Progressive fragmentation of a traditional Mediterranean landscape by hazelnut plantations: The impact of CAP over time in the Langhe region (NW Italy)

This is the author's manuscript

Original Citation:
Progressive fragmentation of a traditional Mediterranean landscape by hazelnut plantations: The impact of CAP over time in the Langhe region (NW Italy) / Danilo Godone; Matteo Garbarino; Emanuele Sibona; Gabriele Garnero; Franco Godone. - In: LAND USE POLICY. - ISSN 0264-8377. - ELETTRONICO. - 36(2014), pp. 259-266.

Availability:
This version is available http://hdl.handle.net/2318/138282 since 2017-05-25T12:25:43Z

Published version:
DOI:10.1016/j.landusepol.2013.08.018

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is the author's final version of the contribution published as:

The publisher's version is available at:

When citing, please refer to the published version.

Link to this full text:
[http://hdl.handle.net/2318/138282]
Progressive fragmentation of a traditional Mediterranean landscape by hazelnut plantations: the impact of CAP along time in the Langhe region (NW Italy)

Abstract
Land use change is strongly modifying the traditional landscape of hilly productive Mediterranean sites. An example of this situation is the Langhe region (Piemonte, NW Italy), where woody plantations such as vineyards and orchards have been cultivated on hillslopes for centuries. In this paper we assess the landscape changes occurred in the Diano study area (2651 ha) in the 1954-2000 period and we ascertain land use transition paths and rates in this rural ecosystem. Land use mapping obtained from object-oriented analysis of aerial photographs was used to quantify land use changes between 1954 and 2000. To examine the spatio-temporal patterns of land use change over time, a set of spatial statistics that capture different dimensions of landscape change was identified. An increase of landscape heterogeneity from 1954 to the present was observed due to the expansion of orchards and the fragmentation of field crops. A significant portion (55%) of current orchards surface is represented by former field crops, 24% by vineyards and 15% by forests. The strong expansion of hazelnut orchards concurred to the fragmentation of the traditional rural landscape dominated by vineyards, field crops and forests. Hazelnut orchards expansion was mainly located in places where the cultivation of grapes was less remunerative. A further expansion of hazelnut in the area should be planned, discussed and carefully monitored through change detection studies in order to avoid potential unsustainable use of the land.

Key words
Historical aerial photograms; land use change; Corylus avellana L.; landscape metrics; spatial pattern

1. Introduction
Rural landscapes in Mediterranean Europe have been managed and modified by people for centuries. These human dominated landscapes experienced both intensification and extensification of agricultural practices that are strong drivers of land use and land cover changes (Turner and Gardner, 1990). In most productive sites agricultural activities (e.g. intensive cultivation and forest logging) and urban sprawl increased (Stoate et al., 2001). In more marginal areas traditional rural practices declined or ceased causing the abandonment of agricultural lands (Bonet, 2004; Sluiter and de Jong, 2007) and favouring a subsequent reforestation process (Sitzia et al., 2010). Rural European areas have recently undergone several important socio-economic changes that influenced their landscape dynamics. From the beginning of the twentieth century urban areas development increased to the detriment of rural ones (Antrop, 2004) causing a progressive abandonment of such regions. In addition to the rural-urban migration phenomenon, between the second half of the nineteenth century and the first decades of the following one, about 40 millions of European workers moved to more industrialized countries (Hatton and Williamson, 1994). In the second half of the twentieth century, as a consequence of post-war dynamics, a local growth of industrial districts was observed (Fauri, 1996; Becattini and Coltorti, 2006). An opposite process was recently observed in Europe, where a decrease in industrial employees was caused by global economical changes such as the outstanding development of late-industrializing countries (Amsden, 1991) and the restoration of some abandoned marginal rural areas (Pinto-Correia, 2000). The restoration of rural areas was also favoured and often sustained by institutional financial support (Meeus et al., 1990; Vos and Meekes, 1999).

