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Fair Subtyping for Open Session Types

Luca Padovani

Università di Torino, Dipartimento di Informatica, Italy
luca.padovani@unito.it

Abstract. Standard subtyping for session types may compromise session live-
ness, that is the ability for some participant of a session to make progress. We de-
fine a fair subtyping relation for possibly open session types that preserves session
liveness and is a pre-congruence with respect to all the operators of the type lan-
guage. Even if fair subtyping and the well-known should-testing pre-congruence
share the same definition, it turns out that fair subtyping is coarser than should-
testing, admits an intuitive characterization as a refinement of standard subtyping,
is fully axiomatizable, and can be decided efficiently.

1 Introduction

Session types [6,7] describe the type, order, and direction of messages that can be sent
over channels. In essence, session types are simple CCS-like processes using a reduced
set of operators [2,1]: termination, external and internal choices respectively guarded by
input and output actions, and recursion. For example, the session type T = µx.(!a.x⊕
!b) denotes a channel for sending an arbitrary number of a messages followed by a
single b message. In an almost dual manner, the session type S = µx.(?a.x+?b.!c) de-
notes a channel for receiving an arbitrary number of a messages, or a single b message
after which it is possible to send a c message. A term T |S |?c describes a session as the
parallel composition of the behavior of its participants. In this case the session has three
participants that interact through three session channels of type T , S, and ?c. Session
type systems check that processes use session channels according to a session type. For
instance, the typing derivation below proves that the process rec x.k!〈m〉.x sending the
message m on channel k is well typed in the channel environment k : T provided that
“m is a message of type a” (the exact interpretation of this property is irrelevant):

` m : a
[VAR]

X 7→ {k : x};k : x `X
[OUTPUT]

X 7→ {k : x};k : !a.x ` k!m.X !a.x⊕ !b6 !a.x
[SUB]

X 7→ {k : x};k : !a.x⊕ !b ` k!m.X
[REC]

k : µx.(!a.x⊕b) ` rec X .k!m.X

Rule [REC] opens the recursive session type T in correspondence with recursion in
the process and augments the process environment with the association X 7→ {k : x}. In
this way, an occurrence of the process variable X in a channel environment where the
channel k has type x can be declared well typed. Rule [SUB] applies subsumption on k
so that its type !a.x⊕ !b matches the actual behavior of the process, which is described
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by !a.x (thinking of channels as objects and of messages as methods, the process is
invoking the a method on an object that has both a and b methods available). Rule
[OUTPUT] checks that the output performed by the process on channel k is consistent
with the type of k. Finally, the continuation of the process after k!m is checked against
the residual type of k after !a.

The original subtyping for session types [5] establishes that 6 is contravariant for
outputs: indeed the derivation above relies on the law !a.x⊕ !b6 !a.x, where the larger
session type permits fewer outputs. This law is consistent with other subtyping relations
for channel types [11,4], but there are contexts in which its unconditioned application
may compromise session liveness. For instance, consider the session described earlier
as T |S |?c and observe that all non-terminated participants retain the potential to make
progress: it is always possible for the first participant to send a b message and terminate.
If that happens, the second participant sends the c message to the third participant, at
which point all participants terminate. Accepting as correct the typing derivation above
means accepting as correct also the session µx.!a.x | S | ?c, where the first participant
sends only a messages. In this session, however, the third participant is no longer able
to make any progress, so the liveness of the session with respect to the third participant
is compromised. This example proves that the original subtyping relation for session
types, for which !a.x⊕ !b 6 !a.x holds, is not liveness preserving in general: there
exist a context C = µx.[ ] and two behaviors S | ?c such that the session described
by C [!a.x⊕ !b] |S | ?c does have the liveness property while C [!a.x] |S | ?c does not.

The contribution of this work is the definition and characterization of a new subtyp-
ing relation, which we dub fair subtyping, as the coarsest liveness-preserving refinement
for possibly open session types (like !a.x⊕ !b and !a.x above) that is a pre-congruence
for all the operators of the type language. With this definition in place, we are able to
reject a derivation like the one above because it is based on the law !a.x⊕ !b 6 !a.x
which is invalid for fair subtyping. A behavioral refinement called should-testing with
all the above properties has been extensively studied in [12]. There, should-testing is
shown to be the coarsest liveness-preserving pre-congruence of a process algebra con-
siderably richer than session types. Therefore, given the correspondence between ses-
sion types and processes, we could just take should-testing as the defining notion for
fair subtyping, but we find this shortcut unsatisfactory for a number of reasons: first,
should-testing implies trace equivalence between related processes. In our context, this
would amount to requiring invariance of outputs, essentially collapsing subtyping to
type equality. Second, no complete axiomatization is known for should-testing and
its alternative characterization is based on a complex denotational model. As a con-
sequence, it is difficult to understand the basic laws that underlie should-testing. Third,
the decision algorithm for should-testing is linear exponential, that is remarkably more
expensive compared to the quadratic algorithm for the original subtyping [5]. Instead,
by restricting the language of processes to that of session types, we are able to show
that:

– Fair subtyping is coarser than should-testing and does not imply trace equivalence.
– Fair subtyping admits a complete axiomatization obtained from that of the original

subtyping by plugging in a simple auxiliary relation in just two strategic places.
– Fair subtyping can be decided in O(n4) time.
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In the rest of the paper we formalize session types as an appropriate subset of CCS
(Section 2) and define fair subtyping as the relation that preserves session liveness in
every context (Definition 2.2). Then, we provide a coinductive characterization of fair
subtyping that unveils its properties (Section 3). The pre-congruence property is subtle
to characterize because fair subtyping is context sensitive (two session types may or
may not be related depending on the context in which they occur). For example, we
have seen that !a.x⊕ !b 66 !a.x and yet !a.(!a.x⊕ !b)⊕ !b 6 !a.!a.x⊕ !b despite the
unrelated terms !a.x⊕ !b and !a.x occur in corresponding positions in the latter pair
of related session types. The coinductive characterization also paves the way to the
complete axiomatization of fair subtyping and to its decision algorithm (Section 4).
In turn, the axiomatization shows how to incrementally patch the original subtyping
for session types to ensure liveness preservation. We conclude with a more detailed
comparison with related work (Section 5) and a few remarks on the relevance of this
research (Section 6). Proofs of the results can be found in the appendix, which it is not
formally part of the submission.

Table 1. Syntax of session types and sessions.

T ::= Session Type
end (termination)

| x (variable)
| ∑i∈I ?ai.Ti (input)
|

⊕
i∈I !ai.Ti (output)

| µx.T (recursion)

M ::= Session
T (endpoint)

| (M |M) (composition)

2 Syntax and Semantics of Session Types

We assume given an infinite set V of variables x, y, . . . and an infinite set of messages
a, b, . . . . We let X , Y , . . . range over subsets of V. The syntax of sessions and session
types is given by the grammar in Table 1. Sessions M, N, . . . are abstracted as paral-
lel compositions of session types T , S, . . . which are informally described below. The
term end denotes the type of channels on which no further operations are possible. We
will often omit trailing occurrences of end. A term ∑i∈I ?ai.Ti is the type of a channel
for receiving a message in the set {ai}i∈I . According to the received message ai, the
channel must be used according to Ti afterwards. Terms

⊕
i∈I !ai.Ti are analogous, but

they denote the type of channels that can be used for sending messages. Note that out-
put session types represent internal choices (the process using a channel with output
type can choose any message in the set {ai}i∈I) while input session types are exter-
nal choices (the process using a channel with input type must be ready to deal with
any message in the set {ai}i∈I). We assume that the set I in input and output session
types is always finite and non-empty and that choices are deterministic, in the sense
that ai = a j implies i = j for every i, j ∈ I. We will sometimes use an infix notation for
choices writing ?a1.T1 + · · ·+ ?an.Tn and !a1.T1⊕·· ·⊕ !an.Tn instead of ∑1≤i≤n ?ai.Ti
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and
⊕

1≤i≤n !ai.Ti respectively. Terms µx.T and x are used for building recursive session
types, as usual. We assume that session types are contractive, namely that they do not
contain any subterm of the form µx1 · · ·µxn.x1. The notions of free and bound variables
are standard and so are the definitions of open and closed session types. We take an
equirecursive point of view and identify session types modulo renaming of bound vari-
ables and folding/unfolding of recursions. That is, µx.T = T{µx.T/x} where T{S/x}
is the capture-avoiding substitution of every free occurrence of x in T with S.

Table 2. Transition system of sessions.

