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Abstract 
 
An integrated experimental-theoretical approach for the solid-state NMR investigation of a series of 

hydrogen-storage materials is illustrated. Seven experimental room-temperature structures of Group I and 

II metal hydrides and borohydrides, namely NaH, LiH, NaBH4, MgH2, CaH2, Ca(BH4)2 and LiBH4, were 

computationally optimized. Periodic lattice calculations were performed by means of the plane-wave 

method, adopting the DFT Generalized Gradient Approximation (GGA) with the Perdew–Burke–Ernzerhof 

(PBE) functional, as implemented in the Quantum Espresso package. Projector Augmented Wave (PAW), 

including the Gauge-Including Projected Augmented-Wave (GIPAW) method for solid-state NMR 

calculations were used, adopting both Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) ultrasoft pseudopotentials 

and new developed pseudopotentials. Computed GIPAW chemical shifts were critically compared with the 

experimental ones. A good agreement between experimental and computed multinuclear chemical shifts 

was obtained. 

 

Introduction 
 
Nowadays, the main approaches for internal combustion engine replacement are based on new lithium 

battery technology and fuel-cell technology, mainly developed around hydrogen-based systems.1 In fact, 

hydrogen may be an efficient and non-polluting energy carrier, ideal for clean energy transport and 

storage.2 However, the most challenging bottleneck for a widespread use of hydrogen is the development 

of safe and efficient storage systems, particularly for mobile applications.3 Among methods for hydrogen-

storage,4,5 high-pressured gas or cryogenic liquid cannot fulfil safety and efficiency requirements. On the 

other hand, solid-state hydrogen storage holds great hopes to provide safe and efficient on-board 

hydrogen delivery.6 An intensive research is recently taking place on light metal hydrides7-11 in order to 

improve thermodynamic and kinetic properties of hydrogen sorption.12 Multinuclear solid-state NMR 

(SSNMR) is a well established technique providing sophisticated qualitative and quantitative information at 

local level, such as electron shielding around atom nuclei, presence of different environments and 

molecular mobility.13 First principle periodic calculations on condensed matter give a way to interpret and 
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to predict the behaviour of new materials. The combination of these two techniques could give new 

insights in the field of hydrogen storage materials.  

While the chemical shift calculations in solution or in the gas phase are currently considered somewhat 

routine, even for transition metal complexes (e.g. Refs.14-18), ab initio calculations of NMR properties in the 

solid state are less developed. A first attempt to compute the magnetic shielding in molecules was 

performed by using localized atom-centred basis sets, based on the Molecular Orbital Theory.19 This 

approach, however, has soon revealed to be quite limited in the description of solid systems and 

computationally highly demanding. A reduction of the computational cost for the calculations was obtained 

introducing the pseudopotential formalism.20 This idea arose from the evidence that the core contribution 

to the magnetic shielding can be considered approximately as a constant, independently on chemical 

environments.21 Nevertheless, calculation of NMR parameters critically depends on the details of the all-

electron wavefunctions in the region close to the nucleus, where pseudo-wavefunctions take an unphysical 

smooth behaviour. For this reason, a significant improvement of the results has been achieved in 2001, 

when Pickard and Mauri22 extended the Projector Augmented Wave (PAW)23 approach to the ab initio 

determination of the NMR parameters, allowing the reconstruction of the all-electron wavefunctions in the 

core region. This approach was called Gauge-Including Projected Augmented-Wave (GIPAW) and it has 

been recently implemented for ultrasoft pseudopotential scheme.24 

First principle calculations on metal hydrides and borohydrides25 have been widely reported in recent years, 

e.g. LiH,26,27 NaBH4,
28-32 MgH2,

33,34 CaH2,
35,36 Ca(BH4)2

37-39 and LiBH4.
32,40-44 However, to our knowledge, no 

first principle calculations of NMR chemical shifts with the GIPAW method have been performed up to now 

for these compounds. So, this work is mainly focused on the computation of the NMR parameters by 

means of the GIPAW method in light metal hydrides and borohydrides, aiming to check the reliability of the 

approach for modelling of NMR spectra. The results will be of interest for the interpretation of 

experimental data based on unknown intermediates during hydrogen sorption reactions.45,46 

 

Experimental and Computational Methods 
 
All the measurements were performed using commercial samples. Compounds of 95% purity were 

purchased from Alfa-Aesar or Sigma-Aldrich and used as received. Ca(BH4)2 purchased from Sigma-Aldrich 

was a mixture of  and β phases. For sake of comparison, pure -Ca(BH4)2 was also investigated. All 

samples were stored in a dry argon glove-box and loaded into NMR rotors while inside the glove-box. Solid-

state NMR measurements were run on a Bruker Advance II 400 instrument operating at 400.23, 128.41 and 

105.87 MHz for 1H, 11B and 23Na, respectively. 11B and 23Na spectra were recorded at room temperature at 

the spinning speed of 14 kHz. Cylindrical 4 mm o.d. zirconia rotors with sample volume of 80 L were 

employed. The single pulse excitation (SPE) or the DEPTH (for suppressing the probe background signal) 

sequences were used with a 90° pulse of 3.75 (11B) and 2.7 μs (23Na), recycle delays of 30-140 (11B) or 1-20 s 
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(23Na), and about 16 transients. 11B spectra of LiBH4 and Ca(BH4)2 (either α and β phases) were acquired 

using the Hahn-echo pulse sequence ( /2)x- 1-( )y- 2-acq, where  represents interpulse delays of 138 s. 

