The role of histamine in neurogenic inflammation

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/136398 since

Published version:
DOI:10.1111/bph.12266

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Histamine in the neurogenic inflammation

Rosa A.C. and Fantozzi R.

1Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Italy

Correspondence: Arianna Carolina Rosa, PhD,
Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Italy,
Via P. Giuria 9, 10125, Turin, Italy
Phone: +390116707955
Fax: +390116707688
e-mail: ariannacarolina.rosa@unito.it

Running Title: Histamine in the neurogenic inflammation
This is the accepted version of the following article:

which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/bph.12266/abstract
Summary

The term “neurogenic inflammation” has been adopted to describe the local release of inflammatory mediators from neurons such as substance P and calcitonin gene related peptide. Once released, these neuropeptides cause histamine release from adjacent mast cells. In turn, histamine evokes the substance P and calcitonin gene related peptide release, thus a bidirectional link between histamine and neuropeptides in neurogenic inflammation is established. The aim of this review is to summarize the most recent findings on the role of histamine in neurogenic inflammation with particular regards to nociceptive pain as well as neurogenic inflammation in the skin, in the airways and in the bladder.

Keywords histamine, neurogenic inflammation, histamine receptors, neuropathic pain, skin, airways, bladder

Abbreviations calcitonin gene related peptide, CGRP; cell adhesion molecule, CADM; gastro-oesophageal reflux disease, GERD; histidine decarboxylase, HDC; interstitial cystitis, IC; oestrogen receptors, ERs; painful bladder syndrome, PBS; platelet-activating factor, PAF; substance P, SP; vasoactive intestinal peptide, VIP
Introduction

The term “neurogenic inflammation” describes the local release of inflammatory mediators from afferent neurons such as substance P (SP) and calcitonin gene related peptide (CGRP). Since the first evidences of a neurogenic vasodilatation in response to noxious stimuli in the skin of humans and other mammals (Schmelz M et al., 2001), nowadays it is recognised that neurogenic inflammation occurs also in visceral organs. The inflammatory response evoked by the activation of the sensory nerve fibres, including local vasodilatation, plasma extravasation, leukocyte and platelet adhesion, and mast cell degranulation, is brought about by neuropeptides released from peripheral endings of sensory neurons upon stimulation of the primary sensory terminals. Both SP in neurons and histamine in mast cells have a dual mediator role in neurogenic inflammation (Figure 1). In fact, as described by Foreman and Jordan (1984), injury causes activation of sensory nerve endings either directly or through the release of histamine from adjacent mast cells. The action potential generated travels orthodromically to the dorsal horn of the spinal cord, and spreads to other branches of the same neurons which will then release SP from their terminals or varicosities. The released SP, besides contributing by itself to local vasodilatation, causes histamine release from adjacent mast cells which produce flare and further activates other sensory nerve endings (Foreman JC et al., 1984).

Neutrophils, whose responsiveness to SP has been repeatedly demonstrated, contribute to the inflammatory soup following neurogenic inflammation. In fact, neutrophils express the SP receptors NK₁, NK₂ and NK₃, and their challenge with SP induces COX-2 expression and PGE₂ release in the nanomolar range (Gallicchio M et al., 2008; Gallicchio M et al., 2009). Furthermore, SP at micromolar concentrations primes neutrophils, thus enhancing O₂⁻ production evoked by platelet-activating factor (PAF) (Brunelleschi S et al., 1991). In the picomolar range SP still induces neutrophil adhesion to human umbilical vein endothelial cells (Dianzani C et al., 2003).
Together with histamine, other mast cell-derived mediators (such as, serotonin, renin, adenosine, heparin, tryptase, chymase, elastase, carboxypeptidase A and B, cathepsin, b-galactosidase, b-glucoronidase, matrix metalloproteinase, chemotactic factors for eosinophils and neutrophils, platelet derived factor, prostaglandin D$_2$, leukotriene B$_4$, C$_4$ and D$_4$, tromboxane A$_2$ and B$_2$, nitric oxide, TNF-α and other cytokines, neuropeptides) contribute to the functional picture of neurogenic inflammation (Tore F et al., 2009). Experimental evidences support their role demonstrating their neuronal receptors.