[T-OUTPUT]

!a.T
!a−→ T

[T-CHOICE]
k ∈ I⊕

i∈I
!ai.Ti

τ−→ !ak.Tk

[T-INPUT]
k ∈ I

∑
i∈I

?ai.Ti
?ak−−→ Tk

[T-PAR LEFT]

M
`−→M′

M |N `−→M′ |N

[T-PAR RIGHT]

N
`−→ N′

M |N `−→M |N′

[T-PAR COMM]

M
α−→M′ N

α−→ N′

M |N τ−→M′ |N′

We define the operational semantics of sessions by means of a labeled transition
system mimicking the actions performed by processes that behave according to session
types (in fact, we are abstracting processes into types). The transition system makes use
of actions α of the form ?a and !a describing the input/output of a messages and labels `
that are either actions or the invisible move τ . Axioms and rules of the transition system
are defined in Table 2 and briefly described hereafter. Rules [T-OUTPUT], [T-CHOICE],
and [T-INPUT] deal with prefixed terms. The first and last ones are standard. Rule [T-
CHOICE] states that a process behaving according to the type

⊕
i∈I !ai.Ti may internally

choose, through an invisible move τ , to send any message from the set {ai}i∈I . Rules [T-
PAR LEFT], [T-PAR RIGHT] propagate labels across compositions while [T-PAR COMM]
is the synchronization rule between complementary actions resulting into an invisible
move (we let ?a = !a and !a = ?a).

We use ϕ , ψ , . . . to range over strings of actions, ε to denote the empty string, and
≤ to denote the usual prefix order between strings. We write τ

=⇒ for the reflexive, tran-
sitive closure of τ−→ and α

=⇒ for the composition τ
=⇒ α−→ τ

=⇒. We extend this notation
to strings of actions so that

α1···αn
===⇒ stands for the composition

α1=⇒·· · αn=⇒. We write
T α
=⇒ (respectively T

ϕ
=⇒) if there exists S such that T α

=⇒ S (respectively T
ϕ

=⇒ S).
We write T Y

ϕ
=⇒ if not T

ϕ
=⇒. We let tr(T ) denote the set of traces of T , namely

tr(T ) def
= {ϕ | T ϕ

=⇒}.
We say that a session M is successful if every computation starting from M can be

extended to a state that emits the action !OK, where OK is a special message that we
assume is not used for synchronization purposes. Formally:

Definition 2.1 (success). We say that M is successful if M τ
=⇒ N implies N !OK

=⇒.
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Example 2.1. Consider T = µx.(!a.x⊕ !b) and S = µx.(?a.x+ ?b.!c) from the intro-
duction. Then T | S | ?c.!OK is a successful session because, no matter how many a
messages the first participant sends, it is always possible that a b message and a c mes-
sage are sent. At that point, the third participant emits !OK. The session !b |S | ?c.!OK is
successful as well. By contrast µx.!a.x | S | ?c.!OK is unsuccessful even if that the first
two participants keep interacting with each other, because none of them is sending the
c message that the third participant is waiting for. �

We can now define fair subtyping as the relation that preserves session success. To
make sure that fair subtyping is a pre-congruence, we quantify over all possible contexts
that apply to the two session types being compared. Contexts, ranged over by C , are just
session types with a hole [ ] in place of some subterm and are generated by the grammar

C ::= [ ] | ?a.C +∑i∈I ?ai.Ti | !a.C ⊕
⊕

i∈I !ai.Ti | µx.C

where the set I indexing choices is finite and possibly empty. We write C [T ] for the ses-
sion type obtained by filling the hole in C with T . This operation differs from variable
substitution in that C may capture variables occurring free in T .

Fair subtyping is defined thus:

Definition 2.2 (fair subtyping). We say that T is a fair subtype of S, written T 6 S, if
M |C [T ] successful implies M |C [S] successful for every M and C .

Note the left-to-right substitution of behaviors that characterizes Definition 2.2 as
opposed to the right-to-left substitution of values that is normally associated with sub-
typing relations. In fact, these are just different viewpoints for the same intuition: when
we replace a channel of type S with another one of type T within a (well-typed) process,
the process keeps behaving according to S even if it is acting on a channel of type T .
If the channel of type T was meant to work successfully in a session M |T and T 6 S,
then success of the session is not compromised as M |S is still successful.

Showing that T 6 S is difficult in general, because of the universal quantification
over sessions M and contexts C in Definition 2.2. Until we characterize precisely the
properties of 6 in Section 3, we can only argue informally as to why a relation holds.

Example 2.2. Consider T = µx.(!a.x⊕ !b) and S1 = µx.(!a.!a.x⊕ !b) and take M =
µx.(?a.x+?b.!OK). Note that M relies on the eventual reception of a b message to emit
!OK so M is somehow the “most demanding” session such that M |T is successful. Now,
since M |S1 is successful as well, we can argue that T 6 S1 does hold. It is easier to find
session types not related by fair subtyping. For instance, given S2 = µx.!a.x we have
T 66 S2 because M |T is successful but M | S2 is not (no b message is ever sent). Now,
for C = µx.[ ] we have T = C [!a.x⊕b] and S2 = C [!a.x], therefore !a.x⊕b 66 !a.x. �

3 Fair Subtyping

In this section we develop an alternative characterization of fair subtyping. To ease the
presentation of the development, we split it up in three steps corresponding to three
increasingly accurate approximations of fair subtyping. The last approximation will be
shown to coincide with fair subtyping.
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3.1 Unfair Subtyping

We begin by defining a subtyping relation for session types, which we dub “unfair
subtyping”, as a first approximation of 6.

Definition 3.1 (unfair subtyping). We say that U is a coinductive subtyping if T U S
implies either (1) T = S= x or (2) T = S= end or (3) T =∑i∈I ?ai.Ti and S=∑i∈I ?ai.Si
and Ti U Si for every i ∈ I or (4) T =

⊕
i∈I∪J !ai.Ti and S =

⊕
i∈I !ai.Si and Ti U Si for

every i ∈ I. Unfair subtyping, denoted by 6U, is the largest coinductive subtyping.

Clauses (1–2) state the reflexivity of 6U for end and type variables, while clauses
(3–4) respectively state invariance and contravariance of 6U with respect to external
and internal choices. Unfair subtyping is essentially the standard subtyping relation for
session types presented in [5], except that standard subtyping is covariant with respect
to external choices. This difference is motivated by the synchronous communication
model we have adopted (see Section 5 for a more detailed discussion). The appeal for
unfair subtyping comes from its semplicity and intuitive rationale. The key clause (4)
states that the larger session type allows in general for fewer kinds of messages to
be sent: when T 6U S, a process behaving according to S can be safely placed in a
context where a process behaving according to T is expected because S expresses a
more deterministic behavior compared to T . Reducing non-determinism is generally
perceived as harmless, but sometimes it may compromise liveness.

Example 3.1. Consider the session types T = !a.x⊕ !b and S = !a.x and the context
C = µx.[ ]. Then both {(T,S),(x,x)} and {(C [T ],C [S])} are coinductive subtyping
relations, from which we deduce T 6U S and C [T ] 6U C [S]. Yet Example 2.2 shows
that neither C [T ]6 C [S] nor T 6 S do hold. �

Unfair subtyping is a necessary but not sufficient condition for fair subtyping.

Theorem 3.1. 6(6U.

3.2 Towards the Characterization of Fair Subtyping

We introduce some handy notation for referring to the residual of a session type after
some sequence of actions.

Definition 3.2 (continuation). Let α ∈ tr(T ). The continuation of T after α is the ses-
sion type S such that T ε

=⇒ α−→ S (note that S is uniquely determined because branches
in session types are guarded by distinct actions). We extend the notion of continuation
to sequences of actions so that T (ε) = T and T (αϕ) = T (α)(ϕ) when αϕ ∈ tr(T ).

Example 3.1 shows that some branches of internal choices cannot be pruned without
compromising session success. Therefore, we must identify additional conditions to
restrict clause (4) of Definition 3.1 so that T 6U S implies T 6 S. The condition

tr(T )⊆ tr(S) (1)
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Table 3. Convergence relation.

∀ϕ ∈ tr(T )\tr(S) : ∃ψ ≤ ϕ,a : T (ψ!a)v S(ψ!a)
T v S

is clearly sufficient but also overly restrictive: it imposes invariance of fair subtyp-
ing with respect to outputs, collapsing fair subtyping to equality. Condition (1) plays
nonetheless a key role: we will show that, when T 6 S, there must be an “inevitable” pair
of corresponding continuations of T and S at some “finite distance” from T and S for
which condition (1) holds. To illustrate, consider the session types T = µx.(!a.(!a.x⊕
!c)⊕ !b) and S = µx.(!a.!a.x⊕ !b) depicted as the graphs in Figure 1(a). Comparing
T and S we see that they differ because of the missing !c-labeled branch in S. We also
observe that the difference occurs along a loop having a !b-labeled exit path shared
by both T and S and leading to an end state where condition (1) holds (tr(end) ⊆
tr(end)). This state is “inevitable” in the sense that the path leading to it departs
from an internal choice. By contrast, consider now T ′ = µx.(?a.(!a.x⊕ !c)+ ?b) and
S′ = µx.(?a.!a.x+ ?b) which are similar to T and S above except that the outermost
choice is now an external one. Their graphs (Figure 1(b)) do indeed share a loop with
an exit path leading to a region of T ′ and S′ in which the traces of the former are included
in those of the latter. However, this path starts from an external choice and therefore the
end state is not “inevitable”.