1H MAS spectra were acquired in a 2.5 mm probe with a spinning speed of 32 kHz using the DEPTH 

sequence for suppressing the probe background signal. A 90° pulse of 1.8 μs, recycle delays of 1-60 s, and 

16 transients were used. The 1H, and 11B and 23Na chemical shift scales were calibrated using adamantane 

(1H signal at 1.87 ppm vs. TMS), and NaBH4 (11B signal at -42.0 ppm with respect to BF3·Et2O
47 and 23Na 

signal at -15.85 ppm with respect to NaCl48) as external standards, respectively. Experimental 6Li data were 

not performed by us, but they were taken from the literature49 and were referred vs LiH. 

Periodic lattice calculations were performed by means of Quantum Espresso version 4.3.2.50 The 

Generalized Gradient Approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional51 was used 

in all calculations. For geometry optimizations, experimental data at room temperature for NaH,52 LiH,53 

NaBH4,
54 MgH2,

33 CaH2,
55 Ca(BH4)2

38,56
 and LiBH4

57 were considered as starting structures. Calculations were 

performed with the variable-cell scheme, adopting the Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ)58 ultrasoft 

pseudopotentials (USPP) (for Li with s semicore state; for B and Mg with non-linear core correction; for Na 

and Ca with s and p semicore states and non-linear core correction) available at the Quantum Espresso web 

site59 (indicated as QE PP below), and the Projector Augmented Wave (PAW)23 pseudopotentials (PP) 

generated by the atompaw code60-62 (version 3.0.1.8). We generated Troullier-Martins norm-conserving 

PAW PP for H and Ca, and USPP for the other atoms. For the PAW augmentation, two projectors in each 

angular momentum channel were used (except for H and Li). Vanderbilt’s scheme was used to build the 

projectors and pseudo partial waves, whereas for sodium a RRKJ pseudization scheme was used. The 

generated PAW PP were also tested for transferability, checking the corresponding logarithmic derivatives. 

A cut-off of 60 Ry was used for structural optimization, since higher cut-off values (i.e. 200 and 120 Ry) did 

not affect significantly the results. The NMR chemical shifts were calculated using a 120 Ry energy cut-off 

by the generated PAW PP (previously used for geometry optimizations) and the available Ceresoli’s PP 63, 

via the GIPAW method.22 A 60 Ry cut-off for NMR calculations gave unsatisfactory results, but values higher 

than 120 Ry did not significantly improved the quality of the data. The theoretical absolute magnetic 

shielding (σ) values were converted into chemical shifts (δ) relative to the absolute magnetic shielding of 

the reference substance NaBH4, computed at the same level (absolute shielding σ = 145.25 and 146.49 ppm 

for B, σ = 588.84 and 578.22 ppm for Na, σ = 30.33 and 30.83 ppm for H, computed with PAW and 

Ceresoli’s PP, respectively). For practical purposes the 1H chemical shifts were reported against TMS (the 

experimental value of 1H shift for NaBH4 vs. TMS is –0.4 ppm), whereas the 11B chemical shifts were 

reported against BF3·Et2O (the experimental 11B shift value for NaBH4 vs. BF3·Et2O is –42.00 ppm), in a 

similar way as previously described.14 As for 6Li nucleus in LiH, used as a reference, we adopted the 

absolute shielding σ = 88.83 and σ = 89.23 ppm, computed with PAW and Ceresoli’s PP, respectively. 
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The Brillouin zones were automatically sampled with the Monkhorst–Pack scheme.64 For each system we 

performed preliminary calculations: given a starting geometry and a fixed energy cutoff, the optimal 

number of k-points has been obtained by repeating simple SCF calculations with higher and higher grid 

mesh size until the total energy has converged within a threshold of 10-4 Ry (1.3605∙10-3eV). By this method, 

applied to all the investigated compounds, the final calculated cell and NMR parameters did not change 

significantly. We found that the optimal effective number of k-points is inversely proportional to the 

volume of the cell in the real space. Geometry optimization and NMR chemical shift calculations for NaH, 

LiH, NaBH4, MgH2, CaH2, α-Ca(BH4)2, β-Ca(BH4)2 and LiBH4 were performed with a grid mesh of 6×6×6, 

8×8×8, 4×4×4, 6×6×6, 4×7×4, 3×2×3, 3×3×5 and 3×6×4, respectively. 

Simulations of the NMR spectra were carried out using TopSpin (Bruker) taking into account the 

quadrupolar interaction and anisotropic chemical shifts under MAS conditions. The tensors describing the 

different anisotropic interactions were all oriented in the EFG principal axis frame (PAS). The quadrupolar 

interaction is defined by CQ (MHz) and ηQ. The chemical shift anisotropy, following the Haeberlen 

Convention,65 is characterized by δiso, the reduced anisotropy (δ = δzz-δiso), the asymmetry parameter *ηCSA = 

(δyy-δxx)/δ; (0 ≤ η ≤ +1)+ (with|δzz-δiso| ≥ |δxx-δiso| ≥ |δyy-δiso|) and the three Euler angles { , , }. Owing to 

the very small effects of the Euler angles on the spectra, they were not considered during the simulation. 