Histamine and neurogenic inflammation: experimental evidences

The evidences for a neurogenic mechanism in the involvement of SP in the flare response stems from data showing that local anaesthetic injection into the human skin reduced the spread of the flare response although without affecting the development of the wheal response (Foreman JC et al., 1983). Otherwise the role of histamine has been investigated mostly by specific receptor-oriented approaches. The effects of SP on flare response in human skin are mimicked only by the neuropeptide fragments able to degranulate rat mast cells *in vitro* (Fewtrell CM et al., 1982). The H$_1$ histamine antagonist chlorpheniramine (20 mg i.v.) has been reported to prevent the spread of the flare response to SP in the human skin (Foreman JC et al., 1983). These first observations of the role of histamine in the neurogenic inflammation have been further elucidated thanks to immunoistochemical studies demonstrating the proximity of mast cells and nerve fibres containing neuropeptides, with first studies in dura mater and gut, while larger body of evidence is available for the skin (Nakanishi M et al., 2008). Moreover, Janiszewski et al. (1990) have demonstrated in a co-culture system that the activation of peritoneal mast cells induce depolarization and decrease membrane resistance in sympathetic neurons (Janiszewski J et al., 1990). A bidirectional communication between nerves and mast cells has been supported by the presence of receptors for many neuropeptides (such as vasoactive intestinal peptide, neuropeptide Y, SP, CGRP, propiomelanocortin, galanin, neuromedin U, pituary adenilate cyclise-activating polypeptide,
neurotenisin and corticotrophin-releasing factor) on mast cells surface. Thus these mediators can exert both paracrine and autocrine effects on mast cells (Figure 1). Similarly, also histamine exerts autocrine effects on mast cells as they express all the histamine receptors H1-4 (Tore F et al., 2009).

Notably, the interactions between mast cells and adjacent nerves is also accomplished by adhesion molecules such as N-cadherin or cell adhesion molecule (CADM)-1, a calcium-dependent adhesion protein that can be cleaved by the metalloproteinase MT5-MMP of the peptidergic receptors in the dorsal root ganglion (Guillot X et al., 2012; Nakanishi M et al., 2008).

Histamine, neurogenic inflammation and nociceptive pain

While the contribution of neurogenic inflammation to nociception has been previously elucidated (Julius D et al., 2001), more recently detailed analysis of the role of histamine receptors has been investigated.

Mechanoinsensitive C-fibres are known to be activated by histamine and to be responsible for the neuropeptide release, for example in the skin inducing the axon reflex flare (Groetzner P et al., 2010). Histamine-immunoreactive nerve fibres have been found in the superficial laminae of the dorsal horn, an important site for nociceptive transmission. The mRNA of histamine H1 receptor genes has been detected in many SP and CGRP immunoreactive neurons following the peripheral nerve injuries (Kashiba H et al., 1999), and histamine has been reported to mediate the release of SP and glutamate in inflammatory conditions (Riedel W et al., 2001). Moreover, a bidirectional relationship between CGRP and histamine can be proposed according to the data showing that: CGRP induces histamine release from mast cells and potentiates histamine effects in the rat (Mobarakeh JI et al., 2006); intraperitoneally injection of histamine induces CGRP release into the cerebrospinal fluid (Bileviciute I et al., 1994); histamine administrated to the nasal mucosa causes CGRP release from peripheral terminals of trigeminal ganglion in the guinea pig (Tani E et al., 1990). Further support of a cooperation between histamine and CGRP is afforded by the
observation of a colocalization of both the histamine H₃ receptor and CGRP on Aδ fibres; both mediators contributing to an high threshold mechanical nociceptive effect (Cannon KE et al., 2007).

More recently, it has been demonstrated that both the H₁ receptor antagonist pyrilamine and the H₂ receptor antagonist ranitidine produce a dose-dependent antinociceptive response in the formalin test, and that a histamine intrathecally-induced hyperalgesia has been blunted by the GCRP antagonist CGRP 8-37 (Mobarakhe JI et al., 2011).