We formalize the inevitable reachability of an indistinguishable region of T and S
saying that T converges into S, where the convergence relation is inductively defined in
Table 3. To get acquainted with convergence, keep in mind that it is inductively defined
and observe that its base case corresponds exactly to enforcing condition (1):

tr(T )⊆ tr(S)
T v S

In the general case, imagine some session M that strives to detect any difference be-
tween T and S, in the sense that M succeeds (emitting !OK) as soon as it enters some
trace of T that is not present in S. In order to achieve its goal, M will try to drive the
interaction along some path ϕ ∈ tr(T )\tr(S). This is where convergence comes into
play: the rule in Table 3 states that after following some prefix ψ of ϕ that is shared by
both T and S, M encounters an internal choice of S having a branch (corresponding to

⊕

⊕

end

!a

!b

!a
!c ⊕

⊕

end

!a

!b

!a

(a)

+

⊕

end

?a

?b

!a
!c +

⊕

end

?a

?b

!a

(b)

Fig. 1. Graph representation of session types.
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some action !a) that may divert the interaction to a new stage where the residual behav-
iors of T and S (respectively T (ψ!a) and S(ψ!a)) have sets of traces that are slightly
less different. We say “slightly less different” because T (ψ!a) and S(ψ!a) are one step
closer to the top of the derivation of T v S, whose leaves imply condition (1). Since the
convergence relation is defined inductively, this means that T and S are a finite number
of stages away from the point where condition (1) holds. In conclusion, when T v S
holds, it is impossible for M to solely rely on the traces in tr(T )\tr(S) in order to suc-
ceed; M can always be veered into a stage of the interaction where (some continuations
of) T and S are no longer distinguishable as all the traces of T are also traces of S.

We can now restrict 6U to converging pairs of session types:

Definition 3.3 (fair coinductive subtyping). A coinductive subtyping U is fair if T U
S implies T v S. Let 6F denote the largest fair coinductive subtyping.

The relation 6F does indeed preserve success:

Theorem 3.2. Let T 6F S. Then M |T successful implies M |S successful for every M.

Moreover, 6F is a pre-congruence for internal and external choices and it fully
characterizes fair subtyping for closed session types:

Proposition 3.1. Let T,S be closed. Then T 6F S if and only if T 6 S.

Example 3.2. We are now able to show that the session types T = µx.(!a.x⊕ !b) and
S = µx.(!a.!a.x⊕ !b) considered in Example 2.2 are related by fair subtyping. Observe
that T 6U S and that tr(T )\tr(S) is the language of strings generated by the regular
expression !a(!a!a)∗!b. Given an arbitrary string in tr(T ) \tr(S) we can take ψ = ε

and we have T (!b) = S(!b) = end where end v end, so we can conclude T v S. In
general, the reader may verify that T (ϕ)v S(ϕ) holds for every ϕ ∈ tr(S). Therefore
we have T 6F S. Since T and S are closed, we conclude T 6 S by Proposition 3.1. �

Example 3.3. Consider again the session types T = !a.x⊕ !b and S = !a.x and the con-
text C = µx.[ ] and recall that in Example 3.1 we showed T 6U S and C [T ] 6U C [S].
Let us try to build a derivation for C [T ] v C [S]. Note that tr(C [T ]) \tr(C [S]) is the
language of strings generated by the regular expression (!a)∗!b. Taken ϕ ∈ tr(C [T ])\
tr(C [S]) we have that any prefix ψ of ϕ that is in tr(C [T ])∩tr(C [S]) has the form
!a · · · !a and now C [T ](ψ!a) = C [T ] and C [S](ψ!a) = C [S]. Therefore, in order to
prove C [T ] v C [S], we need a derivation for C [T ] v C [S]. Since convergence is an
inductive relation, C [T ]v C [S] cannot be proved and C [T ] 66F C [S] which agrees with
the fact that these two session types are not related by fair subtyping.

However, it is easy to build a derivation for T v S. This is because tr(T )\tr(S) =
{!b} and by taking ψ = ε we have T (!a) = S(!a) = x where x v x. Therefore, T 6F S
even though T 66 S. �

Example 3.3 shows that 6F is not yet a full pre-congruence, hence we have:

Corollary 3.1. 6(6F (6U.
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3.3 Fair Subtyping for Open Session Types

Corollary 3.1 shows that 6F is a better over-approximation of 6 than 6U, but we have
seen that 6F is not a pre-congruence for recursion. Part of the problem is that conver-
gence (Table 3) does not distinguish the traces leading to end from the traces leading to
variables. For example, tr(end) = tr(x) = {ε} but end and x are clearly different. In
this subsection we address this last issue and arrive at the precise characterization of 6.

We start by defining the traces of a session type leading to a variable:

Definition 3.4 (X-traces). The X-traces of T , denoted by X-tr(T ), are the traces of T
leading to a variable in X. That is, X-tr(T ) = {ϕ | ∃x ∈ X : T

ϕ
=⇒ x}.

Our goal is to identify the condition that, together with T 6F S, allows us to deduce
µx.T 6F µx.S. To study the problem, consider the session types

T = !a.(!a.x⊕ !c)⊕ !b S1 = !a.!a.x S2 = !b S3 = !a.!a.x⊕ !b

depicted as the four graphs below:

⊕

⊕

end

x

!a

!b

!a

!c ⊕

⊕

x

!a

!a

⊕

end!b

⊕

⊕

end

x

!a

!b

!a

From previous discussions we know that µx.T 66 µx.S1 while T 6F S1 because
T v S1. The critical aspect of T and S1 is that the variable x is dangerous in the sense
that it lies at the end of a path shared by T and S1 and that goes through corresponding
states of T and S1 that differ. So, x permits the creation of a loop through which it
is possible to detect the differences between the traces of T and those of S1. On the
other hand we have µx.T 6 µx.S2 and therefore µx.T 6F µx.S2. In this case no loop
can be created because there is no trace in {x}-tr(S2) (recall from Definition 3.1 that
X-tr(S2)⊆ X-tr(T )). This discussion suggests to strengthen condition (1) with

{x}-tr(S) = /0 (2)

to characterize the pairs of session types T and S that can be safely closed by a con-
text µx.[ ] when T 6F S. Just like condition (1), however, condition (2) is excessive. For
example, we have seen that µx.T 6 µx.S3 even if {x}-tr(S3) = {!a!a}. The crucial dif-
ference between S1 and S3 is that, while in the former the reachability of the dangerous
variable x is granted (the only maximal trace of S1 leads to x), with S3 the interaction
can be diverted into the end state from which x is not reachable any more. The idea
is that we should weaken condition (2) by requiring that it must hold “inevitably” at
some “finite distance” from S, just like we did when we weakened condition (1) into
v. Generalizing this intuition to sets of variables, we arrive at the definition of another
convergence relation T vX ;Y S inductively defined in Table 4 and indexed by two sets
of variables: X is the set of variables that may be dangerous (if they are found to lie
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Table 4. Open convergence relation.

∀ϕ ∈ (tr(T )\tr(S))∪Y -tr(S) : ∃ψ ≤ ϕ,a : T (ψ!a)v /0;X∪Y S(ψ!a)
T vX ;Y S

on a path that distinguishes T from S); Y is the set of variables that are dangerous (be-
cause they do lie on a path that distinguishes T from S). We will often write vX as an
abbreviation for vX ; /0.

The rules defining convergence (Table 3) and open convergence (Table 4) are struc-
turally very similar, the only differences being the condition that we want to enforce
inevitably (that the traces of T are included in those of S and no dangerous variables
are reachable) and the use of the indexes X and Y . In particular, the variables in X that
may be dangerous (in the conclusion of the rule) become dangerous (in the premise of
the rule) when they are discovered to lie on a path that distinguishes T from S (or that
leads to the dangerous variables in Y ). Open convergence can be explained following
the same intuition that we have already used for v. In the case of T v{x} S, we should
imagine a session M that strives to follow any trace in tr(T ) \tr(S), concluding that
this attempt is not guaranteed to succeed because M |S can be diverted into a region of
T and S where tr(T )⊆ tr(S) and {x}-tr(S) = /0. Then, when T and S are closed by a
context C = µx.[ ], M is not able to drive the interaction along a loop that goes through
C [T ] and C [S] infinitely often so as to detect the differences between the traces of T
and those of S, determining C [T ]6F C [S] if T 6F S.

