1 \cap U_2 = \emptyset$. Let \tilde{Q} a generic point of U, so $\tilde{Q} = \{x + \epsilon, x + \delta, -2x - \epsilon - \delta\}$; the preimage of \tilde{Q} by π is $\pi^{-1}(\tilde{Q}) = \{x + \epsilon, x + \delta\}, \{x + \epsilon, -2x - \epsilon - \delta\}, \{x + \delta, -2x - \epsilon - \delta\}$, but $\{x + \epsilon, x + \delta\} \in U_1$ and $\{x + \epsilon, -2x - \epsilon - \delta\}, \{x + \delta, -2x - \epsilon - \delta\} \in U_2$, it means that P_1 has ramification order equal to 1 and P_2 has ramification order equal to 2. Therefore there is an analytic neighborhood of P_1 which is isomorphic by π to an analytic neighborhood of Q. This allows us to study a generic point of B_ρ instead of a generic point of B_π.

Case 1. When $Q \in \text{Kum}_3(A)$ s.t. $\pi(\pi^{-1}(Q)) = 3$ we consider a point $P \in A^{(2)}$ s.t. $\pi^{-1}(Q) = P \Rightarrow Q = \{x, x, x\}$ s.t. $3x = 0 \Rightarrow x$ is a 3-torsion point of A. Now our abelian variety is a complex torus of dimension 2, so we have exactly $3^{2s} = 3^4 = 81$ such points.

Proposition 3.1. The singular locus of $\text{Kum}_3(A)$ is a surface which coincides with the branch locus B_π of the projection $\pi : A^{(2)} \to \text{Kum}_3(A)$ and it is locally isomorphic at a generic point to $(\mathbb{C}^2 \times Q, \mathbb{C} \times o)$ where Q is a cone over a rational normal curve and o is the vertex of such a cone (see [1]).
Moreover there are exactly 81 points of $\text{Sing}(\text{Kum}_3(X))$ whose local tangent cone is isomorphic to the spectrum of:

$$\mathbb{C}[[u_1, \ldots, u_7]] / I$$

where I is the ideal generated by the following polynomials:

- $u_3^5 - u_4u_6$
- $u_4u_7 - u_5u_6$
- $u_5^2 - u_5u_7$
- $u_3u_4 + u_2u_5 + u_1u_6$
- $u_3u_5 + u_2u_6 + u_1u_7$.

Proof. According to what we saw in Case 2, an analytic neighborhood of $Q \in \text{Kum}_3(A)$ such that $\#(\pi^{-1}(Q)) = 2$ is isomorphic to a generic element of B_ρ. We have to study the $(2:1)$-covering $A^2 \to A$. Since $A = \text{Jac}(X)$, A is a smooth abelian variety, this means that A is a complex torus $(\mathbb{C}^g / \mathbb{Z}^g)$ where g is the genus of X; in our case X is a genus 2 curve, $A \simeq (\mathbb{C}^2 / \mathbb{Z}^2)$. Thus, in local coordinates at $P \in A$, $\hat{\mathcal{O}}_P \simeq \mathbb{C}[[z_1, z_2]]$, so we consider U_P (a neighborhood of $P \in A$) isomorphic to \mathbb{C}^2. Therefore we obtain that locally at $Q \in A^2$, $\hat{\mathcal{O}}_Q \simeq \hat{\mathcal{O}}_P \otimes \hat{\mathcal{O}}_P \simeq \mathbb{C}[[z_1, z_2; z_3, z_4]]$.

We fix a coordinate system $(z_1, z_2; z_3, z_4)$ in A^2 such that $A^2 \supset U_P \ni P = (0, 0; 0, 0)$. Let Q be a point in U_P, in the fixed coordinate system $Q = (z_1, z_2; z_3, z_4)$. Since P is such that $\rho(P) \in B_\rho$, by definition of ρ, we have: $A^{(2)} = A^2 / <i>$, where i is the following involution of U_P:

$$i : U_P \to U_P$$

$$i : (z_1, z_2; z_3, z_4) \mapsto (z_3, z_4; z_1, z_2).$$

The involution i is obviously linear and its associated matrix is $M = e_{1,3} + e_{3,1} + e_{2,4} + e_{4,2}$ (where $e_{i,j}$ is the matrix with 1 in the i, j position and 0 otherwise).

Its eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 1$ have both multiplicity 2, so its diagonal form is:

$$\tilde{M} = (1, 1, -1, -1)$$

which in a new coordinate system:

$$\begin{cases}
 x_1 &= \frac{z_1 + z_2}{2} \\
 x_2 &= \frac{z_3 + z_4}{2} \\
 x_3 &= \frac{z_1 - z_3}{2} \\
 x_4 &= \frac{z_2 - z_4}{2}
\end{cases}$$
corresponds to the linear transformation:

\((x_1, x_2, x_3, x_4) \mapsto (x_1, x_2, -x_3, -x_4)\).

The algebra of invariant polynomials with respect to this actions is generated by the homogeneous forms \((x_1, x_2, x_3, x_4)\). Let us now consider these forms as local coordinates \((s_1, s_2, s_3, s_4, s_5)\) around \(\rho(P)\), here we have that the completion of the local ring is isomorphic to the following one:

\(\mathbb{C}[s_1, \ldots, s_5]/(s_1^2 - s_2 s_3)\).

