Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells.

This is the author's manuscript

Original Citation:
Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells. / C. Vercelli; R. Barbero ;B. Cuniberti ; R. Odore; G. Re. - In: VETERINARY AND COMPARATIVE ONCOLOGY. - ISSN 1476-5829. - STAMPA. - 13:2(2015), pp. 133-142.

Availability:
This version is available http://hdl.handle.net/2318/137174 since 2018-04-12T11:10:23Z

Published version:
DOI:10.1111/vco.12028

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is an author version of the contribution published on:
Questa è la versione dell’autore dell’opera:

Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells

Veterinary and Comparative Oncology, 13 (2) 2015
DOI: 10.1111/vco.12028

The definitive version is available at:
La versione definitiva è disponibile alla URL:
Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells

C. Vercelli, R. Barbero, B. Cuniberti, R. Odore and G. Re

Department of Veterinary Sciences, Division of Veterinary Pharmacology and Toxicology, University of Turin, Grugliasco, Turin, Italy

Abstract

As canine mammary tumours (CMT) and human breast cancer share clinical and prognostic features, the former have been proposed as a model to study carcinogenesis and improved therapeutic treatment in human breast cancer. In recent years, it has been shown that transient receptor potential vanilloid 1 (TRPV1) is expressed in different neoplastic tissues and its activation has been associated with regulation of cancer growth and progression. The aim of the present research was to demonstrate the presence of TRPV1 in human and canine mammary cancer cells, MCF-7 and CF.41, respectively, and to study the role of TRPV1 in regulating cell proliferation. The images obtained by Western blot showed a signal at 100 kDa corresponding to the molecular weight of TRPV1 receptor. All tested TRPV1 agonists and antagonists caused a significant decrease (P<0.05) of cell growth rate in MCF-7 cells. By contrast, in CF.41 cells capsaicin and capsazepine induced a significant increase (P<0.05) in cell proliferation, whereas resiniferatoxin (RTX) and 5-iodo-resiniferatoxin (5-I-RTX) had no influence on CF.41 cell proliferation. Further studies are needed to elucidate the underlying molecular mechanism responsible for the different effects evoked by TRPV1 activation in MCF-7 and CF.41 cells.

Keywords: CF.41, MCF-7, proliferation assays, TRPV1, Western blotting

Introduction

Recent epidemiological data suggest that in 2008 almost 1.4 million women worldwide were diagnosed with breast cancer and approximately 459 000 deaths were recorded. The 5-year relative survival rate ranges from 12 to 90% depending on diagnostic and therapeutic approach.1 Similarly to humans, mammary glands are the most frequent site of neoplasia in female dogs and in this species mammary tumours represent one of the leading causes of death due to development of metastases in regional lymph nodes and lung.2 Clinical and molecular similarities between canine mammary tumours (CMT) and human breast cancer have been described in recent years.3 Interestingly, beside the fact that the etiopathogenesis of CMT is still unclear, by comparing breast cancer frequencies of dog and pet ownership a significant positive correlation was found.4 Indeed, the use of dogs spontaneously affected by cancer in trials testing novel anticancer therapies for humans, is growing.5,6 As in humans, age, obesity and diet seem to increase the risk of CMT.7 Moreover, in both species prognosis depends on tumor size, histology type, proliferation rate, lymph node status, hormonal receptor status, presence of metastases and gene expression profile.8