Studies with histamine H₁ receptor knockout mice have demonstrated that both the receptor and its natural ligand are necessary to facilitating pain transmission at both peripheral and central levels (Mobarakhe JI et al., 2002; Mobarakhe JI et al., 2000). By using histidine decarboxylase (HDC) gene knockout mice it has been shown that the NK₁ receptors in the spinal cord mediate the histamine-induced hyperalgesic responses (Yoshida A et al., 2005). Several in vivo studies have evaluated the antinociceptive efficacy of antihistamines. The administration of H₁ and H₂ receptor antagonists, chlorpheniramine and cimetidine respectively, was found to inhibit the development of both thermal and mechanical hyperalgesia, although chlorpheniramine was more potent (Zuo Y et al., 2003). Even the most recently discovered histamine receptors, the H₃ and H₄ receptors, have been shown to be involved in mediating nociception. The pre-treatment with H₃/H₄ receptors dual antagonist thioperamide attenuated c48/80-induced thermal pain 30 min after challenge without causing analgesia (Chatterjea D et al., 2012). Moreover, it was reported that H₃ receptor antagonists, such as GSK-189254 and ABT-239, are effective in reducing alldynia and hyperalgesia in models of neuropathic, and inflammatory pain (Hsieh GC et al., 2010b; Medhurst AD et al., 2007; Medhurst SJ et al., 2008).

Focusing on H₄ receptors, both the experimental antagonists JNJ7777120 (10 and 30 mg kg⁻¹, s.c.) and VUF6002 (10 mg kg⁻¹, s.c.) significantly reduced the paw oedema and hyperalgesia provoked by subplantar injection of carrageenan (Coruzzi G et al., 2007). According to these data, JNJ7777120 reversed hyperalgesia in both acute and chronic pain models (Hsieh GC et al., 2010a).
Notably, the same study has reported no effect for H₁ receptor antagonist diphenhydramine, H₂ receptor antagonists ranitidine, or H₃ receptor antagonist ABT-239, thus suggesting a dominant role of the H₄ receptors in animal models of inflammatory and neuropathic pain.

All together, these data from animal models may be regarded as indicative of a potential efficacy of antihistamines in clinical setting. However, clinical evidence is still lacking and previously trials were negative (Raffa RB, 2001).

Histamine and neurogenic inflammation in the skin

The involvement of histamine in cutaneous neurogenic inflammation stems from the observation that this amine triggers the so called “triple response”. Nowadays, local erythema results from the axon reflex and antidromic sensory nerve stimulation-induced release of different vasoactive mediators, not only histamine, but also SP, histamine, purines and CGRP. Itch is mediated via dedicated afferent nonmyelinated C-type nerve fibres different from the polymodal C-fibres being unresponsive to mechanical stimulation. The so called ‘prurceptors’ are differentiated in histamine-sensitive and histamine-independent itch-specific C-fibres. In particular, histamine–sensitive C-fibres, about the 5% of afferent C-fibres in human cutaneous nerves, are characterized by slow conduction velocities and extensive terminal branching (Raap U et al., 2011; Shim WS et al., 2008). When activated by histamine, they transmit electrical signals to the superficial layer of the dorsal horn of the spinal cord. These signals then ascend to the thalamus through contralateral spinothalamic tracts and are eventually conducted to the somatosensory and cingulated cortex (Figure 2). All the histamine receptors are involved in mediating histamine signal on neurons, but with a different functional weight. The failure of cimetidine to suppress histamine-induced itch in BalbC mice (Bell JK et al., 2004) do not support an involvement of H₂ receptor in itch. The H₁ receptor is the most extensively studied. Indeed, H₁ receptor blockers have an established and valuated place in the treatment of itching of allergic and non-allergic origin (Skidgel RA et al., 2011).
Intriguing data on the H3 receptor seem to contradict the aforementioned histamine-induced itch pathway (Summey BT et al., 2005), as antagonists such as thioperamide or AQ0145 were found to increase significantly the incidence of scratching behaviour in mice (Sugimoto Y et al., 2004). Histamine H3 receptor antagonists might block the modulatory role afforded by the presinaptic H3 receptor, thus favouring the release of neuropetides from sensory endings (Cannon KE et al., 2007). More recently, data obtained with clobenoprit, an H3 receptor antagonists and H4 receptor agonist, suggested that H4 receptor also is involved in itch. Clobenoprit caused scratching responses in the mouse that were attenuated by pretreating animals with the H4 receptor antagonist, JNJ7777120 (Dunford PJ et al., 2007). Moreover, it has been reported that H4 receptor agonists are able to induce itch through a direct action on peripheral nerves (Bell JK et al., 2004), and that the H4 antagonist inhibit SP-induced itch, which has been reported to be resistant to H1 receptor antagonists (Yamaura K et al., 2009). More recently, Suwa et al. (2011) have demonstrated that JNJ7777120 (10 and 30 mg kg\(^{-1}\) die), and not the histamine H1 receptor antagonist fexofenadine (30 mg kg\(^{-1}\) die), reduces the scratching behaviour and ameliorates the skin lesions induced by repeated challenge with 2,4,6-trinitrochlorobenzene in HR-1 mice, in a dose-dependent manner (Suwa E et al., 2011).