Therefore \(B_\rho\) at a generic point is locally isomorphic to \((\mathbb{C}^2 \times Q, \mathbb{C} \times o)\) where \(Q\) is a cone over a rational normal curve (we can see this rational normal curve as the image of \(\mathbb{P}^1\) in \(\mathbb{P}^3\) by the Veronese map \(v_2 : (\mathbb{P}^1)^r \to (\mathbb{P}^3)^r\), \(v_2(L) = L^2\)) and \(o\) the vertex of this cone. (What we have just proved in our particular case of \(\text{Kum}_3(A)\) can be found in a more general form in [1].) Therefore we have the same local description of singularity of \(\text{Kum}_3(A)\) out of the correspondent points of the 81 three-torsion points of \(A\).

Now we have to study what happens at those 3-torsion. Let \(Q_0\) be one of them, we already know that \(p^{-1}(Q_0) = (x, x) := P_0\) is such that \(3x = 0\). Let us fix \((z_1, z_2; z_3, z_4) \in \mathbb{C}^2 \times \mathbb{C}^2\) a local coordinate system around \(P_0\) in order to describe locally the \((6 : 1)\)-covering \(p : A^2 \to \text{Kum}_3(A)\). We observe that for a generic \(P\) in that neighborhood, the pre-image of \(p(P)\) is the set of the following 6 points:

\[\begin{align*}
P_1 &:= (z_1, z_2; z_3, z_4), \\
P_2 &:= (z_3, z_4; z_1, z_2), \\
P_3 &:= (z_3, z_4; (z_1 - z_3), (z_2 - z_4)), \\
P_4 &:= ((z_1 - z_3), (z_2 - z_4); z_3, z_4), \\
P_5 &:= ((z_1 - z_3), (z_2 - z_4); z_1, z_2), \\
P_6 &:= (z_1, z_2; (z_1 - z_3), (z_2 - z_4)).
\end{align*}\]

Observe that \(i(P_1) = P_2, i(P_3) = P_4, i(P_5) = P_6\) where \(i\) is the involution defined in (2). We now define a trivolution \(\tau\) of \(\mathbb{C}^2 \times \mathbb{C}^2\) as follows:

\(\tau : \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}^2 \times \mathbb{C}^2\)

\([(z_1, z_2; z_3, z_4)] \mapsto [(z_3, z_4; (z_1 - z_3), (z_2 - z_4))].\)
It is easy to see that:
\[P_1 \xrightarrow{\tau} P_3 \xrightarrow{\tau} P_5 \xrightarrow{\tau} P_1, \]
\[P_2 \xrightarrow{\tau} P_6 \xrightarrow{\tau} P_4 \xrightarrow{\tau} P_2. \]

The matrices that represent \(i \) and \(\tau \) are respectively:
\[
i = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad \tau = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{pmatrix}
\]
furthermore \(\langle \tau, i \rangle \simeq \Sigma_3 \), then the local description of \(\text{Kum}_3(X) \) around \(Q_0 \) is isomorphic to \(\mathbb{A}^2 / \Sigma_3 \).

In what follows we have used [4] program in order to do computations.

First we recall Noether’s theorem ([3] pag. 331)

\[\text{Theorem 3.2.} \quad \text{Let} \ G \subset GL(n, \mathbb{C}) \ \text{be a given finite matrix group, we have:} \]
\[\mathbb{C}[z_1, \ldots, z_n]^G = \mathbb{C}[R_G(z^\beta) : |\beta| \leq |G|]. \]

\(\text{where } R_G \text{ is the Reynolds operator.} \)

In other words, the algebra of invariant polynomials with respect to the action of \(G \) is generated by the invariant polynomials whose degree is at most the order of the group. In our case the order of \(G \) is 6, so it is not hard to compute \(\mathbb{C}[z_1, z_2, z_3, z_4]^G \). Then, after reducing the generators, we obtain that \(\mathbb{C}[z_1, z_2, z_3, z_4]^G \) is generated by:

\[
f_1 := z_2^2 + z_2z_4 + z_4^2, \quad f_2 := 2z_1z_2 + z_2z_3 + z_1z_4 + 2z_3z_4, \]
\[
f_3 := z_1^2 + z_1z_3 + z_3^2, \quad f_4 := -3z_2^2z_4 - 3z_1z_4^2, \]
\[
f_5 := z_2z_3 + 2z_1z_2z_4 + 2z_2z_3z_4 + z_1z_3^2, \]
\[
f_6 := -2z_1z_2z_3 - z_2z_3^2 - z_1z_4 - 2z_1z_2z_4, \]
\[
f_7 := 3z_2^2z_3 + 3z_1z_4^2.
\]

Let us now write \(\mathbb{C}[z_1, \ldots, z_4]^G = \mathbb{C}[f_1, \ldots, f_7] \) as:

\[\mathbb{C}[u_1, \ldots, u_7]/I_G, \]

where \(I_G \) is the syzygy ideal. It is easy to obtain that \(I_G \) is generated by the following polynomials:

\[
u_1(u_2^2 - 4u_1u_3) + 3(u_1^2 - u_4u_6),
\]
\[
u_2(u_2^2 - 4u_1u_3) + 3(u_4u_7 - u_5u_6),
\]
\[
u_3(u_2^2 - 4u_1u_3) + 3(u_6^2 - u_5u_7),
\]
\[
u_4u_4 + u_2u_5 + u_1u_6,
\]
\[
u_5u_5 + u_2u_6 + u_1u_7.\]
and so we have the completion of the local ring at P:

$$\widehat{\mathcal{O}}_P \simeq \frac{\mathbb{C}[[u_1, \ldots, u_7]]}{I_G}.$$

Let now calculate the tangent cone in Q_0 in order to understand which kind of singularity occurs in Q_0. With [4] aid we find that this local cone is:

$$\text{Spec}\left(\frac{\mathbb{C}[[u_1, \ldots, u_7]]}{I}\right)$$

where I is the ideal generated by the following polynomials:

- $u_5^2 - u_4u_6$
- $u_4u_7 - u_5u_6$
- $u_6^2 - u_5u_7$
- $u_3u_4 + u_2u_5 + u_1u_6$
- $u_3u_5 + u_2u_6 + u_1u_7$.