Thus, five independent parameters were used to characterize a single site. The simulation of the β-Ca(BH4)2 

was performed on the commercial Ca(BH4)2 (purchased from Sigma-Aldrich) spectrum by using the values 

obtained from the simulation of the α form fixed and optimizing only the β site. 

 

 

Results and Discussion 

Geometry optimizations 

Calculated lattice parameters and volumes for selected metal hydrides and borohydrides are reported in 

Table 1. The experimental cubic NaH, LiH and NaBH4, tetragonal MgH2, and orthorhombic CaH2, LiBH4 and 

α-Ca(BH4)2 structures at room temperature fit reasonably well with calculated geometries. 

 

Table 1. Comparison between the experimental and computed (by using PAW and QE PP) structural lattice parameters 
(Å) and volumes (Å

3
). 

 

Sample 
Space Group 

and Ref. 

Experimental PAW QE 

a b c V a b c V a b c V 

NaBH4 F43m 54 6.138   231.2 6.085   225.3 6.124   229.7 
NaH Fm-3m 52 4.880   116.2 4.792   110.1 4.831   112.8 
LiH Fm-3m 53 4.086   68.2 4.062   67.0 3.990   63.5 

MgH2 P42/mnm33 4.518  3.021 61.6 4.519  3.039 62.1 4.512  3.009 61.3 
CaH2 Pnma55 5.960 3.601 6.817 146.3 5.907 3.575 6.772 143.0 5.891 3.566 6.754 141.9 
LiBH4 Pnma57 7.179 4.437 6.803 216.7 7.448 4.398 6.598 216.1 7.419 4.382 6.522 212.0 

α-Ca(BH4)2 Fddd38 8.778 13.129 7.489 863.1 8.754 13.127 7.481 859.6 8.754 13.154 7.493 862.9 
“ F2dd38,56 8.776 13.023 7.413 847.3 8.748 13.118 7.485 858.9 8.752 13.154 7.496 862.9 

β-Ca(BH4)2 P-456 6.919  4.347 208.1 6.893  4.362 207.2 6.951  4.354 210.4 
 P42/m38 6.951  4.369 211.1 6.896  4.363 207.5 6.951  4.354 210.4 
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Under ambient conditions, NaH52, LiH53 and NaBH4
54

 have similar NaCl-type structures, crystallizing  in the 

Fm-3m (LiH and NaH) and F43m (NaBH4) space groups. On the contrary, the unit cell of the α-structure of 

MgH2, as derived from a synchrotron-radiation-based X-ray diffraction study33, is tetragonal (rutile-type 

structure that crystallizes in the P42/mnm space group) and contains two formula-units of MgH2, in which 

the hydrogen atoms are crystallographically equivalent. The variable-cell optimization of these crystal 

structures was performed using the generated PAW PP. The results obtained, shown in Table 1, revealed to 

be very close not only to the experimental ones, but also to the optimized structures achieved by using the 

available QE PP. In addition, the structural data for LiH, MgH2 and NaBH4 do not differ significantly from the 

results of DFT calculations already published in other papers. For example, Zhang et al.26 and van Setten et 

al.66 obtained fully optimized structures of LiH lattice parameters of 3.998 and 4.020 Å, respectively. As for 

NaBH4, theoretically predicted cubic geometries with lattice parameters of 6.02 30, 6.05 31 and 6.14 28 Å can 

be found in the literature. Finally, the PAW PP provided a very little overestimation of the cell volume of 

MgH2 (around 0.8%) with respect to the experimental data, but a reasonable agreement appears by the 

comparison with other DFT-based calculations on MgH2 reported previously.33,34 

The stable α-polymorph of CaH2
55 (determined by neutron powder diffraction at 295 K) has an 

orthorhombic symmetry and crystallizes in the PbCl2-type structure (space group Pnma). The α-CaH2 unit 

cell contains four formula-units, where the hydrogen atoms bonded to the same Ca atom are 

crystallographically not equivalent. They are located within pseudo-tetrahedral and square-pyramidal 

interstices (see Figure 1). As summarized in Table 1, PAW PP describe quite well the ground-state structure 

of α-CaH2 with respect to the experimental geometry, providing less than 1% error on predicting the lattice 

parameters and about 2% on cell volume. A similar minimum-energy structure can be achieved by using the 

QE PP. In addition, there is also a good agreement with the DFT calculations previously reported.36 The 

reliability of the α-CaH2 optimized structure can be further confirmed by looking at selected geometric 

details, belonging to the pseudo-tetrahedral and square-pyramid regions (see Table 2). 
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Figure 1. Minimum-energy crystal structure of α-CaH2. This pictorial representation highlights the different 
crystallographic behaviour for H1 and H2 (both in orange): they are located in the centre of a pseudo-tetrahedron 
(green) and a square-pyramid (red), respectively. Atoms: H (white) and Ca (blue). 