Interestingly, in the mice blocking both the H1 receptors and the H4 receptors, by a dual antagonist or a combination therapy gave the maximum response, almost completely abolish the itch response (Dunford PJ et al., 2007).

Besides, other published data indicate that H1 receptors and H4 receptors share a similar pathway in the neuron excitation by increasing intracellular Ca\(^{2+}\) levels (Shim WS et al., 2008). Histamine elevates calcium levels through H1 receptor in rat cultured sensory neurons, and this effect is blocked by the PLC inhibitor U73122 (Nicolson TA et al., 2002).

Moreover, in mouse sensory neurons stimulated by capsaicin, histamine induces inward currents and calcium influx in a TRPV1-dependent manner, as demonstrated by the blocking effect of
TRPV1 antagonists; in keeping with these results histamine-induced scratching is significantly lower in TRPV1-deficient mice (Kajihara Y et al., 2010; Shim WS et al., 2007).

All these evidences explain at least in part the antipruritic effects of both mirtazapine and doxepin, two antidepressant that share also additional antihistaminic effects (Raap U et al., 2011). Moreover, the well recognised risk-benefit profile of H1 antihistamines, especially the non-sedative second generation ones, lead the European Academy of Allergy and Clinical Immunology to recommend in its guidelines an updosing of nonsedating antihistamines up to four-fold in patients with chronic urticaria. Clinical studies on H4 receptor antagonists are currently ongoing (Engelhardt H et al., 2009).

Histamine and neurogenic inflammation in the airways

Misery (2008) approached the intriguing parallelism between itch/scratching and cough starting from a common pathophysiology that involves the C fibres, the mast cells, histamine, SP and other tachykinins. Indeed, the close proximity between mast cells and the nerve endings in the lung suggests a similar neuro-immuno crosstalk (Misery L, 2008) as found in the skin. Sensory nerve endings release neuropeptides such as SP and CGRP, which induce mast cell activation and degranulation. The antidromic release of neuropeptides from nociceptors in the airways causes vasodilatation and oedema associated with nasal obstruction in the upper airways, and broncocostriction in the lower airways, as well as plasma protein exudation, mucus secretion and inflammatory cell recruitment. As a proof of neurogenic inflammation in the airways, local anaesthesia with lidocaine improved airway hyperreactivity and reduced capsaicin-induced cough (Muraki M et al., 2008).