The degree of the variety $V(I) \subset \mathbb{P}^6$ is 5, this means that Q_0 is a singular point of multiplicity 5.

What we want to do now is to describe the singular locus of the local description. Let us start to calculate the Jacobian of $V(I_G)$, what we find is the following 5×7 matrix:

$$J_G := \begin{pmatrix}
 u_5^2 - 8u_1u_3 & 2u_1u_2 & -4u_1^2 & -3u_6 & 6u_5 & -3u_4 & 0 \\
 -4u_2u_3 & 3u_2^2 - 4u_1u_3 & -4u_1u_2 & 3u_7 & -3u_6 & -3u_5 & 3u_4 \\
 -4u_2^2 & 2u_2u_3 & u_2^2 - 8u_1u_3 & 0 & -3u_7 & 6u_6 & -3u_5 \\
 u_6 & u_5 & u_4 & u_3 & u_2 & u_1 & 0 \\
 u_7 & u_6 & u_5 & 0 & u_3 & u_2 & u_1
\end{pmatrix}$$

Local equations define a fourfold, so we have to find the locus where the dimension of $\text{Ker}(J_G)$ is at least 5. In order to do it we calculate the minimal system of generators of all 3×3 minors of J_G, we intersect the corresponding variety with $V(I_G)$, we find a minimal base of generators of the ideal corresponding to this intersection and we compute its radical; the polynomials we find define, after suitable change of coordinates, the (reduced) variety of singular locus.
We verified that the only singular point of V_C following polynomials:

$$\text{What we want to find now is the tangent cone in } Q_0 \text{ surface (which is nothing but the graph of (4)) whose projective closure is the Veronese } \tilde{V}\text{ locus. Using [4] we find that its corresponding ideal } \mathcal{I}_C \text{ is generated by following polynomials:}$$

$$\begin{align*}
&u_2^3 - u_5u_7, u_5u_6 - u_4u_7, u_3^2 - u_4u_6, u_3u_5 - u_3u_7, u_2u_6 - u_1u_7, u_3u_4 - u_1u_6, u_2u_5 - u_1u_6, u_2u_4 - u_1u_5, u_2^2 - u_1u_5, u_3^2 - u_2^2, u_2^2 - u_6u_7, u_3^2 - u_5u_7, u_4u_3 - u_4u_7, u_2^3u_3 - u_4u_6, u_2^3u_2 - u_4u_5, u_3^2 - u_2^2).
\end{align*}$$

We verified that the only one singular point of $V(I_S)$ is the origin. Now, let us consider the map from \mathbb{C}^2 to \mathbb{C}^7 such that:

$$\begin{align*}
(t, s) &\mapsto (t^2, ts, s^2, t^3, t^2s, ts^2, s^3).
\end{align*}$$

This is the parametrization of $V(I_S)$; as we have already done we can find relations between these polynomials and verify that the ideal we get is equal to I_S. Now we can consider the following smooth parametrization from \mathbb{C}^2 to \mathbb{C}^9:

$$\begin{align*}
(t, s) &\mapsto (t, s, t^2, ts, s^2, t^3, t^2s, ts^2, s^3)
\end{align*}$$

(which is nothing but the graph of (4)) whose projective closure is the Veronese surface $\nu_3(\mathbb{P}^2) = V_{2,3}$ where $\nu_3 : (\mathbb{P}^2)^* \to (\mathbb{P}^3)^*$, $\nu_3(L) = L^3$.

What we want to find now is the tangent cone in Q_0 seen inside the singular locus. Using [4] we find that its corresponding ideal \mathcal{I}_C is generated by following polynomials:

$$\begin{align*}
&u_2^2 - u_5u_7, u_6u_7, u_5u_7, u_4u_7, u_4u_6,
&u_4u_5, u_2^2 - u_6u_7, u_5u_6, u_5^2,
&u_3u_6 - u_2u_7, u_3u_5 - u_1u_7, u_2u_6 - u_1u_7, u_3u_4 - u_1u_6, u_2u_5 - u_1u_6,
&u_2u_4 - u_1u_5, u_2^2 - u_1u_5.
\end{align*}$$

The ideal \tilde{I}_C has multiplicity 4 (the corresponding variety has degree four) and its radical is the following ideal:

$$I_C = (u_2^2 - u_3u_7, u_4, u_5, u_6, u_7).$$

Then $V(I_C)$ is a cone and $V(\tilde{I}_C)$ is a double cone.

This gives the description of the singularity at one of the 81 3-torsion points. □

4. Degree of $\text{Kum}_3(A)$.

To find the degree of $\text{Kum}_3(A)$, we have to recall some general facts about theta divisors.