The transient receptor potential vanilloid 1 (TRPV1) is a member of the transient receptor potential (TRP) family known to be expressed in several neural and non-neuronal tissues of different animal species.9 TRPV1 is a non-selective cation channel that can be activated either by physical, chemical and pro-inflammatory stimuli such as noxious heat (>43°C), low pH (<6) or by different lipophilic compounds including capsaicin and phospholipid derivatives.10 The activation of TRPV1 receptors causes calcium influx and the corresponding release of tachykinin neuropeptides which, in turn, trigger a tissue response known as ‘neurogenic’ inflammation.11 In recent years, TRP channels have been associated with cancer growth and progression.12 Their expression has been demonstrated in different neoplastic tissues such as squamous cell carcinoma of the human tongue,13 human prostate carcinoma,14 colon cancer,15 transitional carcinoma of human bladder16 and human breast cancer.17 Santoni et al.16 found that TRPV1 expression decreases during the development of transitional cell carcinoma of human bladder and outlined its key role in the
regulation of tumour cell proliferation and even as possible therapeutic target. Mammalian TRPV1 receptors were cloned and characterized in humans, rats, guinea pigs, rabbits, mice and dogs. The various TRPV1-homologues share a conserved structure composed by six transmembrane spanning domains (S1–S6), intracellular N and C terminals and a pore-forming hydrophobic stretch between the fifth and the sixth domains. TRPV1 receptors are activated by vanilloids-like capsaicin. However, TRPV1 proteins do not always exhibit the same pharmacological profile. While in rat 12-phenyl-acetate 13-acetate 20-homovanillate (PPAHV) acts as a potent agonist for TRPV1, in humans and guinea pig TRPV1s are not stimulated by PPAHV. As mentioned previously, the canine model is currently used in comparative oncology as spontaneous tumours in dogs share a wide variety of epidemiological, biological and clinical features with human cancers, which make this animal model attractive in oncology research. In past decades, dog was studied as a model for prostate tumour, osteosarcoma, lymphoma and mammary tumour. Considering that TRPV1 is expressed both in human and canine species and it is expressed in human breast cancer, the aim of the present research was to study the expression of TRPV1 receptor in cells derived from human breast cancer and canine mammary cancer. Moreover, the pharmacological characteristics of different specific TRPV1 agonists and antagonists were studied through proliferation assays in order to evaluate the capacity of TRPV1 ligands to modulate the growth of tumour cells.

Materials and methods

Cell culture
MCF-7 cells (cells derived from pleural effusion after pleural metastatization of human breast adenocarcinoma, ATCC cell culture, LGC Standards, Milan, Italy) and CF.41 cells (cells derived from canine mammary adenocarcinoma, ATCC cell culture, LGC Standards, Milan, Italy) were cultured in 75 cm³ flasks containing Dulbecco’s Modified Eagles Medium (DMEM, Lonza, Basel, Switzerland) supplemented with 20% Fetal Bovine Serum (FBS, Sigma Aldrich, Milan, Italy), 2% penicilllin–streptomycin–amphotericin B solution (Sigma Aldrich) and 2% L-glutamine (Sigma Aldrich) at 37°C with 5% CO₂, 95% air and complete humidity. When reaching a confluence of 80%, cells were detached using 0.1% Trypsin/EDTA solution (Sigma Aldrich), centrifuged and counted using Trypan Blue solution (Sigma Aldrich) with a Burker chamber. Cells were then resuspended at a concentration of 5 × 10⁵ cells mL⁻¹ and seeded at the same conditions mentioned before.

Western blotting assay
Thawed cells (concentration 180×10⁶ cells approximately), re-suspended in binding buffer (KCl 5 mM, NaCl 5.8 mM, CaCl₂ 0.75 mM, MgCl₂ 2 mM, sucrose 320 mM and Hepes 10 mM, pH 7.4, Sigma Aldrich), were disrupted using a sonicator (XL 2020, Misonix, Farmingdale, NY, USA) and centrifuged at 3000×g for 10 min at 4°C. The resulting supernatants were ultra centrifuged at 105 000×g for 45 min at 4°C to separate cytosolic fraction from cell membrane fraction. The final pellets were suspended in the same buffer and the protein concentration was measured according to the method described by Lowry et al. Samples were loaded at 25, 50 and 100 μg mL⁻¹ of protein per lane and subjected to sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDSPAGE) procedure using 8% Acrylamide (Biosolve, Valkenswaard, The Netherlands) gel. A proteic lysate of urinary rat bladder was used as positive control. Samples were then transferred to nitrocellulose membranes (Hybond ECL, Amersham, GE Healthcare, Milan, Italy). After being washed three times, samples were probed with the primary anti-TRPV1 antibody (goat polyclonal antibody, Santa Cruz Biotechnology, Heidelberg, Germany) (dilution 1:100) and incubated overnight at 5°C on a shaking plate. At the end of the incubation period samples were washed again for four times and probed with the secondary antibody (donkey anti-goat IgG–HRP, Santa Cruz Biotechnology) (dilution 1:15 000) for 1 h. Secondary antibody was removed by fourwashes and immunoreactive
bands were visualized by enhanced chemiluminescence (ECL-Plus System, Amersham, GE Healthcare). To obtain an endogenous control, membranes were washed and re-probed with β-actin antibody (dilution 1:100, Santa Cruz Biotechnology) for 1 h. Also, in this case the immunoreactive bands of β-actin were visualized by ECL (ECL-Plus System, Amersham, GE Healthcare).