 
Table 2. Comparison between calculated and experimental Ca-H bond lengths (mean values in <>) and selected angles 
in H1Ca4 tetrahedra and H2Ca5 square-pyramids. The experimental data are taken from ref.

55
 

 

Geometric  unit Bonds and Angles 
Bond length and Angle values (Å) 

Experimental PAW QE 

H1Ca4  pseudo – tetrahedral Ca-H1 (Å) 2.27 2.32 2.26 2.26 2.28 2.24 2.25 2.28 2.24 
 <Ca-H1> (Å) 2.28   2.26   2.25   
 Ca-H1-Ca (°) 101.24 116.73  101.29 116.70  101.30 116.67  

H2Ca5 square-pyramid Ca-H2 (Å) 2.38 2.52 2.65 2.39 2.50 2.62 2.38 2.50 2.61 
 <Ca-H2> (Å) 2.54   2.52   2.52   
 Ca-H2-Ca (°) 99.23 103.63  99.67 104.13  99.65 104.18  

 
A Fddd orthorhombic crystal structure has been assumed for calcium borohydride, α-Ca(BH4)2, as 

determined by X-ray synchrotron powder diffraction at 300 K.38 Eight formula-units of Ca(BH4)2 are 

enclosed within the unit cell, for a total of 88 atoms. X-ray diffraction experiments revealed that there are 

two non equivalent hydrogen atoms in the cell. The calculations performed with Quantum-ESPRESSO 

provided similar crystal geometries for the ground-state structures (Table 1), in good agreement with the 

experimental results. In fact, less than 1% errors occur for the minimum-energy structures found by using 

both our PAW and QE PP. Furthermore, it should be noted that the structure of α-Ca(BH4)2, resulted from 

calculations with the lowest energy, is in accordance with the optimized structures obtained by other 

plane-wave calculations. For instance, starting from a Fddd orthorhombic geometry, a fully relaxed 

structure with a= 8.765, b= 13.129 and c= 7.491 Å has been obtained.37 In addition, all the optimized 

structures are characterized by a nearly ideal tetrahedral configuration of the [BH4]
– units, with B-H bond 

lengths approximately equal to 1.22-1.23 Å. Nevertheless, some literature suggests that the F2dd structure 

provided a better fit than the Fddd structure for the description of the experimental room-temperature 

crystal structure of α-Ca(BH4)2.
56 Therefore, we performed a full geometry optimization on α-Ca(BH4)2, by 

using a F2dd starting structure; a minimum-energy geometry that is very similar to that previously obtained 

by adopting the Fddd structure was achieved, with lattice parameters a= 8.748, b= 13.118 and c= 7.485 Å. 

This structure also revealed to be in good agreement with other fully optimized geometries found in the 

literature.37 In addition to the α-polymorph, we focused also on the crystal structure of β-Ca(BH4)2, as the 

commercial calcium borohydride is actually a mixture of α and β phases (see also NMR data below). Two 

formula units of Ca(BH4)2 are contained within the tetragonal unit cell, for a total of 22 atoms. 

Synchrothron powder diffraction analysis at 305 K suggested that this structure crystallizes in the P-4 space 

group.56 However, more recently, the crystal structure of β-Ca(BH4)2 was refined by Noritake et al. from 

synchrothron X-ray diffraction data at 433 K, arguing that it is better described by the P42/m space group.38 

Four and three structurally different hydrogen atoms were found within the unit cell of the two structures, 

respectively. Although the two starting geometries slightly differ from each other, the same minimum-

energy structure was reached employing both the sets of PP. 
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The Pnma orthorhombic structure of lithium borohydride, LiBH4, was refined by Souliè et al.57 from 

synchrotron X-ray powder diffraction at room temperature, and it has been selected as starting geometry 

for variable-cell optimization. The unit cell contains four formula-units of LiBH4, and three hydrogen atoms 

are crystallographically not equivalent. The [BH4]
– units form strongly distorted tetrahedrons with H-B-H 

angles going approximately from 85° to 120°. However, the calculated results do not reproduce the 

experimental structure. Although the cell volume is only 0.25% smaller than the experimental one, the 

lattice parameters of the structure with minimum of energy differ significantly from those experimentally 

determined by Souliè et al.,57 varying in opposite directions of almost the same amount. In fact, in the 

optimized structure, the a parameter is enlarged of about 3.75% and the c parameter (along the z-axis) is 

shortened of about 3% with respect to the corresponding experimental values. Furthermore, the calculated 

bond lengths and angles of the borohydride anions are similar to an ideal tetrahedron, rather than the 

distorted geometry observed experimentally at ambient temperature,54,57 with almost constant B-H bond 

lengths of 1.22-1.23 Å and H-B-H angles close to the ideal value of 109.5°. Quite interestingly, an analogous 

description of the ground-state structure of α-LiBH4 resulted from other DFT plane-wave based 

calculations,41-43 and also from some experiments at low temperature.67,68 

 

SSNMR experiments and GIPAW calculations 

 

SSNMR chemical shifts (δ) of light metal hydrides and borohydrides have been measured and the results 

are reported in Table 3. The corresponding experimental spectra are reported in the Supporting 

Information (Figure SI1). Calculations of the NMR chemical shifts have been performed by means of the 