4.1 The Riemann theta divisor.
Let X be a curve of genus g and $\Theta_{\text{Jac}}(X)$ is the Riemann theta divisor. It is known that it is an ample divisor and
\[
\dim |r\Theta_{\text{Jac}}(X)| = r^g - 1
\]
(see [6] Theorem p. 317). Recall that for any fixed point $q_0 \in X$ there exists an isomorphism:
\[
\psi_{g-1,0} : \text{Pic}^{g-1}(X) \rightarrow \text{Jac}(X) = \text{Pic}^0(X).
\]
The set W_{g-1} of effective line bundles of degree $g - 1$ is a divisor in $\text{Pic}^{g-1}(X)$ denoted by $\Theta_{\text{Pic}^{g-1}(X)}$. By Riemann’s Theorem there exists a divisor k of degree 0 such that:
\[
\psi_{g-1,0}(\Theta_{\text{Pic}^{g-1}(X)}) = \Theta_{\text{Jac}}(X) - k.
\]
In a similar way we can define the generalized theta divisor as follows:
\[
\Theta_{\text{SU}}^{\text{gen}}(X, L) = \{ E \in \text{Pic}^{g-1}(X) : h^0(E \otimes L) > 0 \}.
\]
It is known that
\[
\text{Pic}(\text{SU}_X(r, L)) = \mathbb{Z}\Theta_{\text{SU}_X(r, L)}^{\text{gen}},
\]
and there exists a canonical isomorphism:
\[
|r\Theta_{\text{Pic}^{g-1}(X)}| \simeq |\Theta_{\text{SU}_X(r)}^{\text{gen}}|^*.
\]
(see [2]).

4.2 Degree of $\text{Kum}_3(A)$

Let us consider the $(2 : 1)$–map
\[
\phi_3 : \text{SU}_3(X) \rightarrow |3\Theta_{\text{Pic}^1(X)}| \simeq |\Theta_{\text{SU}_X(3)}^{\text{gen}}|^*.
\]
\[
E \mapsto D_E = \{ L \in \text{Pic}^1(X) : h^0(E \otimes L) > 0 \}.
\]

Definition 4.1. $\Theta_\eta := \{ E \in \text{SU}_X(3) : h^0(E \otimes \eta) > 0 \} \subset \text{SU}_X(3)$ where η is a fixed divisor in $\text{Pic}^1(X)$.

Observation: \(\phi_3(\Theta_\eta) = H_\eta \subset |3\Theta_{\text{Pic}^1(X)}| \) and \(H_\eta \) is a hyperplane. Since \(\phi_3|_{\text{Kum}_3(A)} : \text{Kum}_3(A) \to \phi_3(\text{Kum}_3(A)) \) is a \((1 : 1)\)-map (it is a well known fact but we will see it in the next section), we have that \(\Theta_\eta \cap \text{Kum}_3(X) \cong H_\eta \cap \phi_3(\text{Kum}_3(X)) \). In order to study the degree of \(\text{Kum}_3(A) \) we have to take four generic divisors \(\eta_1, \ldots, \eta_4 \in \text{Pic}^1(X) \) and consider the respective \(\Theta_{\eta_1}, \ldots, \Theta_{\eta_4} \subset SU_X(3) \). The intersection \(\Theta_{\eta_i} \cap \text{Kum}_3(A) \) is equal to \((L_a \oplus L_b \oplus L_{-a-b}) \subset \text{Kum}_3(X) : h^0(L_a \oplus L_b \oplus L_{-a-b}) > 0) \) for all \(i = 1, \ldots, 4 \). If \(L_a \oplus L_b \oplus L_{-a-b} \) is a generic element of \(\text{Kum}_3(A) \) and \(p \) is the \((6 - 1)\)-covering of \(\text{Kum}_3(A) \) defined as in (1), then \(p^{-1}(L_a \oplus L_b \oplus L_{-a-b}) \subset A^2 \) is a set of 6 points. It’s easy to see that \(p((a, b)) \in \Theta_{\eta_i} \cap \text{Kum}_3(X) \) if and only if \(h^0(L_a \oplus \eta_i) > 0 \) or \(h^0(L_b \oplus \eta_i) > 0 \) or \(h^0(L_{-a-b} \oplus \eta_i) > 0 \) for all \(i = 1, \ldots, 4 \).

Let us recall Jacobi’s Theorem ([6] page: 235):

Jacobi’s Theorem: Let \(X \) be a curve of genus \(g \), \(q_0 \in X \) and \(\omega_1, \ldots, \omega_g \) a basis for \(H^0(X, \Omega^1) \). For any \(\lambda \in \text{Jac}(X) \) there exist \(g \) points \(p_1, \ldots, p_g \in X \) such that

\[
\mu(\sum_{i=1}^{g}(p_i - q_0)) = \lambda,
\]

where

\[
\mu : \text{Div}^0(X) \to \text{Jac}(X)
\]

\[
\sum_i(p_i - q_i) \mapsto \left(\sum_i \int_{q_i}^{p_i} \omega_1, \ldots, \sum_i \int_{q_i}^{p_i} \omega_g \right).
\]

Since \(\text{Jac}(X) \) is isomorphic to \(\text{Pic}^0(X) \), this theorem has the following two corollaries:

1. if \(q_0 \) is a fixed point of \(C \), then for all \(L_a \in \text{Pic}^0(X) \), there are two points \(p_1, p_2 \) in \(X \) such that \(L_a \cong \mathcal{O}_X(P_1 + P_2 - 2q_0) \);
2. Consider the isomorphism

\[
\psi_{1,0} : \text{Pic}^1(X) \cong \text{Pic}^0(X)
\]

\[
\eta \mapsto \eta \otimes \mathcal{O}_X(-q_0).
\]

For every \(i = 1, \ldots, 4 \) there are \(q_{i_1}, q_{i_2} \in C \) such that \(\eta_i \cong \mathcal{O}_X(q_{i_1} + q_{i_2} - q_0) \).
Now these two facts imply that \(h^0(L_a \otimes \eta_i) > 0 \) if and only if \(h^0(\mathcal{O}_X(P_1 + P_2 - 2q_0) \otimes \mathcal{O}_X(q_{i,1} + q_{i,2} - q_0)) > 0 \), and this happens if and only if \(h^0(\mathcal{O}_X(P_1 + P_2 + q_{i,1} + q_{i,2} - 3q_0)) > 0 \).