We summarize here a few properties of open convergence:

Proposition 3.2. The following properties hold:

1. v /0 =v;
2. Y ⊆ X implies vX ⊆vY ;
3. T vX∪{x} S implies µx.T vX µx.S.

Property (1) shows that vX is a generalization of v. Property (2) shows that vX
is contravariant in X , which agrees with the intuition that the larger the set of possibly
dangerous variables, the more restrictivevX is. Finally, property (3) formalizes the idea
that vX gives the missing condition that makes 6F a pre-congruence: the X annotation
indicates the set of free variables of T and S that can be safely closed by a context C
applied to T and S without compromising convergence. In general, by checking whether
T vV S holds, we can be sure that C [T ]vC [S] holds for all contexts C . In other words,
we can characterize 6 as the intersection of 6F and vV:

Theorem 3.3. 6=6F∩vV.

Example 3.4. Take T = !a.x⊕ !b and S = !a.x which were shown to be related by6F in
Example 3.3. We have tr(T ) \tr(S) = {!b} hence the only way to have them related
by vV is to prove T (!a)v /0;V S(!a), but T (!a) = S(!a) = x and x 6v /0;V x. We conclude
T 6vV S, as expected from T 66 S. �
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Table 5. Axiomatization of open convergence, unfair and fair subtyping.

[C-END]
endEX ;Y end

[C-VAR]
x 6∈ Y

xEX ;Y x

[C-REC]
T EX∪{x};Y\{x} S

µx.T EX ;Y µx.S

[C-INPUT]
∀i ∈ I : TiEX ;Y Si

∑
i∈I

?ai.TiEX ;Y ∑
i∈I

?ai.Si

[C-OUTPUT 1]
∀i ∈ I : TiEX ;Y Si⊕

i∈I
!ai.TiEX ;Y

⊕
i∈I

!ai.Si

[C-OUTPUT 2]
∃k ∈ I : TkE /0;X∪Y Sk⊕

i∈I∪J
!ai.TiEX ;Y

⊕
i∈I

!ai.Si

[S-END]
end6A∗ end

[S-VAR]
x6A∗ x

[U-REC]
T 6AU S

µx.T 6AU µx.S

[F-REC]
T 6AF S T E{x}; /0 S

µx.T 6AF µx.S

[S-INPUT]
∀i ∈ I : Ti 6A∗ Si

∑
i∈I

?ai.Ti 6A∗∑
i∈I

?ai.Si

[S-OUTPUT]
∀i ∈ I : Ti 6A∗ Si⊕

i∈I∪J
!ai.Ti 6A∗

⊕
i∈I

!ai.Si

[F-SUBT]
T 6AF S T EV; /0 S

T 6A S

6AU
def
= [S-*]+ [U-REC] 6AF

def
= [S-*]+ [F-REC]

Note the fundamental difference between v and vV: the former one is an invari-
ant that must hold for all pairs of corresponding continuations of two session types,
while the latter one applies una tantum at the top level of two related session types.
This distinction is motivated by the observation that applying a context µx.[ ] around
T creates a loop that necessarily goes through the initial state of T while no context
applied to T can create loops strictly inside T . This property contributes to making 6
context sensitive, in the sense that the relation between two types may depend on the
context in which the types occur. For example, consider the session types T = !a.x⊕ !b
and S = !a.x and the context C = !a.[ ]⊕ !b and note that C does not bind the variable
x. Now we have C [T ]v{x} C [S] while T 6v{x} S. Therefore C [T ]6C [S] even if T 66 S.

4 Axioms and Algorithms

The characterization developed in Section 3 allows us to produce an axiomatization for
fair subtyping. Besides being the first complete axiomatization of a liveness-preserving
refinement pre-congruence, the axiomatization shows how to guarantee liveness preser-
vation by patching unfair subtyping or, more generally, standard subtyping for session
types [5] with appropriate conditions in just two strategic places.

Table 5 defines four inductive relations EX ;Y (rules [C-*]), 6AU (rules [S-*] and
[U-REC]),6AF (rules [S-*] and [F-REC]), and6A (rule [F-SUBT]) which will be shown
to coincide withvX ;Y ,6U,6F, and6. The axiomatization of6U follows directly from
clauses (1–4) of Definition 3.1 with the addition of the pre-congruence rule [U-REC]
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for recursions. The axiomatization of 6F is defined using the same core rules as un-
fair subtyping, but the pre-congruence rule [F-REC] for recursion requires the condition
T E{x}; /0 S that verifies whether it is safe to close T and S with the context µx.[ ] (see
Proposition 3.2(3)). Fair subtyping is defined by [F-SUBT], which is just Theorem 3.3
in the form of inference rule. The axiomatization of open convergence includes a core
set of rules where [C-END], [C-INPUT], and [C-OUTPUT 1] enforce trace inclusion (con-
dition tr(T ) ⊆ tr(S) in Table 4) and rule [C-VAR] checks that x is not a dangerous
variable (condition Y -tr(S) = /0 in Table 4). Rule [C-OUTPUT 2] deals with the case in
which the larger session type provides strictly fewer choices with respect to the smaller
one and corresponds to the “existential part” of the rule in Table 4. In this case, there
must be a common branch (k ∈ I) such that the corresponding continuations are in the
open convergence relation where all the possibly dangerous variables have become dan-
gerous ones (Tk v /0;X∪Y Sk). Finally, the rule [C-REC] deals with recursive contexts µx.[ ]
by recording x as a possibly dangerous variable.

Theorem 4.1 (correctness). We have: (1) EX ;Y ⊆vX ;Y ; (2) 6AF ⊆6F; (3) 6A ⊆6.

The axiomatization is complete when session types have recursive terms binding
the same variable in corresponding positions. This is not a limitation:

Proposition 4.1. Let T 6U S. Then T = T ′ 6AU S′ = S for some T ′ and S′.

Theorem 4.2 (completeness). Let T 6AU S. Then: (1) T vX ;Y S implies T EX ;Y S; (2)
T 6F S implies T 6AF S; (3) T 6 S implies T 6A S.

We briefly discuss an algorithm for deciding fair subtyping based on its axiomati-
zation. The only two rules in Table 5 that are not syntax directed are [C-OUTPUT 1] and
[C-OUTPUT 2] when J \ I = /0 because the sets of (possibly) dangerous variables may
or may not change when going from the conclusion to the premise of these rules. A
naive algorithm would have to backtrack in case the wrong choice is made, leading to
exponential complexity. Table 6 presents an alternative set of syntax-directed rules for
open convergence. Space constraints prevent us from describing them in detail, but the
the guiding principle of these rules, which are directly derived from the axiomatization,
is simple: a judgment T #X S I Y synthesizes, whenever possible, the smallest subset
Y of X such that T EY ;X\Y S holds, where X is the overall set of (possibly) dangerous
variables. This way, in [AC-OUTPUT 1] and [AC-OUTPUT 2] the index set X does not
change from the conclusion to the premises, so the algorithm can just recur and then
verify whether Tk #X Sk I /0 for some branch k ∈ I: if this is the case, then [AC-OUTPUT

2] applies; if not and J \ I = /0, then [AC-OUTPUT 1] applies; otherwise, the algorithm
fails. This new set of rules is sound and complete:

Theorem 4.3. The following properties hold:

1. T #Y SI X implies T EX ;Y\X S;
2. T EX ;Y S implies T #X∪Y SI Z and Z ⊆ X.

Regarding the complexity of the proposed algorithm, observe that open convergence
can be decided in linear time using the rules in Table 6 and that, in Table 5, only [F-
REC] and [F-SUBTT] duplicate work. Moreover, rule [F-SUBT] is needed only once for
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Table 6. Algorithmic rules for open convergence.

[AC-END]
end #X endI /0

[AC-VAR 1]
x 6∈ X

x #X xI /0

[AC-VAR 2]
x ∈ X

x #X xI {x}

[AC-REC]
T #X∪{x} SI Y

µx.T #X µx.SI Y \{x}

[AC-INPUT]
∀i ∈ I : Ti #X Si I Xi

∑
i∈I

?ai.Ti #X ∑
i∈I

?ai.Si I
⋃
i∈I

Xi

[AC-OUTPUT 1]
∀i ∈ I : (Ti #X Si I Xi∧Xi 6= /0)⊕
i∈I

!ai.Ti #X
⊕
i∈I

!ai.Si I
⋃
i∈I

Xi

[AC-OUTPUT 2]
∃k ∈ I : Tk #X Sk I /0⊕

i∈I∪J
!ai.Ti #X

⊕
i∈I

!ai.Si I /0

each derivation. Therefore, the algorithm for fair subtyping is quadratic in the size of
the proof tree for T ′ 6A S′, which is the same as ‖S′‖ (the number of distinct subtrees
in S′). Since ‖S′‖ in the (constructive) proof of Proposition 4.1 is bound by ‖T‖ · ‖S‖,
the overall complexity for deciding T 6 S is O(n4) where n = max{‖T‖,‖S‖}.