A first evidence of the relationship between SP and histamine in the airways came in 1994, when Heaney et al. (1994) demonstrated the ability of SP to stimulate human mast cells obtained from bronchoalveolar lavage (Heaney LG et al., 1994). More recently, sputum SP and mast cell tryptase concentrations were remarkably increased in patients with chronic cough, and evenly increased in
those with cough due to gastro-oesophageal reflux disease (GERD). These latter data suggest that
GERD-induced cough may be related to a cough reflex hypersensitivity caused by neurogenic
airway inflammation (Qiu Z et al., 2011), and are in keeping with the results obtained by Birring et al. (2004), who measured an increased histamine content in the sputum of patients with idiopathic
chronic cough and cough variant asthma/eosinophilic bronchitis in comparison with normal subjects
(Birring SS et al., 2004). Rat lung mast cells have been found to release histamine in response to
high doses of SP in vitro; moreover, it has been shown that the NK1 receptor-mediated mast cell
activation partly affords for airway plasma leakage in F344-, but not in BDE-rats, exposed to SP and
capsaicin. The airway responsiveness to tachykinins discriminates these two inbred strains.
Actually, only the F344 presents NK1 receptors mast cells that display a proreleasing effect
(Pauwels RA et al., 1995). More recently, it has been reported that CP-99,994 (5 mg kg-1 i.v.), a
NK1 receptor antagonist, abolished the microvascular leakage elicited in the rat airways by a single
inhalation of toluene-2,4-diisocyanate. On the contrary, ketotifen (1 mg kg-1 i.v.), provided with H\textsubscript{1}
agonism and mast cell-stabilizing properties, did not exert any effect in this model (Sakamoto T et al., 2012). In a model of microvascular leakage hypersensitivity induced in the airways of guinea-
pigs aerosolised with histamine it has been demonstrated that, while NKB and the NK3 receptor
agonist senktide, enhanced airway hypersensitivity to histamine. In the same model, both the
tachykinin NK3 receptor antagonists osanetant and the NK1 receptor antagonist nolpitantium were
able to abolish the histamine-induced microvascular leakage. NK2 ligands were uneffective (Daoui
S et al., 2001). Moreover, it has been reported that toluene-2,4-diisocyanate exposure causes an
increase in histamine content, HDC activity and gene expression in the nasal mucosa of sensitized
rats (Kitamura Y et al., 2004). Olopatadine hydrochloride, an H\textsubscript{1} receptor antagonist, besides
inhibiting the capsaicin-induced sneezing response, has been found to inhibit antigen-induced
sneeze and nasal rubbing responses in both wild-type and H\textsubscript{1} receptor-deficient mice, although at
very high doses (Tamura T et al., 2008), thus suggesting a H\textsubscript{1} receptor independent effect. Indeed,
these data, together with the failure of cetirizine to inhibit completely these responses in H\textsubscript{1}
receptor-deficient mice (Kayasuga R et al., 2002; Sugimoto Y et al., 2004), could lead to hypothesise the involvement of other receptors in these responses.

Histamine and neurogenic inflammation in the bladder

Interstitial cystitis (IC), or painful bladder syndrome (PBS), numbers among its causes neurogenic inflammation; in fact, an increased density of nerve fibres has been reported (Peeker R et al., 2000). Evidences from both rodent and humans highlight an important role for mast cells. Activated mast cells have been associated to the rodent neurogenic cystitis induced by the Bartha strain of pseudorabies virus (PRV) (Chen MC et al., 2006; Jasmin L et al., 2000). Moreover, clinical studies have demonstrated elevated mast cell number in the lamina propria of IC bladder biopsies (Leiby BE et al., 2007) and an increased urinary histamine metabolites (el-Mansoury M et al., 1994). Although the central role of mast cells in PBS/IC is still unclear, in vivo model of IC pathogenesis suggested a positive feedback loop with SP containing peripheral nerves and mast cells: the activation of the bladder-associated circuits in the CNS initiates SP release by peripheral nerves in the bladder leading SP-mediated mast cell activation. Consequently, mast cell degranulation induces bladder inflammation by acting on urothelium. Histamine contribute to IC/PBS, is not only in evoking an inflammatory response, but seems also to be related to pelvic pain. In fact, histamine and histamine receptors as mediators in pain responses have been described in both animal models and humans (Mobarak JI et al., 2006; Thilagarajah R et al., 2001). Although the specific cell type among mast cells, basophils, neutrophils, dendritic cells and histaminergic neurons regulating histamine-mediated pain is unknown, it has been demonstrated, by using a model of PRV-induced pelvic pain in mast cell deficient KitW-sh/KitW-sh mice, that mast cells are required for histamine-mediated pelvic pain (Rudick 2008). However, the same authors demonstrated that KitW-sh/KitW-sh mice reconstituted with HDC+ bone marrow exhibited diminished pain, thus suggesting that non-mast cell sources of histamine may also contribute to pain. Moreover, Rudick CN et al. (2008) demonstrated that PRV induced pelvic pain is independent from TNF-dependent pathology and
instead is mediated by mast cell histamine, which then induces pain via histamine receptors H_1 and H_2 (Rudick CN et al., 2008). Thus, it has been suggested that antagonists of histamine H_1 and H_2 receptors are candidates for clinical trials in the treatment of chronic pain conditions, such as IC-related pelvic pain. Indeed, pilot clinical studies suggest that antihistamine therapy could be effective on IC-related pelvic pain. In particular, a symptomatic improvement has been reported in 30% of patients treated with the H_1 receptor antagonist hydroxyzine hydrochloride from 25 mg/die at night to 50 mg at night + 25 mg in the morning over a 2-week period (Theoharides TC et al., 1997). Although these positive results suggest a therapeutic role of histamine H_1 receptor antagonist in the treatment of IC/PBS, further studies with newer generation histamine H_1 receptor antagonists, with a lesser sedation component, have to be conducted. Moreover, the histamine H_2 receptor antagonist cimetidine produced significant improvement in pain and nocturia in a limited trial of PBS patients (Thilagarajah R et al., 2001). It has to be stressed that approximately 90% of patients with PBS/IC are women, thus suggesting that the process involving mast cells may be hormonally influenced. In fact, oestrogen receptors (ERs) are expressed on human mast cells and can mediate their degranulation, while the ER antagonist tamoxifen inhibits this phenomenon (Rudick CN et al., 2012).