Notations: \(\Theta_{-k} \) is a translate of theta divisor by \(k \in \text{Pic}^0(X) \).

By Riemann’s Singularity Theorem (see [6], p. 348) the dimension \(h^0(\mathcal{O}_X(P_1 + P_2 + q_{i,1} + q_{i,2} - 3q_0)) \) is equal to the multiplicity of \(\psi_{1,0}(P_1 + P_2 + q_{i,1} + q_{i,2} - 3q_0) \) in \(\Theta_{-k} \) (by a suitable \(k \in \text{Pic}^0(X) \)), i.e. it is equal to the multiplicity of \((P_1 + P_2 + q_{i,1} + q_{i,2} - 4q_0) \) in \(\Theta_{-k} \). It follows from this fact that \(h^0(\mathcal{O}_X(P_1 + P_2 + q_{i,1} + q_{i,2} - 3q_0)) \) is greater than zero if and only if \((P_1 + P_2 + q_{i,1} + q_{i,2} - 4q_0) \in \Theta_{-k} \).

Notations:

\[
\Theta_i := \Theta_{-k-\eta_i+q_0}; \\
R_i := \{(a, b) \in A^2 : (a + b) \notin \Theta_i\}; \\
\Xi_i := (\Theta_i \times A) \cup (A \times \Theta_i) \cup R_i.
\]

Now \((P_1 + P_2 + q_{i,1} + q_{i,2} - 4q_0) \in \Theta_{-k} \) iff \(P_1 + P_2 - 2q_0 \in \Theta_i \), which is equivalent to say that \(L_a \) belongs to \(\Theta_i \), but this implies that \(p((a, b)) \in \Theta_{\eta_i} \cap \text{Kum}_3(A) \) if and only if \(L_a \in \Theta_i \) or \(L_b \in \Theta_i \) or \(L_{-a-b} \in \Theta_i \) (or equivalently \(L_{a+b} \) belongs to \(\Theta_i \)), i.e. \((a, b) \in \Xi_i \).

Therefore we can conclude:

\((a, b) \in A^2 \) is such that \(p((a, b)) \in \text{Kum}_3(A) \cap \Theta_{\eta_i} \), \(i = 1, \ldots, 4 \) if and only if \((a, b) \in \Xi_i \).

The last conclusion together with the observation that \(\sharp(pr^{-1}(L_a \oplus L_b \oplus L_{-a-b})) = 0 \) gives the following proposition:

Proposition 4.2. \(\deg(\text{Kum}_3(A)) = \frac{1}{6}(\sharp(\Xi_1 \cap \Xi_2 \cap \Xi_3 \cap \Xi_4)) \).

Proof. \(\sharp(\Xi_1 \cap \Xi_2 \cap \Xi_3 \cap \Xi_4) = 6 \cdot \sharp(\text{Kum}_3(A) \cap \Theta_{\eta_1} \cap \Theta_{\eta_2} \cap \Theta_{\eta_3} \cap \Theta_{\eta_4}) = 6 \cdot \deg(\text{Kum}_3(A)). \)

Notations:

\[
R_{i,1} = \{(a, b) \in A^2 : a \in \Theta_i \text{ and } (a + b) \in \Theta_j\}, \\
R_{i,2} = \{(a, b) \in A^2 : b \in \Theta_i \text{ and } (a + b) \in \Theta_j\}, \\
R_{i,1,2} = \{(a, b) \in A^2 : (a + b) \in \Theta_i \cap \Theta_j\}.
\]

Instead of computing directly \(\Xi_1 \cap \Xi_2 \cap \Xi_3 \cap \Xi_4 \), we will compute \((\Xi_1 \cap \Xi_2) \cap \Xi_3 \cap \Xi_4 \)
At the end we will obtain that

\[\#(\Xi_1 \cap \Xi_2 \cap \Xi_3 \cap \Xi_4) = 216 \] (see also tables 1. and 2.) and so:

Proposition 4.3. \(\deg(\text{Kum}_3(A)) = 36. \)

Proof. In the following two tables we write at place \((i, j)\) the cardinality of intersection of the subset of \(\Xi_1 \cap \Xi_2\) which we write at the place \((0, j)\), with the subset of \(\Xi_3 \cap \Xi_4\) which we write at the place \((i, 0)\).

<table>
<thead>
<tr>
<th>(\cap)</th>
<th>((\Theta_1 \cap \Theta_2) \times A)</th>
<th>(A \times (\Theta_1 \cap \Theta_2))</th>
<th>(\Theta_1 \times \Theta_2)</th>
<th>(\Theta_2 \times \Theta_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Theta_3 \cap \Theta_4) \times A)</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(A \times (\Theta_3 \cap \Theta_4))</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Theta_3 \times \Theta_4)</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(\Theta_4 \times \Theta_3)</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(R_{a,3}^4)</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(R_{a,4}^3)</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(R_{b,3}^4)</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(R_{b,4}^3)</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(R_{3,4})</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1.