Land use change drivers such as urbanization, globalization and population growth are translated by policy-makers into land use regulations at regional, national or supra-national scale (Van Rompaey et al., 2001), but environmental conditions such as vegetation, soil, topography and climate act as local constraints for the landscape pattern. The establishment in Europe of a common agricultural policy (EU-CAP) is thus considered a fundamental factor influencing rural landscape change (Rabbinge and Van Latesteijn, 1992; Tanrivermis, 2003). Up to 1992 EU-CAP was a production-
oriented subsidy policy aimed to guarantee self-sufficiency in basic foodstuffs (Martinez-Casasnovas et al., 2010). Through the 1992 EU-CAP reform EU supported the farmers relative to set-aside land on their farm (Van Rompaey et al., 2001). The EU-CAP reform in 2003 introduced an agricultural policy that supported the long-term livelihood of rural areas focusing the attention on conservation agriculture and sustainable farming (European Commission, 2004; Martinez-Casasnovas et al., 2010). The effects of the EU-CAP subsidies in Europe have been diverse depending on local rural policies and due to the varied environmental conditions of the rural landscape.

There are several methods and tools for land use change assessment or change detection. Among them the analysis of historical geographical sources is a preferred tool to reconstruct traditional land mosaic (McClure and Griffiths, 2002, Cullotta and Barbera, 2011). The most common historical geographical data sources are aerial images (Schiefer and Gilbert, 2007) and cadastral maps (Vuorela et al., 2002), but also old satellite images acquired for military purposes are used (Scardozzi, 2008). These geographical data sources can be employed separately or combined, according to their availability for a certain study area. In change detection studies the adoption of aerial images is preferred as they allow a direct interpretation of landscape elements, rather than historical maps where land is represented by symbols (Morgan et al., 2010).

In this paper we study land use change in a hilly region of southern Piemonte (north-western Italy). The choice of our study area is motivated by the following considerations: (i) the landscape is a traditional complex mosaic of forests, vineyards, orchards and other cultivated fields; (ii) the land use changes in the area are particularly strong; (iii) we had the opportunity to use the camera calibration certificates to perform a rigorous photogrammetric processing of the historical images; (iv) the entire Langhe region is famous for the quality of its wine and food and is candidate to be included in the UNESCO World Heritage List.

The goals of our study are: (i) to quantify and analyze the landscape changes occurred in the area between 1954 and 2000; (ii) to determine the location of land cover change and the type of change;
(iii) to determine transition paths and transition rates of the land use categories in this ecosystem.

Finally, the potential effects of European and local agricultural policies on the rural landscape of Langhe region are discussed in relation to the sustainability of the modern farming systems.

2. Materials and methods

2.1. Study area

Land cover changes and landscape structure has been studied in a 2651 ha area (Fig. 1) located in the southern part of Piemonte region, north-western Italy (44°40’ N, 07°59’ E). The elevation ranges from 190 to 634 m a.s.l. and the climate belongs to type Cfa in areas lower than 500 m a.s.l., having humid summer and dry winter seasons and to type Cfb with milder conditions at upper elevations, in terms of Köppen-Geiger’s classification (Peel et al., 2007). Annual precipitation ranges from 800 to 1100 mm with a main minimum in July and a secondary one in winter and with a peak in autumn. Total annual rainfall averages 730.4 mm and mean annual temperature averages 11.9 °C (Rodello climatic station, 415 m a.s.l.). Lithological substrate is made up of siltstone and marlstone on hillsides and alluvial deposits in valley bottoms and soils are mainly represented by Entisols and Inceptisols (ARPA, 2012).

The study area (Diano) is part of Langhe hilly region which is characterized by strong agricultural character and is widely renowned for its high quality wine production like Barolo and Barbaresco (Delmastro, 2005). The entire Langhe region is currently candidate to be included within the UNESCO World Heritage List (UNESCO, 2012). The study site falls within the municipalities of Diano d’Alba (52%), Alba, Grinzane Cavour, Serralunga d’Alba, Rodello, Benevello and Montelupo Albese. We used the demographic data of Diano d’Alba and the agricultural statistics of the entire Cuneo Province in order to describe the demographic trends experienced by the analyzed land surface. The population density declined in the first part of the studied period (1951-1971)
from 2612 to 2216 respectively, but consistently increased in the last decades from 2216 in 1971 to 2980 in 2001.

2.2. Image analysis

Historical aerial photographs were retrieved in the archive of Italian National Research Council (CNR-IRPI, Torino), where historical and recent aerial images concerning hydrogeological phenomena are stored (IRPI, 2012). During the archive consultation a small block of four photograms has been recovered. These aerial photographs belong to the Gruppo Aeronautico Italiano (GAI) flight that represents the first available flight covering almost all Italian territory after the Second World War. Older aerial images for Italian territory are available from the beginning of the twentieth century. Both USAAF (Today USAF) and RAF employed images for photointerpretation purposes in order to plan bombing or army raids (Kaye, 1957). These images were also processed and merged with the aim of making three-dimensional terrain models of the theatre of operations (Reed, 1946). On the other side Luftwaffe and Regia Aeronautica performed several flights for intelligence purposes and to monitor Allied campaign in southern Italy (Ceraudo, 2005). GAI flight was carried out in 1954-55 with a flight height ranging from 10000 m a.s.l. in mountain regions to 5000 m a.s.l. in the plains, and having a medium scale of 1:33000 (Campana and Francovich, 2003; Acosta et al., 2005; Beni Culturali, 2011).