5 Related Work

It has already been observed [2] that the standard subtyping relation for session types is
related to the must-testing pre-order, and in Section 1 we have anticipated the close cor-
respondence between fair subtyping and the should-testing pre-congruence [12] which,
in turn, is also related to fair testing [9]. Fair subtyping shares with the should-testing
pre-congruence its semantic definition (Definition 2.2), but differs in that the authors
of [12] work with a richer language of processes. Regarding the differences between
should-testing and fair subtyping, though, the single feature that has the biggest im-
pact is the stratification of the language: our type language disallows parallel compo-
sitions inside T terms, while in [12] parallel composition can occur anywhere. This
feature increases the discriminating power of tests in [12] and ultimately implies that
tr(T )= tr(S) when T 6 S. To see why, consider T = !a⊕!b and S= !a and the context
C = µx.((?a.x+?b.!done) | [ ]) and notice that parallel composition occurs underneath
a recursion. The intuition is that the term C [T ] “restarts” T if T chooses to emit a and
terminates if T chooses to emit b. So, while it is always possible for T to emit b, the
term C [S] is doomed to diverge hopelessly. Indeed ?done.!OK |C [T ] is successful while
?done.!OK |C [S] is not, determining T 66 S. In our context, the ability to restart a process
an arbitrary number of times is too powerful: session types are associated with linear
channels which have exactly one owner at any given point in time. Also, the type of the
channel reduces as the channel is used and the type system forbids “jumps” to previous
stages of the protocol described by the session type, unless the session type itself allows
to do so by means of an explicit recursion. If the condition tr(T )⊆ tr(S) were to hold
also in our context, fair subtyping would collapse to equality (modulo folding/unfolding
of recursions) and would therefore lack any interest whatsoever. We conjecture that the
restriction of should-testing to finite-state processes (where parallel composition is for-
bidden underneath recursions) shares the same trace-related properties (and possibly
the behavioral characterization) of fair subtyping.



14 Luca Padovani

This work generalizes and simplifies our previous work [10], where fair subtyping
was introduced for the first time. It is a generalization because it extends fair subtyping
to open session types, whereas [10] only considered closed ones. Also, in the present
work we purposefully adopt a notion of “session correctness” (Definition 2.1) that is
weaker (i.e. more general) than the notions of session correctness usually adopted in
conventional session type theories. For instance, dyadic sessions are based on comple-
mentary behaviors [5] and multi-party session type theories either on fair termination
(e.g., [10,3]) or progress (e.g., [8]) of all participants. These stronger notions of session
correctness can be encoded in terms of success. Since fair subtyping is defined as the
relation that preserves success (Definition 2.2), the net effect is that the results presented
here apply to all session type theories based on stronger notions of session correctness.
With respect to [10], this work simplifies the characterization of fair subtyping. In par-
ticular, the convergence relation T v S is defined in [10] as a test for type emptiness for
a derived term T −S representing the behavioral difference of T and S. Here we give a
direct definition of v with no need for auxiliary operators or notions of type emptiness.

Session type theories usually assume an asynchronous communication model. Be-
sides being practically more relevant than the synchronous model we adopt here, asyn-
chrony makes it possible to relax subtyping so that it is covariant with respect to external
choices. Conversely, the synchronous communication model we have chosen imposes
invariance (see clause (3) of Definition 3.1) because input actions are observable. This
mismatch is irrelevant as far as the characterization and the essential properties of fair
subtyping are concerned, because the additional branches of external choices resulting
from covariance play no role in the characterization of fair subtyping, which is instead
entirely focused on determining which branches of internal choices can be safely pruned
without compromising success. In fact, the additional discriminating power given by
synchronous communication makes our fair subtyping relation finer than necessary re-
garding external choices. Therefore, the results presented in this work are sound in
contexts adopting weaker communication models and can be extended in a straightfor-
ward way to the standard subtyping relation of [5]. Finally, synchronous communica-
tion allows us to keep the formal model manageable and easier to compare with related
ones [9,12] that are all based on synchronous communication.

Another simplification we have made is that messages are abstracted as atomic
names. Actions of conventional session types are usually annotated with more precise
type information like !a〈int〉, which specifies the type of arguments carried by mes-
sages. Higher-order session types are also considered. These aspects turn out to have no
impact on the properties of fair subtyping, and have been neglected in the present paper
for the sake of simplicity. The reader interested in the combined treatment of fairness
and higher-order session types may refer to the extended version of [10].

6 Concluding Remarks

Our long-term goal is the definition of type systems for reasoning on liveness proper-
ties of programs structured around sessions. Using types for this purpose poses lots of
unexpected challenges. For instance, we realized that the widely adopted typing rules
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for recursive processes that take advantage of equirecursive types are unsound when the
subtyping relation is liveness preserving. To illustrate the issue, consider the derivation

` m : a
[VAR]

X 7→ {k : T};k : T `X
[OUTPUT]

X 7→ {k : T};k : !a.T ` k!m.X !a.T ⊕ !b6 !a.T
[SUB]

X 7→ {k : T};k : !a.T ⊕ !b ` k!m.X
[REC]

k : T ` rec x.k!m.X

which is essentially the same derivation of Section 1 except that, instead of opening the
session type T = µx.(!a.x⊕ !b) and associating the process variable X with the type
variable x in the process environment, we identify T with its own unfolding !a.T ⊕ !b.
Now, we would like to reject this derivation for the same reasons we wanted to reject the
one in Section 1. There, we argued that the derivation had to be rejected because it relied
on the invalid law !a.x⊕ !b 6 !a.x. But in the derivation above, the law !a.T ⊕ !b 6
!a.T holds even for fair subtyping! The problem originates from using subsumption
within a recursion: even if the (valid) relation !a.T ⊕ !b 6 !a.T is applied once in the
derivation, in practice it is used infinitely many times for enforcing T 6 µx.!a.x, which is
invalid. We are not aware of alternative ways of tackling this issue other than forbidding
subsumption within recursions, or using a theory of open session types like the one
developed in the present paper.
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A Supplement to Section 3

Proof of Theorem 3.1

Theorem A.1 (Theorem 3.1). 6⊆6U.

Proof. We must prove that 6 is a coinductive subtyping. Assume T 6 S. We reason by
cases on the structure of T .

– (T = end) We reason by contradiction to show that S = end:
• Suppose S ?a−→ and let M = !a.!c | !b |?b.!OK+?c where b and c occur nowhere

else. Then T |M is successful and S |M is not, which is absurd.

• Suppose S !a
=⇒ and let M = ?a+?b.!OK | !b where b occurs nowhere else. Then

T |M is successful and S |M is not, which is absurd.
• Suppose S = x for some x. Let C = µx.?a.[ ] and M = !a.!a | ?a.!OK. We have

C [T ] |M successful and C [S] |M unsuccessful, which is absurd.
– (T = x) We reason by contradiction to show that S = x:
• Suppose S = end or S = y 6= x. Let C = µx.?a.[ ] and M = !a.!a.!OK. Then

C [T ] |M is successful and C [S] |M is not, which is absurd.

• If S ?a−→ or S !a
=⇒ we can reason as for the case T = end.

– (T = ∑i∈I ?ai.Ti) Let M = !ak.!b1. · · · !bn | ?b1.R1 | · · · | ?bn.Rn where k ∈ I and Tk |
R1 | · · · |Rn successful and b1, . . . ,bn occur nowhere else. Then T |M is successful.
We deduce S = ∑i∈J ?ai.Si with I ⊆ J because k is an arbitrary element of I. Also,
Ti 6 Si for every i ∈ I because R1 | · · · |Rn is arbitrary.

– (T =
⊕

i∈I !ai.Ti) Let M =∑i∈I ?ai.!bi1. · · · !bin |∑i∈I ?bi1.Ri1 |· · ·|∑i∈I ?bin.Rin where
Ti |Ri1 | · · · |Rin is successful and the bi1, . . . ,bin occur nowhere else for every i ∈ I
(we can assume that the number n of components required to build a successful
session for Ti is the same for every i by adding suitable end session types). Then
T |M is successful. We deduce S =

⊕
i∈J !ai.Si with J ⊆ I. Also, Ti 6 Si for every

i ∈ J because Ri1 | · · · |Rin is an arbitrary successful test for Ti. ut

Proof of Theorem 3.2

Proposition A.1. Let T 6F S and M |T be successful and M | S τ
=⇒ N | S′. Then there

exists T ′ 6F S′ such that M |T τ
=⇒ N |T ′.