In order to be more clear we show some cases:

\[R_{a,1}^2 \cap R_{a,3}^4 = \{(a, b) \in A^2 : a \in \Theta_1 \text{ and } b \in \Theta_3 \text{ and } (a + b) \in \{-\Theta_2\} \cap \{-\Theta_4\}\}. \] Recall that \(\Theta_1 \cdot \Theta_2 \cdot \Theta_3 \cdot \Theta_4 = 2. \) So \((a + b) \in \{k_1, k_2\}\) where \(\{k_1, k_2\} = \{-\Theta_2\} \cap \{-\Theta_4\}\). Fix for a moment \((a + b) = k_1\). If we translate \(\Theta_1\) and \(\Theta_3\) by \(-k_1\) we get that \(a \in (\Theta_1)_{-k_1}\) and \(b \in (\Theta_3)_{-k_1}\) and \(a + b = 0\), then \(b\) must be equal to \(-a\) and \(a \in ((\Theta_1)_{-k_1}) \cap ((\Theta_3)_{+k_1})\). Then for
fixed $a + b$ the couple (a, b) has to belong to $\{(h_1, -h_1), (h_2, -h_2)\}$ where $((\Theta_1)_{+k_4}) \cap ((-\Theta_3)_{-k_4}) = \{h_1, h_2\}$. Therefore $\sharp(R_{2,4}^{a,1} \cap R_{4}^{b,3}) = 2 \cdot 2 = 4$.

$(\Theta_1 \times \Theta_2) \cap R_{3,4}$: $(\Theta_1 \times \Theta_2) \cap R_{3,4} = \{(a, b) \in A^2 : a \in \Theta_1, b \in \Theta_2$ and $(a + b) \in \{-\Theta_3\} \cap \{-\Theta_4\}\}$. Then, as in the previous case, we have $\sharp((\Theta_1 \times \Theta_2) \cap R_{3,4}) = 4$.

$R_{2,4}^{a,1} \cap ((\Theta_3 \cap \Theta_4) \times A)$: $R_{2,4}^{a,1} \cap ((\Theta_3 \cap \Theta_4) \times A) = \{(a, b) \in A^2 : a \in \Theta_1 \cap \Theta_3 \cap \Theta_4, (a + b) \in \{-\Theta_2\}\}$, but since Θ_j are generic curves on a surface, their intersection two by two is the empty set, then $\sharp(R_{2,4}^{a,1} \cap ((\Theta_3 \cap \Theta_4) \times A) = 0$. \hfill \Box

4.3 The degree of Sing(Kum$_3$(A))

As we have already seen, the singular locus of Kum$_3$(A) is a surface. What we want to do now is to compute its degree. We use the notation from the previous section.

Let us fix two divisors Ξ_1 and Ξ_2 in A^2. We denote by Δ the diagonal of $A \times A$.

Proposition 4.4. $\text{deg}(\text{Sing}(\text{Kum}_3(A))) = \sharp(\Xi_1 \cap \Xi_2 \cap \Delta)$.

Proof. It is sufficient to consider the restriction to Δ of the map p defined as in (1) and get out the $(1 : 1)$-map $p|_\Delta : \Delta \to \text{Sing}(\text{Kum}_3(A))$. \hfill \Box
Proposition 4.5. \(\deg(\text{Sing(Kum}_3(A))) = 42. \)

Proof. The following table is used in the same way as we used Table 1 and Table 2 in the previous section:

<table>
<thead>
<tr>
<th>(\cap)</th>
<th>(\Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Theta_1 \cap \Theta_2) \times A)</td>
<td>2</td>
</tr>
<tr>
<td>(A \times (\Theta_1 \cap \Theta_2))</td>
<td>/</td>
</tr>
<tr>
<td>(\Theta_1 \times \Theta_2)</td>
<td>/</td>
</tr>
<tr>
<td>(\Theta_2 \times \Theta_1)</td>
<td>/</td>
</tr>
<tr>
<td>(R_{2}^{a,1})</td>
<td>4</td>
</tr>
<tr>
<td>(R_{1}^{a,2})</td>
<td>4</td>
</tr>
<tr>
<td>(R_{2}^{b,1})</td>
<td>/</td>
</tr>
<tr>
<td>(R_{1}^{b,2})</td>
<td>/</td>
</tr>
<tr>
<td>(R_{1,2})</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 3.

The following list describes Table 3:

\(\Delta \cap A \times (\Theta_1 \cap \Theta_2)\): we have not considered the intersection points between \(\Delta\) and \(A \times (\Theta_1 \cap \Theta_2)\), \(\Theta_1 \times \Theta_2\), \(\Theta_2 \times \Theta_1\) because we have already counted them in \(((\Theta_1 \cap \Theta_2) \times A) \cap \Delta\).

\(\Delta \cap R_{2}^{a,1}\): the previous argument can be used for \(\Delta \cap R_{2}^{b,1}\) and \(\Delta \cap R_{1}^{b,2}\): we have already counted these intersection points respectively in \(R_{2}^{a,1}\) and in \(R_{1}^{a,2}\).