Proliferation assays

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma Aldrich) reduction assay was performed for both cell lines. This method is one of the most frequently used for quantitating cell viability and it measures the conversion of MTT into purple-coloured formazan that is induced by redox activity of living cells: a decrease of cellular redox activity could be index of cell damage.33 Cultured cells were detached using 0.1% Trypsin/EDTA solution (Sigma Aldrich) and diluted to a final concentration of 5 × 103 cells 100 μL−1. The cell suspension was transferred into 96-well plates with DMEM (Lonza, Basel, Switzerland), 10% FBS (Sigma Aldrich), 2% penicilllin–streptomicin–amphotericin B solution (Sigma Aldrich) and 2% L-glutamine (Sigma Aldrich). Each drug was tested in two different experimental sessions and three plates were prepared per each experimental session (n=6). To evaluate the background adsorption, the first row of every plate remained cell-free as blank control. In the second row, cells were seeded in absence of any drug as internal control. The remaining part of the plates was used to test TRPV1 ligands. After an overnight incubation at 37°C and 5% CO2, the medium used for the seeding was replaced by a medium prepared with DMEM, 5% FBS, 2% penicilillin–streptomicin–amphotericinBsolution, 2%L-glutamine with the addition of increasing concentrations of the following TRPV1 ligands: Capsaicin and capsazepine (partial agonist and antagonist, respectively, Sigma Aldrich) (10 −10−10–10−4M), resiniferatoxin (RTX) and 5-iodo-resiniferatoxin (5-I-RTX) (pure agonist and antagonist, respectively, Sigma Aldrich) (10−10−10−6M). Plates were incubated at 37°C at 5% CO2 for 24, 48 and 72 h. At each experimental time point, 20 μL of MTT (Sigma Aldrich) solution (4 mgmL−1) were added to each well, except to the free-cell blank wells, and plates were incubated at 37°C and 5% CO2 for 4 h. At the end of the incubation period, the medium containing theMTT solution was discarded and 100 μL of dimethyl sulfoxide (DMSO, Sigma Aldrich) were added in order to dissolve the formazan crystals. The plates were further incubated for 10 min at room temperature and then read using a plate reader (Powerwave X, Bio-Teck, Winooski, VT, USA) at a wavelength of 570 nm. The results obtained by the proliferation assays were statistically analysed using a computer programme (GraphPad Prism Software, San Diego, CA, USA), applying the Kruskal–Wallis test and a Dunn’s post-test (P<0.05).

Results

Western blotting

Western blotting analysis indicated that the TRPV1 protein is expressed in MCF-7 cells as shown by the high density signal corresponding to the molecular weight of 100 kDa, in accordance with the mass of human TRPV1 (Fig. 1A).34 The signal corresponding to 100 kDa was also recognizable in the Western blotting analysis of CF.41 cells (Fig. 1B). The same signal was present in positive control (lysate of rat urinary bladder). Fig. 1C shows the signal corresponding to β-actin, used as endogenous control.