GIPAW22 method, implemented as a module in the Quantum-Espresso50 distribution, on the optimized 

geometries previously described. For comparison and validation, the GIPAW calculations were repeated on 

the same structures employing the Ceresoli’s QE PP. Theoretical results, summarized in Table 3 (computed 

chemical shift tensor values are reported in Table SI1 in the Supporting Information), are in good 

agreement with the experimental data.69 It should be emphasized that geometry optimizations and NMR 

calculations are often performed with different sets of PP. On the contrary, a single set of PP suitable to 

give acceptable results in both types of calculations have been used in this case. By using our PAW PP, we 

found that for NaH, LiH and NaBH4 at 60 Ry cut-off, the absolute magnetic shielding (1H and 23Na) cannot 

reach a convergence. On the other hand, energy cut-offs of 200 and 120 Ry provided almost the same 

results. Similar results were obtained by using the Ceresoli’s QE PP. As a consequence, 120 Ry was selected 

as energy cut-off for all NMR calculations. 

For the Group I hydrides (NaH and LiH), the calculated 1H SSNMR δ values are in good agreement with 

experimental data. Similar issues can be outlined for the alkali-earth hydrides MgH2 and CaH2. It is worth 

noting that in MgH2, a single value of the isotropic total magnetic shielding (σ) is expected, whereas for 
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CaH2 different σ values correspond to crystallographically (and so magnetically) different hydrogen atoms. 

In the latter case, since the experimental spectrum shows only a single broad peak due to an intrinsic large 

linewidth of the proton signals in the solid state,13 the computed signals (at 4.72 and 4.64 ppm with PAW 

PP) are reported as a mean δ value in Table 3 (see Supporting Information). Nevertheless, these different 

values for CaH2 revealed to be very close to each other (i.e. under the NMR spectral resolution). In any 

case, for MgH2 and CaH2, calculated values close to the experimental ones were obtained by using our PAW 

PP, with an overestimation for the calculated δ values of 0.4 and 0.2 ppm, respectively. The use of the 

Ceresoli’s QE PP for GIPAW calculations on these systems brought to similar results. 

Calculations of the 1H SSNMR chemical shifts for borohydride systems, LiBH4 and Ca(BH4)2, are more 

challenging. This is mainly due to the presence of non equivalent hydrogen atoms in the unit cell, leading to 

the need of considering the average-weighted σ value, as well as to the difficulties in their structural 

optimization (see above). In spite of these disadvantages, the results of computation of the chemical shift 

for Ca(BH4)2 are rather good, with a calculated δ value 0.5 ppm smaller than the experimental one. On the 

contrary, a maximum error of about 1.0 ppm occurred on the calculation of the 1H SSNMR δ value of LiBH4, 

obtained from the weighted mean of the σ values associated to the three non equivalent hydrogen atoms 

contained in the asymmetric unit. Comparable results for orthorhombic borohydride systems were 

obtained performing the same calculations with the Ceresoli’s QE PPs. The Ca(BH4)2 sample purchased from 

Aldrich was characterized as a mixture of the α and β phases (see above) as observed by the presence of a 

signal at –32.5 ppm with a shoulder at –29.9 ppm in the 11B MAS spectrum (Figure 2, top spectrum). By 

running the spectrum of pure α-Ca(BH4)2 (Figure 2, bottom spectrum) it was possible to correctly assign the 

former to the  and the latter to the α form, as reported in the literature.46,70 

 

 

Figure 2. 
11

B MAS (Hahn echo) spectra (central peak) of α-Ca(BH4)2 (bottom) and Ca(BH4)2 from Aldrich (top) recorded 
with a spinning speed of 14 kHz. 

 

 

However, no differences between the commercial and pure α phase were observed in the experimental 1H 

MAS spectra. Concerning α-Ca(BH4)2, the results derived from GIPAW calculation (Table 3) performed on 

the optimized structure are based on the Fddd structure. In this case there are two magnetically non 
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equivalent protons within the cell that produce two different σ values; the mean δ value for 1H is –0.2 ppm. 

Conversely, the F2dd structure is characterized by the presence of four non equivalent hydrogen atoms in 

the unit cell. For this space group, QE PP provides four different σ values in pairs very similar (0.11, 0.10 and 

0.31, –0.30 ppm, respectively) while PAW PP gives only three δ values, two of which are very close to each 

other (0.04, 0.03 and –0.37 ppm) (Table SI1). Nevertheless, by considering only the mean values, the same 

results were achieved by starting from both the Fddd and F2dd structures. 

For the considered metal hydrides and borohydrides, a good correlation between 1H experimental (δexp) 

and calculated (δcalc) values was obtained for both PAW (δexp = 0.76 · δcalc + 0.60, R2 = 0.986) and QE (δexp = 

0.89 · δcalc + 0.35, R2 = 0.974) PP (Figure 3), with a mean error of about 0.48 and 0.35 ppm, respectively. 
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Figure 3.  Experimental vs. calculated 

1
H chemical shifts (TMS as reference). 

 
 
Typically, errors of 1H δ calculations for molecules in solutions are close to 0.2 ppm,71,72 but larger values 

are expected for calculations in the solid state. Taking into account the experimental uncertainties on 1H 

SSNMR δiso values, obtained correlations can efficiently predict the experimental 1H SSNMR chemical shifts. 