\(R_{2}^{a,1} \cap \Delta\): we have now to show that \(\sharp (R_{2}^{a,1} \cap \Delta) = 4\). The set \(R_{2}^{a,1} \cap \Delta\) is \(\{(a, a) \in A \times A \mid a \in \Theta_1, \ 2a \in (-\Theta_2)\}\) which is equal to \(\{(a, a) \in A \times A : 2a \in ((-\Theta_2) \cap (2 \cdot \Theta_1)) \text{ and } a \in \Theta_1\}\). Let now \(L_1\) be the line bundle on \(A\) associated to \(\Theta_1\). The line bundle \(L_1^2\) is associated to \((2 \cdot \Theta_1)\) and its divisor is linearly equivalent to \(2\Theta_1\). As a consequence of this fact we have that \(2a \in (2\Theta_1 \cap (-\Theta_2))\) then \(\sharp (2\Theta_1 \cap (-\Theta_2)) = 4\). Now, since the map from \(\Theta_1\) to \((2 \cdot \Theta_1)\) is \(1 : 1\) we get the conclusion.

\(R_{1,2} \cap \Delta\): finally we have that \((R_{1,2} \cap \Delta)\) is equivalent to the set \(\{a \in A \mid 2a \in ((-\Theta_1) \cap (-\Theta_2))\}\) whose cardinality is 32. \(\Box\)
5. On action of the hyperelliptic involution and \(\text{Kum}_3(A) \).

Let \(X \) be a curve of genus 2. Consider the degree 2 map:

\[
\phi_3 : \text{SU}_X(3) \xrightarrow{2:1} \mathbb{P}^8 = |3\Theta_{\text{Pic}^1(X)}|
\]

\[
E \mapsto D_E = \{ L \in \text{Pic}^1(X) / h^0(E \otimes L) > 0 \}
\]

(see [7]). Let \(\tau' \) be the involution on \(\text{SU}_X(3) \) acting by the duality:

\[
\tau'(E) = E^*\]

and \(\tau \) the hyperelliptic involution on \(\text{Pic}^1(X) \):

\[
\tau(L) = \omega_X \otimes L^{-1}.
\]

We will use the following well known relation:

\[
\tau \circ \phi_3(E) = \phi_3 \circ \tau'(E).
\]

On \(\text{SU}_X(3) \) there is also the hyperelliptic involution \(h^* \):

\[
E \mapsto h^*(E)
\]

induced by the hyperelliptic involution \(h \) of the curve \(X \). We define \(\sigma := \tau' \circ h^* \). It is the involution which gives the double covering of \(\text{SU}_X(3) \) on \(\mathbb{P}^8 \). The fixed locus of \(\sigma \) is obviously contained in \(\text{SU}_X(3) \) and we recall:

\[
\phi_3(\text{Fix}(\sigma)) = \text{Coble sextic hypersurface}
\]

(see [7]). By definition, the strictly semi-stable locus \(\text{SU}_X(3)^{ss} \) of \(\text{SU}_X(3) \) consists of isomorphism classes of split rank 3 semi-stable vector bundles of determinant \(\mathcal{O}_X \). Its points can be represented by the vector bundles of the form \(F \oplus L \) or \(L_a \oplus L_b \oplus L_c \) with trivial determinant where \(L, L_a, L_b, L_c \) are line bundles and \(F \) is a rank 2 vector bundle. We want to consider the elements of the form \(L_a \oplus L_b \oplus L_c \) (those belonging to \(\text{Kum}_3(A) \)) and actions of previous involutions on them:

- \(\tau'(L_a \oplus L_b \oplus L_c) = (L_a \oplus L_b \oplus L_c)^* = L_{-a} \oplus L_{-b} \oplus L_{-c} \);
- \(\tau'(h^*(L_a \oplus L_b \oplus L_c)) = L_a \oplus L_b \oplus L_c \).
This implies that \(\sigma(\text{Kum}_3(A)) = \text{Kum}_3(A) \subset \text{SU}_X(3) \) which means that \(\text{Kum}_3(A) \subset \text{Fix}(\sigma) \) and then \(\phi_3(\text{Kum}_3(X)) \subset \text{Coble sextic} \) (see 5).

Let us now consider rank 2 semistable vector bundles of trivial determinant: \(\text{SU}_X(2) \). If we take its symmetric square, we obtain a semisable rank three vector bundle with trivial determinant:

\[
\text{SU}_X(2) \to \text{SU}_X(3); \quad E \mapsto \text{Sym}^2(E).
\]

We want to study the action of involutions defined on the beginning of this paragraph on \(\text{Sym}^2(E) \) with \(E \in \text{SU}_X(2) \). Since \(\text{Sym}^2(E)^* = \text{Sym}^2(E) = h^*(\text{Sym}^2(E)) \), then \(\sigma(\text{Sym}^2(E)) = \text{Sym}^2(E) \subset \text{SU}_X(3) \), so \(\text{Sym}^2(\text{SU}_X(2)) \subset \text{Fix}(\sigma) \), and, again by (5), \(\phi_3(\text{Sym}^2(\text{SU}_X(2))) \subset \text{Coble sextic} \).

Now we want to see the action of \(\tau \) on \(|\Theta_{\text{Pic}^1(X)}| \). It is known that \(\text{Fix}(\tau) = \mathbb{P}^4 \sqcup \mathbb{P}^3 \).

Notations: We denote by \(\mathbb{P}^3 \) and \(\mathbb{P}^4 \), respectively, the \(\mathbb{P}^3 \) and the \(\mathbb{P}^4 \) which are fixed by action of \(\tau \).