We had the extraordinary opportunity to find the camera calibration certificates of the investigated flight at the Italian Military Geographic Institute (IGMI) historical archive allowing us to perform a rigorous image orientation. Each photogram was scanned in TIF format to 600 dpi resolution, and its orientation was obtained through the Automatic Aerial Triangulation approach (Mikhail et al., 2001) and the employment of the above-mentioned certificates assuring an overall accuracy of 2.22 meters. The oriented images were then orthorectified and mosaicked at 1-m resolution. Because the calibration certificates for GAI flight are usually rare, we assessed their role in the process by computing a second orientation employing only the focal length value. Through a comparison of the
obtained residuals we observed a quality loss of an order of magnitude when the process is carried out without calibration data (Table 1). The whole image processing was accomplished using Z-Map software. A recent, RGB, orthoimage (Terraitaly - IT2000™, Blom C.G.R. S.p.A) having a nominal scale of 1:10000 and a ground resolution of 1-m, was employed in the change detection analysis.

2.3. Image classification

Automated segmentation with eCognition (scale parameter = 100, shape factor = 0.5) with manual correction was used to delineate polygons on the test area. The segmented images were on-screen classified into six categories of land cover (Table 2). The two resulting maps (1954 and 2000) were then enhanced in a GIS environment in order to reduce the effect of different input image quality and achieve a minimum mapping unit (MMU) of 100 m². At the end of the above-mentioned phase an additional topological check was performed by merging adjacent polygons of the same land cover category (Fig. 2).

2.4. Landscape analysis

Landscape changes in the studied period (1954-2000) were assessed through change detection approach and a comparison of landscape metrics over time. The change detection analysis on the two land cover maps was performed by using the “Change detection” free extension in ArcView environment (Chandrasekhar, 1999). This GIS extension allowed computing a transition matrix reporting the transition between each pair of land cover categories as extent or proportion of area per unit time.

To analyze changes in landscape pattern, we used Fragstats software (McGarigal and Marks, 1995) to calculate several key landscape metrics for the studied period, applying an 8-cell neighbourhood definition. We selected representative metrics for landscape configuration and composition, including patch size and density, edge, contagion, connectivity, and diversity (Cushman et al., 2008). Since many metrics are closely related at the landscape level and describe similar aspects of
landscape structure (Riitters et al., 1995; Cain et al., 1997; Neel et al., 2004), ten landscape-level metrics were selected excluding those that were highly correlated ($r > 0.8$) (Tischendorf, 2001). Landscape structure was also analyzed at the class level by computing 13 metrics for the 6 land cover classes, for the two time periods.

3. Results

3.1. Landscape structure

An accuracy assessment was performed on each land use map resulting in the K statistic (Landis and Koch, 1977) ranging from 0.86 (90.2% overall accuracy) for the 1954 image to 0.87 (90% overall accuracy) for the 2000 image. Our analyses on landscape structure showed that important changes have been occurred at Diano study site during the 1954-2000 period. A general increase in landscape heterogeneity from 1954 to the present was observed. The metrics computed for the landscape as a whole (Table 3) showed an increase in patch density (PD) and a decrease of patch area (AREA_MN, LPI). A reduction of shape complexity (Shape Index, Contiguity Index) was confirmed by a reduction of Edge Density (ED). Patches aggregation (CONTAG) decreased and a decline in the isolation of patches of the same category (ENN_MN) was also observed. Patch richness (six categories) remained unchanged during the observed period, but diversity (Simpson’s Diversity Index) slightly increased.