A similar procedure was adopted for the calculation of the 6Li, 23Na and 11B chemical shifts (see Table 3). 

From a comparison of calculated values with 6Li experimental results 49 on LiH and LiBH4, it turned out that 

accurate results can be obtained with Quantum-ESPRESSO, by using both our PAW PP and the GIPAW 

standard ones. However, while our PP tend to underestimate the 6Li chemical shift of LiBH4 of 0.3 ppm, the 

GIPAW standards provided a value which is higher than the experimental one of the same quantity. As for 

11B results, PAW PP allowed to obtain a substantial improvement in the description of the chemical shift 
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values for the compounds under investigation. In particular, for 11B shift value of LiBH4, an error of less than 

2 ppm occurred by employing our PAW PP, whereas the isotropic chemical shift value calculated by using 

QE PP was about 4.3 ppm higher than the experimental one. A similar behaviour was achieved also about 

the prediction of the NMR parameters of Ca(BH4)2, as it can be seen in the Table 3. Moreover, our NMR 

computed results are able to reliably reproduce the 11B experimental spectrum of commercial Ca(BH4)2; in 

fact, as observed from experiments (see Figure 2), the GIPAW calculations confirmed that the 11B signal 

derived from the β-phase is about 2 ppm more shielded than the signal corresponding to the α-phase.  

Concerning the quadrupolar interaction, which is supposed to be a more accurate parameter for evaluating 

the quality of computational data, we observed in the 6Li, 23Na and 11B experimental spectra of NaBH4, NaH, 

and LiH no evidences of either first or second order quadrupolar interaction, in agreement with a 

spherically symmetric environment of the nuclei. This has been confirmed by the negligible values obtained 

by the GIPAW calculation of principal EFG tensor components and the quadrupolar coupling constants 

(Table SI2 in the Supporting Information). However, this is not the case of 11B spectra of LiBH4 and Ca(BH4)2 

(either α and β phases) (black spectra in Figure 4) which show an extensive pattern of spinning sidebands. 

Simulation of the experimental spectra (red spectra in Figure 4) allowed to extract EFG tensor and 

quadrupolar coupling constant values together with the chemical shift tensor components, all reported in 

Table 4. Also for these samples, the GIPAW data reliably reproduce those obtained from the experimental 

spectra being in the range of commonly reported error.73,74 

 
Table 3. Experimental and GIPAW-calculated NMR chemical shifts (ppm) with (1) generated PAW and (2) Ceresoli’s QE 
PP. δiso values are referenced to TMS for 

1
H, NaBH4 for 

23
Na, BF3OEt2  for 

11
B and LiH for 

6
Li. 

 
Sample 

1
H, δ (ppm) 

11
B, δ (ppm) 

23
Na, δ (ppm) 

6
Li, δ (ppm)  

 Exp (1) (2) Exp (1) (2) Exp (1) (2) Exp.
49

 (1) (2) 

NaH 3.7 4.5 3.3    26.2 34.1 33.9    
LiH 3.0 3.0 3.3       0.0 0.0 0.0 
MgH2 3.4 3.8 3.9          
CaH2 4.5 4.7 4.4          
LiBH4 –0.2 –1.2 –0.6 –41.4 –39.5 –37.1    –1.3 –1.6 –1.0 
α-Ca(BH4)2 0.3 –0.2 –0.1 –29.9 –21.9 –19.8       
β-Ca(BH4)2 0.3 –0.2 0.0 –32.5 –23.8 –21.6       
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Figure 4. Experimental (black) and simulated (red) 

11
B MAS (Hahn echo) spectra of LiBH4, α-Ca(BH4)2 and Ca(BH4)2 

Aldrich (α+β form) recorded with a spinning speed of 14 kHz. For simulation details see Experimental and 
Computational Methods. 

 
 
Table 4. 

11
B simulated and computed chemical shift anisotropy and quadrupolar values for LiBH4, α-Ca(BH4)2 and β-

Ca(BH4)2. For simulation details see the Experimental and Computational Methods section. 

 

  δiso 
(ppm) 

δxx 
(ppm) 

δyy 

(ppm) 
δzz 

(ppm) 
δCSA 

(ppm) 
ηCSA CQ 

(MHz) 
ηQ 

LiBH4 simul. –41.1 –38.7 –40.2 –44.5 –3.3 0.46 0.10 0.51 

 PAW –39.5 –41.9 –40.2 –36.3 3.2 0.55 0.13 0.64 

-Ca(BH4)2 simul. –29.8 –33.4 –30.5 –25.5 4.3 0.68 0.20 0.89 

 PAW a –21.9 –16.3 –20.7 –28.7 –6.8 0.64 –0.52 0.89 

-Ca(BH4)2 simul. –32.5 –32.3 –32.4 –32.8 –0.3 0.63 0.18 0.85 

 PAW b –23.8 –18.8 –23.5 –29.2 –5.4 0.86 –0.48 0.85 
a 

Fddd structure; 
b
 P-4 structure 

 
 
Conclusions 

The use of Quantum-ESPRESSO with a new set of PAW PP, generated by the atompaw code, has revealed to 

achieve good results for the calculation of crystal structures and SSNMR chemical shifts in selected 

hydrogen storage materials. Results of crystal geometries for low symmetry borohydrides (LiBH4 and 