Definition A.1 (coinductive divergence). We say that D is a coinductive divergence if
T D S implies that there exists ϕ ∈ tr(T )\tr(S) such that for every ψ ≤ ϕ and a with
ψ!a ∈ tr(S) we have T (ψ!a) D S(ψ!a).

Proposition A.2. 6v is the largest coinductive divergence.

Proof. Follows from the definition of v. ut

Proposition A.3. Let T 6U S and T 6v S. Then either
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1. T = ∑i∈I ?ai.Ti and S = ∑i∈I ?ai.Si and Ti 6v Si for some i ∈ I, or
2. T =

⊕
i∈I∪J !ai.Ti and S =

⊕
i∈I !ai.Si and Ti 6v Si for every i ∈ I.

Proof. Follows from the definition of 6v. ut

Theorem A.2 (Theorem 3.2). Let T 6F S. Then M |T successful implies M |S success-
ful for every M.

Proof. Let M |T be successful and consider a derivation M | S τ
=⇒ N | S′. We have to

prove N | S′ !OK
=⇒. From Proposition A.1 we deduce that there exists T ′ 6F S′ such that

M |T τ
=⇒ N |T ′. Then T ′ v S′. We do an induction on T ′ v S′ to show N |S′ !OK

=⇒. From

the hypothesis N |T ′ successful we deduce N
ϕ!OK
==⇒ and T ′

ϕ
=⇒ for some ϕ . Without loss

of generality, we can assume that ϕ is a string of minimal length leading N to success,

that is N Y
ψ!OK
=⇒ for every ψ < ϕ .

In the base case we have tr(T ′)⊆ tr(S′), therefore we conclude S′
ϕ

=⇒.
In the inductive case, suppose ϕ ∈ tr(T ′) \ tr(S′) for otherwise there is nothing

left to prove. By definition of v we deduce that there exist ψ ≤ ϕ and a such that
T ′(ψ!a)v S′(ψ!a). From the hypothesis N |T ′ successful and the fact that ϕ is a string

of minimal length leading N to success we deduce N
ψ?a
==⇒ N′ where N′ | T ′(ψ!a) is

successful. We conclude by induction hypothesis. ut

Proof of Proposition 3.1

Lemma A.1. Let T 6U S and T 6v S. Then T 66 S.

Proof. We show how to build an M (T,S) such that M (T,S) | T is successful and
M (T,S) | S is not under the hypothesis T 6U S and T 6v S. Let M (T,S) be the ses-
sion type coinductively defined by the equations:

M (T,S) def
=


⊕

i∈I,Ti 6vSi

!ai.M (Ti,Si) if T = ∑
i∈I

?ai.Ti and S = ∑
i∈I

?ai.Si

∑
i∈I

?ai.M (Ti,Si)+∑
i∈J\I

?ai.!OK if T =
⊕

i∈I∪J

!ai.Ti and S =
⊕
i∈I

!ai.Si

First of all we show that M (T,S) is well defined, which amounts to showing that
all of its choices have at least one branch. This is a straightforward consequence of
Proposition A.3.

Now consider a derivation of M (T,S) | T τ
=⇒ R | T ′ where M (T,S)

ϕ
=⇒ R Y!OK

=⇒
and T

ϕ
=⇒ T ′. Without loss of generality we may assume R = M (T,S)(ϕ) and T ′ =

T (ϕ). If this is not the case, by the very definition of M (T,S) the computation can
always be extended by one more synchronization so that this assumption holds. From
the hypothesis R Y!OK

=⇒ we deduce that ϕ ∈ tr(S). Moreover, by definition of M (T,S)
we know T (ϕ) 6v S(ϕ). We deduce that there exists ϕ ′ ∈ tr(T (ϕ))\tr(S(ϕ)) such that

R
ϕ
′!OK
=⇒. We conclude that M (T,S) |T is successful.
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To see that M (T,S) |S is unsuccessful it suffices to observe that M (T,S)
ϕ!OK
=⇒ im-

plies S Y
ϕ

=⇒ by construction of M (T,S). ut

Proposition A.4 (Proposition 3.1). Let T,S be closed. Then T 6F S if and only if T 6
S.

Proof. (⇒) It is enough to show that T v S implies C [T ] v C [S] for every C when T
and S are closed. This follows from an easy induction on C .

(⇐) We prove that T 66F S implies T 66 S. If T 66U S, then we conclude T 66 S from
Theorem 3.1. If T 6U S and T 6v S, then we conclude T 66 S from Lemma A.1. ut

Proof of Proposition 3.2

Lemma A.2. T v /0;X∪{x} S implies T{T0/x} v /0;X S{S0/x}.

Proof. By induction on the derivation of T v /0;X∪{x} S. In the base case we have tr(T )⊆
tr(S) and (X ∪{x})-tr(S) = /0, therefore T{T0/x}= T and S{S0/x}= S and we con-
clude immediately. In the inductive case, consider ϕ ∈ (tr(T{T0/x})\tr(S{S0/x}))∪
X-tr(S{S0/x}). Then we deduce either ϕ ∈ tr(T ) \ tr(S) or ϕ ∈ X-tr(S) or ϕ =
ϕ1ϕ2 where ϕ1 ∈ {x}-tr(S) and ϕ2 ∈ (tr(T0) \ tr(S0))∪X-tr(S0). In any of these
cases, from the hypothesis T v /0;X∪{x} S we deduce that there exist ψ ≤ ϕ and !a such
that T (ψ!a)v /0;X∪{x} S(ψ!a). By induction hypothesis we deduce T (ψ!a){T0/x} v /0;X
S(ψ!a){S0/x}. We conclude because ϕ is arbitrary. ut

Lemma A.3. T vX∪{x};Y S implies µx.T vX ;Y µx.S.

Proof. Let T0 = µx.T and S0 = µx.S. Let ϕ ∈ tr(T0) \ tr(S0)∪Y -tr(S0). Then ϕ =
ϕ1 · · ·ϕn where {ϕ1, . . . ,ϕn−1} ⊆ {x}-tr(S) and ϕn ∈ tr(T ) \ tr(S)∪Y -tr(S). From
the hypothesis T vX∪{x};Y S we deduce that there exist ψ ′≤ϕn and a such that T (ψ ′!a)v /0;X∪Y∪{x}
S(ψ ′!a). From Lemma A.2 we deduce T{T0/x}(ψ ′!a) v /0;X∪Y S{S0/x}(ψ ′!a). Take
ψ =ϕ1 · · ·ϕn−1ψ ′ and observe that ψ ≤ϕ and T0(ψ!a)=T{T0/x}(ψ ′!a) and S0(ψ!a)=
S{S0/x}(ψ ′!a). Since this arguments holds for an arbitrary ϕ , we can conclude T0 vX ;Y
S0. ut

Lemma A.4 (Proposition 3.2). The following properties hold:

1. v /0 =v;
2. Y ⊆ X implies vX ⊆vY ;
3. T vX∪{x} S implies µx.T vX µx.S.

Proof. Items (1) and (2) follow directly from the definition of vX ;Y , while item (3) is
Lemma A.3. ut
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Proof of Theorem 3.3

Definition A.2 (open coinductive divergence). We say that R is an open coinductive
divergence if (X ,Y,T,S) ∈ R implies that there exists ϕ ∈ (tr(T ) \ tr(S))∪Y -tr(S)
such that for every ψ ≤ ϕ and a with ψ!a∈ tr(S) we have ( /0,X∪Y,T (ψ!a),S(ψ!a))∈
R.

Proposition A.5. The following properties hold:

1. {(X ,Y,T,S) | T 6vX ;Y S} is an open coinductive divergence;
2. if R is an open coinductive divergence and (X ,Y,T,S) ∈R, then T 6vX ;Y S.

Lemma A.5. T 6vX∪{x};Y S implies µx.T 6vX ;Y µx.S.