Proliferation assays

MCF-7 proliferation assay data are summarized in Figs 2–5. All tested agonists and antagonists induced a significant decrease (P<0.05) of growth rate in treated cells compared with controls. RTX showed a caracteristic time-dependent behaviour (Fig. 4). As far as CF.41 cells are concerned results are presented in Figs 6–9. The partial agonist (capsaicin) and the partial antagonist (capsazepine) caused a significant increase (P<0.05) of CF.41 cell proliferation. By contrast, RTX and 5-I-RTX did not induce any significant effect on cell growth rate.
Discussion
To our knowledge, this is the first study demonstrating the expression of TRPV1 in CF.41 cells, while TRPV1 in MCF-7 cells had already been identified by Barbero et al.35 in 2006. Increased expression of TRPV1 is associated with a better prognosis of patients with hepatocellular carcinoma, whereas expression of TRPV1 is decreased in the urothelium of patients with advanced stage transitional cell carcinoma, suggesting that TRPV1 might function as a tumour suppressor and negatively control tumour progression.36 Different TRP channels are also expressed in human breast cancer cells and cell lines such as MCF-7 and their overexpression compared to normal gland can be considered a suitable prognostic marker.37 It has been suggested that the receptor-mediated anti-tumour activity is associated with induction of apoptosis following activation of TRPV1 and changes in cell calcium influx.38 Calcium is an important intracellular messenger that regulates many physiological functions such as cellular differentiation, proliferation and apoptosis. Abnormal functioning of calcium signalling pathways may occur during cancerogenesis. Therefore, calcium channels with increased expression and/or activity in cancer could potentially serve as anticancer therapeutic targets. Recent investigations have suggested that besides proapoptotic action, the activation of TRPV1 leads to anti-angiogenic, anti-migrative, anti-adhesive and anti-metastatic effects.39 As TRPV1 is implicated in cell proliferation and pain modulation, a number of studies have been performed to describe the binding characteristics and clinical efficacy of selective TRPV1 agonists and antagonists.40 Capsaicin and RTX are selective TRPV1 agonists and cause TRPV1 desensitization after activation while capsazepine and 5-iodo-resiniferatoxin are selective TRPV1 antagonists inducing a functional block of TRPV1 receptor.41 In our study, all tested agonists and antagonists caused a significant decrease (P<0.05) in MCF-7 cell proliferation. By contrast, capsaicin and capsazepine induced a significant increase (P<0.05) in CF.41 cell proliferation. These findings might account for species-specific differences in TRPV1 pharmacological properties. In rodents, TRPV1 is activated by capsaicin and residues Arg114 and Glu761 in the intracellular N- and C-termini have been recognized as agonist binding sites.42 Unlike the murine one, the avian form of TRPV1 is not activated by capsaicin and the agonist binding sites are represented by residues Tyr511 and Thr550 in the third and fifth transmembrane domains.21 Moreover, species-dependent behaviour has been observed also for antagonists. According to Premkumar and Sikand,43 the TRPV1 competitive antagonist capsazepine inhibits the acid-induced activation of human TRPV1, but exhibits no effects on acid-induced activation of rat TRPV1. The compound can inhibit heat-induced TRPV1 activation both in humans and rat. Besides this, it has been demonstrated that TRPV1 mutations can lead to changes in TRPV1 responses to agonist stimulation. Mutations at the sixth TRPV1 transmembrane domain can cause, for example, the reduction of 3[H]resiniferatoxin binding affinity and mutations on pore domain significantly decrease the sensitivity to capsaicin.44 A further hypothesis to explain the different effects induced by TRPV1 agonists and antagonists on MCF-7 and CF.41 proliferation might be the possible interaction of capsaicin and capsazepine with other TRP or non-TRP receptors. Hwang et al.41 found that capsaicin might act as co-carcinogen on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin carcinogenesis through the epidermal growth factor receptor. As the MTT proliferation assay does not provide information concerning the molecular mechanisms involved in TRPV1 responses, further studies are needed to understand differences in human and canine breast cancer cell proliferation upon TRPV1 agonist and antagonist stimulation. The results of proliferation assays performed on MCF-7 confirm the potential of TRPV1 agonists as anti-cancer drugs. Interestingly, capsaicin was shown to inhibit human cancer hormone-resistant cells and to provide chemopreventive effects.45 Moreover, it was demonstrated that capsaicin is able to mediate cell death of T24 (human bladder cancer) and A172 (human glioma) cell lines.46,47 Even if the results of proliferation assays on MCF-7 cells seem to suggest that also TRPV1 antagonists could be used in cancer treatment, their use should be carefully considered: the systemic administration of TRPV1 antagonists could lead to the change of body temperature, gastrointestinal and cardiovascular functions.43 Furthermore, the blockade of TRPV1 has been shown to increase its
own expression, thereby raising the possibility of rebound effects. Therefore, TRPV1-mediated effects on human and canine breast cancer cells should be encouraged.

Acknowledgement
Supported by grants of Regione Piemonte (‘Ricerca Sanitaria Finalizzata Regione Piemonte 2009’)

References


Figure 1. The samples used for Western blot analysis were loaded at different concentrations: 25, 50 and 100 μg/mL−1 of protein. The image (A) is correlated to MCF-7 cells and shows a signal corresponding to the molecular weight of 100 kDa that is reported to correspond to human TRPV1 receptor. The same signal is visible also in image (B) correlated to CF.41 cells. As endogenous control, β-actin was detected (C). The positive control (K+) is composed by proteic lysate of rat urinary bladder.