All together these findings suggest that reproductive hormones may modulate IC symptoms at the mast cell levels. This hypothesis has been recently tested by Rudick CN et al. (2012) who assessed the basis of gender specific pelvic pain in the murine model of neurogenic cystitis PRV-induced. The data obtained suggest that pelvic pain in mice with murine neurogenic cystitis is mediated by gender specific responsiveness to mast cells, in contrast pelvic pain severity resulted to be modulated by genetic factors (Rudick CN et al., 2012).

Conclusion

In conclusion, experimental data here included widely show the complex physiopatological mechanism(s) known as neurogenic inflammation and the key role played by histamine (Table 1).
Neurogenic inflammation is involved in several processes of animal and human physiopathology: this review, with no ambition to be completely exhaustive, has anyway outlined the most up-to-date and widest fields of investigation. A comprehensive evaluation of the histamine role in neurogenic inflammation, as discussed here, highlights how the many experimental evidences have not yet reached a full clinical transferability and not yet support new pharmacotherapeutic approaches.

Acknowledgements

This work was supported by the University of Turin, Royal College of Anaesthesia/BJA and COST Action BM0806.

Conflict of interest

None.
References

effects of morphine in histamine H2 receptor gene knockout mice. Neuropharmacology 51: 612-
622.

Interaction of histamine and calcitonin gene-related peptide in the formalin induced pain perception

suppresses antigen-induced airway hyperreactivity and airway inflammation in ovalbuminin-
sensitized guinea pigs. Int Immunopharmacol 8: 725-731.

Pauwels RA, Germonpre PR, Kips JC, Joos GF (1995) Genetic control of indirect airway

hydroxylase immunoreactivity in bladder tissue from patients with classic and nonulcer interstitial

Table 1. Effect of selective histamine receptor antagonism in neurogenic inflammation

<table>
<thead>
<tr>
<th>Effect</th>
<th>Histamine receptor subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₁R</td>
</tr>
<tr>
<td>Pain</td>
<td>↓</td>
</tr>
<tr>
<td>Hyperalgesia*</td>
<td>↓</td>
</tr>
<tr>
<td>Allodynia</td>
<td>?</td>
</tr>
<tr>
<td>Itch</td>
<td>↓</td>
</tr>
<tr>
<td>Sneezing response</td>
<td>↓**</td>
</tr>
</tbody>
</table>

*The differential involvement of histamine receptor subtypes has been demonstrated by different experimental models

**only at high doses
Legends

Figure 1. The dual mediator role of mast cells: bidirectional interaction nerves-mast cells.
Neuropeptide released from sensory nerve endings stimulate adjacent mast cells in a receptor dependent manner. Mediators released from mast cells act in both a paracrine and autocrine fashion.
CGRP = calcitonin gene related peptide; SP = substance P; VIP = vasoactive intestinal peptide

Figure 2. The itch system. Histamine released from mast cells after a local stimulus activates histamine-sensitive pruriceptors, thus generating an actions potential which orthodromically travels, through to the dorsal horn of the spinal cord and the thalamus, to the cortex (blue line). The following antidromic stimulation induces the release of different mediators from sensory endings, substance P (SP) and calcitonin gene related peptide (CGRP). SP and CGRP released causes further mast cells degranulation resulting in vasodilatation (flare) and the recruitment of other pruriceptors.