Proof. Let T0 = µx.T and S0 = µx.S and let

R
def
= {(X ,Y,T ′{T0/x},S′{S0/x}) | T ′ 6vX∪{x};Y S′}
∪ {( /0,X ∪Y,T ′{T0/x},S′{S0/x}) | T ′ 6v /0;X∪Y∪{x} S′}

We proceed showing that R is an open coinductive divergence. Then the proof is
concluded, because (X ,Y,T0,S0) ∈ R by definition of R. Consider (X ′,Y ′,T ′′,S′′) ∈
R. From the definition of R it must be T ′′ = T ′{T0/x} and S′′ = S′{S0/x} for some
T ′ and S′ such that either T ′ 6vX∪{x};Y S′ or T ′ 6v /0;X∪Y∪{x} S′. We distinguish the two
possibilities:

– (T ′ 6vX∪{x};Y S′) From Proposition A.5 we deduce that there exists ϕ ∈ tr(T ′) \
tr(S′)∪Y -tr(S′) such that for every ψ ≤ ϕ and a with ψ!a ∈ tr(S′) we have
T ′(ψ!a) 6v /0;X∪Y∪{x} S′(ψ!a). Then ϕ ∈ tr(T ′′) \ tr(S′′)∪Y -tr(S′′) and {ψ!a |
ψ ≤ ϕ ∧ψ!a ∈ tr(S′) = {ψ!a | ψ ≤ ϕ ∧ψ!a ∈ tr(S′′)}. We conclude that for
every ψ ≤ ϕ and a with ψ!a ∈ tr(S′′) we have ( /0,X ∪Y,T ′′(ψ!a),S′′(ψ!a)) ∈R
by construction of R, as required by Definition A.2.

– (T ′ 6v /0;X∪Y∪{x} S′) From Proposition A.5 we deduce that there exists ϕ1 ∈ tr(T ′)\
tr(S′)∪ (X ∪Y ∪{x})-tr(S′) such that for every ψ ≤ ϕ1 and a with ψ!a ∈ tr(S′)
we have T ′(ψ!a) 6v /0;X∪Y∪{x} S′(ψ!a). We distinguish two subcases:
• (ϕ1 ∈ tr(T ′)\tr(S′)∪ (X ∪Y )-tr(S′)) We conclude by taking ϕ = ϕ1.
• (ϕ1 ∈{x}-tr(S′)) From the hypothesis T 6vX∪{x};Y S we deduce that there exists

ϕ2 ∈ tr(T ) \ tr(S)∪Y -tr(S) such that for every ψ ≤ ϕ2 and a with ψ!a ∈
tr(S) we have T (ψ!a) 6v /0;X∪Y∪{x} S(ψ!a). We conclude by taking ϕ = ϕ1ϕ2
and observing that T ′(ϕ1) = S′(ϕ1) = x. ut

Lemma A.6. Let (1) T v S and (2) T0 v S0. Then T{T0/x} v S{S0/x}.

Proof. An induction on (1) using (2) in the base case. ut

Lemma A.7. Let (1) T 6F S and (2) T vX∪{x} S. Then µx.T 6F µx.S and µx.T vX
µx.S.
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Proof. Let T0 = µx.T and S0 = µx.S. From (1) and Theorem 3.1 we deduce T 6U S.
Since 6U is a full pre-congruence we have T0 6U S0. From (2) and Lemma A.3(3) we
deduce T0 vX S0. All that remains to show is that T0(ϕ)v S0(ϕ) for every ϕ ∈ tr(S0).
Given any such trace ϕ , it must be the case that ϕ = ϕ1 · · ·ϕn where {ϕ1, . . . ,ϕn−1} ⊆
{x}-tr(S) and ϕn ∈ tr(S). Then T0(ϕ) = T (ϕn){T0/x} and S0(ϕ) = S(ϕn){S0/x}.
From (1) we deduce T (ϕn)v S(ϕn). We conclude by Lemma A.6. ut

Lemma A.8. Let (1) T 6F S and (2) T vV S. Then C [T ] 6F C [S] and C [T ] vV C [S]
for every C .

Proof. By induction on C and by cases on its structure. The only interesting case is
when C = µx.[ ] which is solved by Lemma A.7. ut

Theorem A.3 (Theorem 3.3). 6=6F∩vV.

Proof. (⊆) From Corollary 3.1 we know6⊆6F. Suppose, by contradiction, that there
exist T and S such that T 6 S and T 6vV S. Then T 6vX S where X is the set of free
variables occurring in S. By Lemma A.5 we deduce that there exists C such that C [T ] 6v
C [S]. By Lemma A.1 we deduce that that there exists M such that M |C [T ] is successful
and M |C [S] is not. This contradicts the hypothesis T 6 S.

(⊇) Let M and C be such that M |C [T ] is successful. By Lemma A.8 we have
C [T ]6F C [S]. We conclude that M |C [S] is successful by Theorem 3.2. ut
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B Supplement to Section 4

Proof of Theorem 4.1

Lemma B.1. EX ;Y ⊆vX ;Y .

Proof. We proceed by induction on the derivation of (1) T EX ;Y S and by cases on the
last rule applied.

– [C-END] and [C-VAR] are trivial because tr(T )⊆ tr(S) and Y -tr(S) = /0.
– [C-REC] Then T ≡ µx.T ′ and S≡ µx.S′ and T ′EX∪{x};Y S′. By induction hypothesis

we deduce T ′ vX∪{x};Y S′. We conclude by Lemma A.3.
– [C-INPUT] Then T ≡∑i∈I ?ai.Ti and S≡∑i∈I ?ai.Si and TiEX ;Y Si for every i∈ I. By

induction hypothesis we have Ti vX ;Y Si for every i ∈ I. Let ϕ ∈ tr(T ) \ tr(S)∪
Y -tr(S). Then ϕ = ?akϕ ′ for some k ∈ I and ϕ ′ ∈ tr(Tk) \ tr(Sk)∪Y -tr(Sk).
We deduce that there exist ψ ′ ≤ ϕ ′ and a such that Tk(ψ

′!a) v /0;X∪Y Sk(ψ
′!a). We

conclude by taking ψ = ?akψ ′.
– [C-OUTPUT 1] Analogous to the previous case.
– [C-OUTPUT 2] Then T ≡

⊕
i∈I∪J !ai.Ti and S≡

⊕
i∈I !ai.Si and J\I 6= /0 and TkE /0;X∪Y

Sk for some k ∈ I. By induction hypothesis we have Tk v /0;X∪Y Sk. Let ϕ ∈ tr(T )\
tr(S)∪Y -tr(S). We conclude by taking ψ = ε and a = ak. ut

Theorem B.1 (Theorem 4.1). We have: (1)EX ;Y ⊆vX ;Y ; (2)6AF ⊆6F; (3)6A ⊆6.

Proof. Item (1) follows from Lemma B.1. The proof of item (2) is a straightforward
induction on the derivation of T 6AF S, using the fact that 6 is a pre-congruence for
choices and Lemma A.7 for the case [A-REC]. Item (3) follows from Theorem 3.3. ut

Proof of Theorem 4.2

Lemma B.2 (Proposition 4.1). Let T0 6U S0. Then T0 = T ′ 6AU S′ = S0 for some T ′

and S′.

Proof. We begin by defining a number of auxiliary objects:

– Let
∆0

def
= {(T1,S1), . . . ,(Tn,Sn)}

def
= {(T0(ϕ),S0(ϕ)) | ϕ ∈ tr(S0)}

be the set of pairs of corresponding continuations of T0 and S0. This set is finite
because T0 and S0 are regular tree. Moreover, n≤ ‖T0‖ · ‖S0‖.

– Let x1, . . . ,xn be n fresh variables.
– Let σ1 = {Ti/xi}i=1..n and σ2 = {Si/xi}i=1..n be substitutions.
– Let Γ = {(Ti,Si) 7→ xi}i=1..n be the map associating each pair of corresponding

continuations of T0 and S0 to the i-th variable xi. Note that dom(Γ) = ∆0.
– Let ∆ range over subsets of ∆0.
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We define a function refold(∆,T,S) that takes a context ∆ ⊆ ∆0 and two session
types T and S such that (T,S) ∈ ∆0 and produces two new session types T ′ and S′ such
that T = T ′ 6AU S′ = T ′:

refold(∆,T,S) =



(xk,xk) if (T,S) ∈ ∆ and Γ(T,S) = xk
(x,x) if T = S = x
(end,end) if T = S = end
(µxk.∑i∈I ?ai.T ′i ,µxk.∑i∈I ?ai.S′i)

if T = ∑i∈I ?ai.Ti and S = ∑i∈I ?ai.Si
and refold(∆∪{(T,S)},Ti,Si) = (T ′i ,S

′
i)

for every i ∈ I and Γ(T,S) = xk
(µxk.

⊕
i∈I∪J !ai.T ′i ,µxk.

⊕
i∈I !ai.S′i)

if T =
⊕

i∈I∪J !ai.Ti and S =
⊕

i∈I !ai.Si
and refold(∆∪{(T,S)},Ti,Si) = (T ′i ,S

′
i)

for every i ∈ I and T ′i = Ti for every i ∈ J \ I
and Γ(T,S) = xk

By definition of refold, we have that refold(∆,T,S) = (T ′,S′) implies T = T ′σ1
and S = S′σ2. All that remains to prove is T ′ 6AU S′. We show that refold(∆,T,S) =
(T ′,S′) implies T ′ 6AU S′ by induction on dom(Γ)\∆ and by cases on the definition of
refold:

– ((T,S) ∈ dom(∆)) Then T ′ = S′ = Γ(T,S) and we conclude with an application of
rule [AU-VAR].