Since the image of \(\text{Sym}^2(\text{SU}_X(2)) \) by \(\phi_3 \) in \(\mathbb{P}^8 \) has dimension 3 and also \(\phi_3(\text{Sym}^2(\text{SU}_X(2))) \subset \text{Fix}(\tau) \), we obtain

\[\phi_3(\text{Sym}^2(\text{SU}_X(2))) \subset \mathbb{P}^4_1.\]

Let \(L_a \oplus L_{-a} \) be an element of \(\text{Kum}_2(X) \subset \text{SU}_X(2) \), then \(\text{Sym}^2(L_a \oplus L_{-a}) = L_{2a} \oplus L_{-2a} \oplus \Theta \in \text{Kum}_3(A) \subset \text{SU}_X(3) \). It means that \(\text{Sym}^2(\text{Kum}_2(A)) \subset \text{Kum}_3(A) \).

Observation: Since \(\{L_{2a} \oplus L_{-2a} \oplus \Theta \in \text{SU}_X(3)\} \) is isomorphic to \(S^2((L_a \oplus L_{-a})) \), we can view \(\{L_{2a} \oplus L_{-2a} \oplus \Theta \in \text{SU}_X(3)\} \) as the image of \(\text{Kum}_2(A) \) inside \(\text{SU}_X(3) \) under the symmetric square map. Moreover it follows from the surjectivity of the multiplication by 2 map \([2] : A \to A \) that the image of \(\text{Kum}_2(A) \) in \(\text{SU}_X(3) \) is isomorphic to \(\text{Kum}_2(A) \).

We have already observed that \(\phi_3|_{\text{Kum}_3(A)} \) is a \((1:1)\) map on the image; this fact allows us to view \(\phi_3(\text{Kum}_3(A)) \) as the \(\text{Kum}_3(A) \) in \(|\Theta_{\text{Pic}^1(X)}| \). For the same reason we can view \(\phi_3(\text{Sym}^2(\text{SU}_X(2))) \) as \(\text{Kum}_2(A) \subset |\Theta_{\text{Pic}^1(X)}| \).

Using this language we can say that \(\text{Kum}_2(A) \) is left fixed by the action of \(\tau \) in \(\text{Kum}_1(A) \subset |\Theta_{\text{Pic}^1(X)}| \) because \(|\Theta_{\text{Pic}^1(X)}| \supset \phi_3(\text{Kum}_3(A)) \supset \phi_3(\text{Sym}^2(\text{SU}_X(2)) = \text{Kum}_2(A) \subset \mathbb{P}^4 \subset \text{Fix}(\tau) \subset |\Theta_{\text{Pic}^1(X)}| \).

Proposition 5.1. \(\text{Fix}(\tau) \cap \phi_3(\text{Kum}_3(A)) = \phi_3(\text{Sym}^2(\text{Kum}_2(A))) \).
Proof. By definition $\tau(L_a \oplus L_b \oplus L_c) = L_{-a} \oplus L_{-b} \oplus L_{-c}$ then $L_a \oplus L_b \oplus L_c$ belongs to $\text{Fix}(\tau)$ if and only if $\{a, b, c\} = \{-a, -b, -c\}$.

Let P belong to $\{-a, -b, -c\}$ and $a = P$.

- If P is different from $-a$, suppose that $P = -c$, then $\{-a, -b, -c\} = \{-a, -b, a\}$; moreover $a + b + c = 0$ because $L_a \oplus L_b \oplus L_c \in \text{Kum}_3(A)$, then $b = 0$.

- Now, if $P = -a$ or, equivalently $a = -a$, then $a = 0$ and $b = -c$.

In both cases $L_a \oplus L_b \oplus L_c \in \text{Kum}_3(A)$ such that $\tau(L_a \oplus L_b \oplus L_c) = L_{-a} \oplus L_{-b} \oplus L_{-c}$ are of the form $L_a \oplus L_{-a} \oplus L_0$. This means that they belong to $\text{Kum}_2(A) \subset |3\Theta_{\text{Pic}}^1(X)|$. □

The previous proposition tells us also that $\mathbb{P}^3 \cap \text{Kum}_3 A = \emptyset$. So the projection of $\text{Kum}_3(A) \subset |3\Theta_{\text{Pic}}^1(X)|$ from \mathbb{P}^3 to \mathbb{P}^4 is a morphism. It would be interesting to find its degree.

Our final observation is the following.

Proposition 5.2. $\text{Sing}(\text{Kum}_3(A)) \cap \text{Kum}_2(A) = \text{Sing}(\text{Kum}_2(A))$

Proof. Points of $\text{Kum}_2(A) \subset \text{Kum}_3(A)$ are of the form $(P, -P, 0)$. Singular points of $\text{Kum}_3(A)$ are those which have at least two equal components, then $\text{Sing}(\text{Kum}_3(A)) \cap \text{Kum}_2(A) = \{(P, -P, 0)\}$ where $2P = 0$ that are exactly the 15 points of 2–torsion and one more point $(\mathcal{O}_X, \mathcal{O}_X, \mathcal{O}_X)$ which are singularities of the usual $\text{Kum}_2(A)$. This implies that $\sharp(\text{Sing}(\text{Kum}_3(A)) \cap \text{Kum}_2(A)) = 16$ and $\text{Sing}(\text{Kum}_3(A)) \cap \text{Kum}_2(A) = \text{Sing}(\text{Kum}_2(A))$. □

REFERENCES

A. Bernardi

e-mail: bernardi@mat.unimi.it.

Damiano Fulghesu

Viale Madonna, 64

12042 Bra (Cuneo)

e-mail: d.fulghesu@sns.it