Figure 2. MTT assay (n=6) to evaluate the modulation of MCF-7 cells growth after the treatment with increasing concentration (10−10 to 10−4 M) of Capsaicin at different experimental time points (2, 24, 48 and 72 h). All the samples treated with increasing concentrations of Capsaicin demonstrated a significant decrease (P<0.05) of the cell growth rate compared to the controls (K). The MCF-7 cells proliferation was statistically analysed using Kruskal–Wallis test and Dunn’s post test (mean±SEM). a, b, c, d=P<0.05. *=P<0.05.
Figure 3. MTT assay (n=6) to evaluate the modulation of MCF-7 cells growth after the treatment with increasing concentration (10−10 to 10−4 M) of Capsazepine at different experimental time points (2, 24, 48 and 72 h). All the samples treated with increasing concentrations of Capsazepine demonstrated a significant decrease (P<0.05) of the cell growth rate compared to the controls (K). The MCF-7 cells proliferation was statistically analyzed using Kruskal–Wallis test and Dunn’s post test (mean±SEM). a, b, c, d=P<0.05. *=P<0.05.

Figure 4. MTT assay (n=6) to evaluate the modulation of MCF-7 cells growth after the treatment with increasing concentration (10−10 to 10−6 M) of RTX at different experimental time points (2, 24, 48 and 72 h). All the samples treated with increasing concentrations of RTX demonstrated a significant decrease (P<0.05) of the cell growth rate compared to the controls (K). The MCF-7 cells proliferation was statistically analyzed using Kruskal–Wallis test and Dunn’s post test (mean±SEM). a, b, c, d=P<0.05. *=P<0.05.
Figure 5. MTT assay (n=6) to evaluate the modulation of MCF-7 cells growth after the treatment with increasing concentration (10−10 to 10−6 M) of 5-I-RTX at different experimental time points (2, 24, 48 and 72 h). All the samples treated with increasing concentrations of 5-I RTX demonstrated a significant decrease (P<0.05) of the cell growth rate compared to the controls (K). The MCF-7 cells proliferation was statistically analysed using Kruskal–Wallis test and Dunn’s post test (mean±SEM). a, b, c, d=P<0.05. *=P<0.05.

Figure 6. MTT assay (n=6) to evaluate the modulation of CF.41 cells growth after the treatment with increasing concentration (10−10 to 10−4 M) of Capsaicin at different experimental time points (2, 24, 48 and 72 h). All the samples treated with increasing concentrations of Capsaicin demonstrated a significant increase (P<0.05) of the cell growth rate compared to the controls (K). CF.41 cells proliferation was statistically analysed using Kruskal–Wallis test and Dunn’s post test (mean±SEM). a, b, c, d=P<0.05. *=P<0.05.
Figure 7. MTT assay (n=6) to evaluate the modulation of CF.41 cells growth after the treatment with increasing concentration (10−10 to 10−4 M) of Capsazepine at different experimental time points (2, 24, 48 and 72 h). All the samples treated with increasing concentrations of Capsazepine demonstrated a significant increase (P<0.05) of the cell growth rate compared to the controls (K). The CF.41 cells proliferation was statistically analyzed using Kruskal–Wallis test and Dunn’s post test (mean±SEM). a, b, c, d=P<0.05. *'=P<0.05.

Figure 8. MTT assay (n=6) to evaluate the modulation of CF.41 cells growth after the treatment with increasing concentration (10−10 to 10−6 M) of RTX at different experimental time points (2, 24, 48 and 72 h). All the samples treated with increasing concentrations of RTX did not demonstrate any significant effect (P<0.05) on the cell growth rate compared to the controls (K). The CF.41 cells proliferation was statistically analyzed using Kruskal–Wallis test and Dunn’s post test (mean±SEM). a, b, c, d=P<0.05. ns=not significant.
Figure 9. MTT assay (n=6) to evaluate the modulation of CF.41 cells growth after the treatment with increasing concentration (10^{-10} to 10^{-6} M) of 5-I-RTX at different experimental time points (2, 24, 48 and 72 h). All the samples treated with increasing concentrations of 5-I-RTX did not demonstrate any significant effect (P<0.05) on the cell growth rate compared to the controls (K). The CF.41 cells proliferation was statistically analysed using Kruskal–Wallis test and Dunn’s post test (mean±SEM). a, b, c, d=P<0.05. ns=not significant.