– (T = S = x) We conclude with an application of rule [AU-VAR].
– (T = S = end) We conclude with an application of rule [AU-END].
– (T = ∑i∈I ?ai.Ti and S = ∑i∈I ?ai.Si) By induction hypothesis we deduce T ′i 6AU S′i

where refold(∆∪{(T,S)},Ti,Si)= (T ′i ,S
′
i) for every i∈ I. Then T ′≡ µxk.∑i∈I ?ai.T ′i

and S′ ≡ µxk.∑i∈I ?ai.S′i. We conclude T ′ 6AU S′ with an application of rule [AU-
INPUT] followed by an application of rule [AU-REC].

– (T =
⊕

i∈I∪J !ai.Ti and S =
⊕

i∈I !ai.Si) Analogous to the previous case. ut

Lemma B.3. Let T vX ;Y S. The following properties hold:

1. if T ≡ ∑i∈I ?ai.Ti and S≡ ∑i∈I ?ai.Si, then Ti vX ;Y Si for every i ∈ I;
2. if T ≡

⊕
i∈I∪J !ai.Ti and S≡

⊕
i∈I !ai.Si, then either Tk v /0;X∪Y Sk for some k ∈ I or

J \ I = /0 and Ti vX ;Y Si for every i ∈ I;
3. if T ≡ µx.T ′ and S≡ µx.S′, then T ′ vX∪{x};Y S′.

Proof. We only prove item (2). Item (1) is a simpler variant of item (2) and item (3)
is an immediate consequence of Lemma A.5. If Tk v /0;X∪Y Sk for some k ∈ I, then
there is nothing left to prove, so assume (*) Ti 6v /0;X∪Y Si for every i ∈ I. Let i ∈ I and
ϕ ∈ (tr(Ti)\tr(Si))∪Y -tr(Si). Then !aiϕ ∈ (tr(T )\tr(S))∪Y -tr(S). From the hy-
pothesis we deduce that there exist ψ ′ ≤ !aiϕ and a such that T (ψ ′!a)v /0;X∪Y S(ψ ′!a).
It cannot be ψ ′= ε , for otherwise we would have a= ak for some k∈ I and Tkv /0;X∪Y Sk,
which contradicts (*). Then ψ ′ = !aiψ for some ψ ≤ ϕ . We conclude by observing that
T (ψ ′!a) = Ti(ψ!a) and S(ψ ′!a) = Si(ψ!a). ut
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Lemma B.4. Let T 6AU S and T vX ;Y S. Then T EX ;Y S.

Proof. An easy induction on the structure of T and S, using Lemma B.3. ut

Lemma B.5. µx.T 6 µx.S implies T 6 S.

Lemma B.6. Let (1) T 6 S and (2) T 6AU S. Then T 6AF S.

Proof. By induction on the structure of T and S.

– (T ≡ S≡ end) We conclude by [U-END].
– (T ≡ S≡ x for some x). We conclude by [U-VAR].
– (T ≡ ∑i∈I ?ai.Ti and S ≡ ∑i∈I ?ai.Si) Then Ti 6 Si and Ti 6U Si for every i ∈ I. By

induction hypothesis we deduce Ti6A Si for every i∈ I. We conclude by [U-INPUT].
– (T ≡

⊕
i∈I∪J !ai.Ti and S≡

⊕
i∈I !ai.Si) Analogous to the previous case.

– (T ≡ µx.T ′ and S ≡ µx.S′) Then T ′ 6U S′. From (1) and Lemma B.5 we deduce
T ′ 6 S′. By induction hypothesis we derive T ′ 6AF S′. From (1) and Definition 2.2
we deduce T v /0; /0 S. From Lemma B.3(3) we obtain T ′ v{x}; /0 S′. From Lemma B.4
we obtain T ′E{x}; /0 S′. We conclude by [F-REC]. ut

Theorem B.2 (Theorem 4.2). Let T 6AU S. Then: (1) T vX ;Y S implies T EX ;Y S; (2)
T 6F S implies T 6AF S; (3) T 6 S implies T 6A S.

Proof. (1) follows from Lemma B.4; (2) follows from (1) and Lemma B.6; (3) follows
from (2) and Theorem 3.3. ut

Proof of Theorem 4.3

Proposition B.1. T EX ;Y∪Z S implies T EX∪Y ;Z S.

Proof. Trivial induction on the derivation of T EX ;Y∪Z S. ut

Theorem B.3 (Theorem 4.3). The following properties hold:

1. T #Y SI X implies T EX ;Y\X S;
2. T EX ;Y S implies T #X∪Y SI X ′ and X ′ ⊆ X.

Proof. Regarding item (1), we proceed by induction on the derivation of T #Y S I X
and by cases on the last rule applied.

– [AC-END] We conclude with an application of rule [C-END].
– [AC-VAR 1] Then T ≡ S≡ x and X = /0 and x 6∈Y . We conclude with an application

of [C-VAR].
– [AC-VAR 2] Then T ≡ S≡ x and X = {x} and x ∈Y . We conclude with an applica-

tion of [C-VAR].
– [AC-REC] Then T ≡ µx.T ′ and S ≡ µx.S′ and x 6∈ Z and T ′ #Y∪{x} S′ I X ′ and

X = X ′ \{x}. By induction hypothesis we derive T ′EX ′;(Y∪{x})\X ′ S′. From Propo-
sition B.1 we derive T ′EX ′∪{x};Y\(X ′∪{x}) S′. We conclude with an application of
[C-REC].
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– [AC-INPUT] Then T ≡ ∑i∈I ?ai.Ti and S ≡ ∑i∈I ?ai.Si and Ti #Y Si I Xi for every
i ∈ I and X =

⋃
i∈I Xi. By induction hypothesis we derive TiEXi;Y\Xi Si for every

i ∈ I. From Proposition B.1 we derive TiEX ;Y\X Si for every i ∈ I. We conclude
with an application of [C-INPUT].

– [AC-OUTPUT 1] Analogous to the previous case.
– [AC-OUTPUT 2] Then T ≡

⊕
i∈I∪J !ai.Ti and S ≡

⊕
i∈I !ai.Si and Tk #Y Sk I /0 for

some k ∈ I and X = /0. By induction hypothesis we derive TkE /0;Y Sk. We conclude
with an application of [C-OUTPUT 2].

Regarding item (2), we proceed by induction on the derivation of T EX ;Y S and by
cases on the last rule applied:

– [C-END] Then T ≡ S ≡ end. We conclude by taking X ′ = /0 with an application of
[AC-END].

– [C-VAR] Then T ≡ S ≡ x and x 6∈ Y . If x 6∈ X , then we conclude by taking X ′ = /0
with an application of [AC-VAR 1]. If x ∈ X , then we conclude by taking X ′ = {x}
with an application of [AC-VAR 2].

– [C-REC] Then T ≡ µx.T ′ and S≡ µx.S′ and T EX∪{x};Y S. By induction hypothesis
we derive T ′ #X∪Y∪{x} S′ I X ′′ with X ′′ ⊆ X ∪{x}. We conclude by taking X ′ =
X ′′ \{x} with an application of [AC-REC].

– [C-INPUT] Then T ≡ ∑i∈I ?ai.Ti and S ≡ ∑i∈I ?ai.Si and TiEX ;Y Si for every i ∈ I.
By induction hypothesis we derive Ti #X∪Y Si I Xi and Xi ⊆ X for every i ∈ I. We
conclude by taking X ′ =

⋃
i∈I Xi with an application of [AC-INPUT].

– [C-OUTPUT 1] Then T ≡
⊕

i∈I !ai.Ti and S ≡
⊕

i∈I !ai.Si and TiEX ;Y Si for every
i ∈ I. By induction hypothesis we derive Ti #X∪Y Si I Xi and Xi ⊆ X for every i ∈ I.
We distinguish two subcases.
• If Xk = /0 for some k ∈ I, then we conclude by taking X ′ = /0 with an application

of [AC-OUTPUT 2].
• If Xi 6= /0 for every i ∈ I, then we conclude by taking X ′ =

⋃
i∈I Xi with an

application of [AC-OUTPUT 1].
– [C-OUTPUT 2] Then T ≡

⊕
i∈I !ai.Ti and S≡

⊕
i∈I !ai.Si and TkE /0;X∪Y Sk for some

k ∈ I. By induction hypothesis we derive Tk #X∪Y Sk I /0. We conclude with an
application of [AC-OUTPUT 2]. ut
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