Ca(BH4)2) revealed to be in accordance with similar DFT based computational studies. Calculated SSNMR 

parameters (chemical shifts , quadrupolar coupling constants, and CSA) showed good correlation with 
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experimental values. A maximum deviation of 1 ppm for PAW PP with respect to the experimental 1H 

SSNMR chemical shifts was found. This value is comparable with the error obtained employing standard 

Ceresoli’s PP. In summary, we were able to validate a new set of PAW PP, showing that the predicted 

SSNMR 1H, 23Na and 6Li chemical shift values obtained by using PAW PP, are analogous to those derived by 

employing the standard QE PP. In addition to this, a substantial improvement of the 11B chemical shifts 

estimation were obtained adopting PAW PP. 
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Table SI1 – Computed Shielding tensors for all compounds under investigation. 

NaH 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW Na 34.0498 34.0500 34.0503 34.1 0.0003 0.75000 

 H 4.5364 4.5364 4.5364 4.5 0.0000 0.00000 

QE Na 33.9062 33.9061 33.9060 33.9 -0.0001 1.00000 

 H 3.3403 3.3402 3.3401 3.3 -0.0001 1.00000 

 

NaBH4 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW Na 0.0003 0.0003 0.0001 0.0 -0.0001 0.00000 

 B -42.0043 -42.0043 -42.0044 -42.0 -0.0001 0.00000 

 H 0.7300 0.7300 -2.6627 -0.4 -2.2618 0.00000 

QE Na 0.0000 0.0000 0.0001 0.0 0.0001 0.00000 

 B -41.9972 -41.9972 -41.9971 -42.0 0.0001 0.00000 

 H 1.0976 1.0976 -3.3911 -0.4 -2.9925 0.00000 

 

LiH 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW Li 0.0042 0.0042 0.0043 0.0 0.0001 0.00000 

 H 3.0195 3.0195 3.0196 3.0 0.0001 0.00000 

QE Li 0.0008 0.0008 0.0008 0.0 0.0000 0.00000 

 H 3.3205 3.3205 3.3206 3.3 0.0001 0.00000 



 

MgH2 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW H 2.2110 3.5396 5.6467 3.8 1.8476 0.71910 

QE H 3.9945 3.9736 3.7445 3.9 -0.1597 0.13087 

 

 

CaH2 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW H1 5.0692 4.9308 4.1700 4.7 -0.5533 0.25012 

 H2 4.3427 4.3695 5.2175 4.6 0.5743 0.04667 

QE H1 4.8558 4.6949 3.9462 4.5 -0.5528 0.29108 

 H2 3.9913 4.0349 4.9170 4.3 0.6026 0.07235 

 

 

LiBH4 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW Li -0.5566 -1.0993 -3.1972 -1.6 -1.5795 0.34359 

 B -41.9350 -40.1831 -36.2946 -39.5 3.1763 0.55155 

 H1 -1.8448 -1.3012 -0.4408 -1.2 0.7548 0.72019 

 H2 -0.3886 -1.1660 -3.1100 -1.6 -1.5551 0.49989 

 H3 0.2941 -0.7710 -2.7454 -1.1 -1.6713 0.63729 

QE Li 0.0591 -0.5262 -2.5863 -1.0 -1.5685 0.37316 

 B -39.7839 -37.9781 -33.6075 -37.1 3.5157 0.51364 

 H1 0.2248 -0.4921 -1.2487 -0.5 -0.7434 0.96440 

 H2 0.1806 -0.5758 -2.3189 -0.9 -1.4142 0.53486 

 H3 0.8629 -0.1872 -1.9261 -0.4 -1.5093 0.69575 

 

 



α-Ca(BH4)2 Fddd 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW B -16.3295 -20.6651 -28.6903 -21.9 -6.7953 0.63803 

 H1 -1.0618 -0.6751 0.5985 -0.4 0.9780 0.39541 

 H2 1.4853 0.0399 -1.4570 0.0 -1.4797 0.97680 

QE B -14.2737 -18.6149 -26.5024 -19.8 -6.7054 0.64742 

 H1 -1.0114 -0.6521 0.6975 -0.3 1.0195 0.35243 

 H2 -1.3186 0.0839 1.4906 0.1 1.4053 0.99801 

 

 

α-Ca(BH4)2 F2dd 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW B -16.2979 -20.6464 -28.6557 -21.9 -6.7890 0.64052 

 H1 -1.0545 -0.6578 0.5992 -0.4 0.9702 0.40887 

 H2 -1.0536 -0.6599 0.5981 -0.4 0.9699 0.40592 

 H3 1.4949 0.0500 -1.4475 0.0 -1.4800 0.97631 

 H4 1.4981 0.0548 -1.4435 0.0 -1.4800 0.97522 

QE B -14.2327 -18.5897 -26.4554 -19.8 -6.6961 0.65067 

 H1 -0.9928 -0.6277 0.7076 -0.3 1.0119 0.36081 

 H2 -0.9915 -0.6299 0.7062 -0.3 1.0113 0.35757 

 H3 -1.2980 0.1021 1.5095 0.1 1.4050 0.99654 

 H4 -1.2938 0.1068 1.5125 0.1 1.4040 0.99758 

 

 

 

 

 

 

 



β-Ca(BH4)2 P-4 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW B -18.8292 -23.4528 -29.2164 -23.8 -5.3836 0.85883 

 H1 0.3514 -0.0310 -1.6315 -0.4 -1.1945 0.32014 

 H2 -0.5890 -0.4871 0.9580 0.0 0.9974 0.10217 

 H3 0.1834 -0.2029 -0.9103 -0.3 -0.6004 0.64344 

 H4 -0.5925 -0.4863 0.9555 0.0 0.9966 0.10656 

QE B -16.5647 -21.3195 -26.8205 -21.6 -5.2523 0.90529 

 H1 0.5671 0.1164 -1.2126 -0.2 -1.0362 0.43494 

 H2 -0.4438 -0.1109 1.1235 0.2 0.9339 0.35646 

 H3 0.3043 0.0068 -0.4799 -0.1 -0.4236 0.70226 

 H4 -0.4462 -0.1118 1.1210 0.2 0.9333 0.35829 

 

 

β-Ca(BH4)2 P42/m 

 Nucleus δxx (ppm) δyy (ppm) δzz (ppm) δiso (ppm) δCSA (ppm) ηCSA 

PAW B -18.7948 -23.4389 -29.1659 -23.8 -5.3660 0.86546 

 H1 -0.5557 -0.4522 0.9907 0.0 0.9964 0.10387 

 H2 0.2172 -0.1684 -0.8776 -0.3 -0.6013 0.64124 

 H3 0.3898 0.0052 -1.6038 -0.4 -1.2009 0.32027 

QE B -16.5704 -21.3429 -26.8098 -21.6 -5.2354 0.91158 

 H1 -0.4479 -0.1156 1.1169 0.2 0.9324 0.35638 

 H2 0.5667 0.1144 -1.2244 -0.2 -1.0433 0.43353 

 H3 0.3000 0.0013 -0.4857 -0.1 -0.4242 0.70409 

 

 

 

 

 



Table SI2 – Computed EFG tensors for all compounds under investigation. 

 

 Isotope Spin Quadrupole 
Moment (Q) 

(10-30m2) 

Sample Vxx Vyy Vzz CQ (MHz) ηQ 

PAW 23Na 3/2 10.4 NaBH4 0.0000 0.0000 0.0000 0.0000 0.00000 

    NaH 0.0000 0.0000 0.0000 0.0000 0.00000 

 11B 3/2 4.059 NaBH4 0.0000 0.0000 0.0000 0.0000 0.00000 

    LiBH4 -0.0026 -0.0116 0.0141 0.1348 0.63560 

    Fddd α-Ca(BH4)2 0.0030 0.0513 -0.0542 -0.5170 0.89094 

    F2dd α-Ca(BH4)2 0.0030 0.0513 -0.0543 -0.5177 0.89120 

    P-4 β-Ca(BH4)2 0.0039 0.0468 -0.0507 -0.4839 0.84605 

    P42/m β-Ca(BH4)2 0.0039 0.0469 -0.0507 -0.4837 0.84806 

 6Li 1 -0.0808 LiH 0.0000 0.0000 0.0000 0.0000 0.0000 

    LiBH4 0.0015 0.0053 -0.0069 0.0013 0.55849 

 7Li 3/2 -4.01 LiH 0.0000 0.0000 0.0000 0.0000 0.0000 

    LiBH4 0.0015 0.0053 -0.0069 0.0646 0.55849 

 25Mg 5/2 19.94 MgH2 -0.0342 -0.0602 0.0943 4.4195 0.27553 

QE 23Na 3/2 10.4 NaBH4 0.0000 0.0000 0.0000 0.0000 0.00000 

    NaH 0.0000 0.0000 0.0000 0.0000 0.00000 

 11B 3/2 4.059 NaBH4 0.0000 0.0000 0.0000 0.0000 0.00000 

    LiBH4 -0.0021 -0.0101 0.0123 0.1170 0.65390 

    Fddd Ca(BH4)2 0.0018 0.0247 -0.0264 -0.2522 0.86426 

    F2dd Ca(BH4)2 0.0018 0.0248 -0.0266 -0.2537 0.86107 

    P-4 β-Ca(BH4)2 -0.0013 -0.0180 0.0193 0.1842 0.86609 

    P42/m β-Ca(BH4)2 -0.0014 -0.0180 0.0194 0.1849 0.85764 

 6Li 1 -0.0808 LiH 0.0000 0.0000 0.0000 0.0000 0.0000 

    LiBH4 0.0017 0.0038 -0.0055 0.0010 0.38732 

 7Li 3/2 -4.01 LiH 0.0000 0.0000 0.0000 0.0000 0.0000 

    LiBH4 0.0017 0.0038 -0.0055 0.0521 0.38732 

 25Mg 5/2 19.94 MgH2 -0.0087 -0.0597 0.0683 3.2010 0.74635 

 

 

 

 

 

 

 

 

 

 



Figure SI1- Experimental 1H, 11B and 23Na SSNMR spectra of all the studied samples . 
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