3.2. Landscape change

The change detection approach highlighted remarkable changes in study area land use. ‘Fields’ and ‘Orchards’ land cover categories experienced the strongest variations (Fig. 3). The total surface of ‘Orchards’ increased of 24.6%, instead the ‘Fields’ category strongly (-26.9%) decreased. A slighter increasing tendency (3.6%) was observed for the ‘Urban’ class too. A relatively little change was observed for both the ‘Forests’ and ‘Vineyard’ categories that experienced an increase and a
reduction respectively. Based on transitions occurring in the period from 1954 to 2000 (Table 4),

five main transformations can be highlighted:

Fields \rightarrow Orchards (375 ha), Fields \rightarrow Vineyards (269 ha), Vineyards \rightarrow Orchards (165 ha), Fields \rightarrow Forests (161 ha), Forests \rightarrow Orchards (105 ha).

The establishment of new settlements took place at the expenses of fields, forests and vineyards mainly. The noteworthy variation experienced by the ‘Orchards’ category pushed us to deepen our

analysis on class level transitions. Only 3% of the total surface of ‘Orchards’ category remained

unchanged, while 55% of them were former fields, 24% vineyards, 15% forests and 3% other

categories.

4. Discussion

4.1 Landscape changes

Land use change study requires careful approaches able to deal with the heterogeneity of the

involved tools (e.g. resolution) and the variability of the landscape processes (e.g. spatial and
temporal scale). Such an investigation should be carried out by employing trustworthy data sources

in order to correctly reconstruct historical landscape patterns (Burgi and Russell, 2001). For this

reason, we adopted a rigorous photogrammetric approach that involved camera calibration

certificate assuring accurate orthorectification results (Rocchini et al., 2012). In particular was

possible to obtain an orientation quality for the GAI flight images higher than those from previous

studies (Peroni et al., 2000; Gennaretti et al., 2011). The adopted image processing approach

together with the obtained high classification accuracy assured a reliable land use change analysis.

Among the six land use categories, ‘Orchards’ increased from 1954 to 2000, replacing mainly other

agricultural areas (‘Fields’ and ‘Vineyards’) and ‘Forests’. During the same period, ‘Fields’
drastically decreased and were replaced mainly by ‘Orchards’, ‘Vineyards’ and ‘Forests’. The

strong expansion of ‘Orchards’, together with the increase of ‘Urban’ areas (Chiabrando et al.,

2001).
2009, 2011) transformed a traditional landscape that was dominated by vineyards, crops and forests in a more fragmented land mosaic represented by a higher evenness between the land use categories. Moreover, a decrease of patch shape complexity was observed at landscape level (Contiguity and Landscape Shape indices) and this was probably due to the regular boundaries of the new hazelnut plantations. Particularly interesting is the overall dynamic of forests and vineyards that remained almost constant in terms of total surface but experienced a substantial change. In the case of forests, the natural reforestation process confined to the more marginal areas contrasted the expansion of orchards. The reforestation pattern observed at Diano study sites is in agreement with other Italian and European (Falculci et al., 2007; Sitzia et al., 2010; Cocca et al. 2012) mountainous and hilly areas, but the productive nature of the site greatly limited the trees encroachment. The nonmarginal character of the investigated area is also witnessed by a remarkable increase of inhabitants observed in the last decades. This trend is in contrast with many other sites in Italy and other EU countries (Pinto-Correia, 1993; Peroni et al., 2000; Conti and Fagarazzi, 2004; Zomeni et al., 2008). As opposite to forests, the vineyards expanded in the most accessible and productive sites, thus limiting the orchards expansion too. However a reduction of vineyards surfaces in marginal and less accessible sites in favour of orchards was observed and confirmed by other studies in the Mediterranean region (e.g. Marull et al., 2010; Corti et al., 2011). On the contrary, there are other Mediterranean-climate ecoregions where a strong expansion of vineyards was favoured by wine market booming (Merenlender, 2000; Fairbanks et al. 2004) or agricultural policies (Cots-Folch et al., 2006).

4.2 Transition from vineyards to hazelnut orchards

The land use category defined as ‘Orchards’ in the present paper was almost entirely represented by hazelnut \((Corylus avellana \text{ L.})\) orchards. A wider classification that included all the orchards was used in this paper in order to reduce misclassification errors (Franco, 1997). The domestication of hazelnut in Mediterranean areas probably started during the Greeks and Romans periods (Trotter,
1921; Boccacci and Botta, 2009), but became important for the Langhe region at the end of 1800 (Comunità Montana Alta Langa, 2009). At that time the appearance of downy mildew (Plasmopara viticola [Berk. & Curt] Berl. & de Toni), of grape phylloxera (Daktulosphaira vitifoliae Fitch) and other grapevine parasites increased the uncertainty of winemakers that started to cultivate the hazelnut (Valentini and Me, 2002). A similar dynamic has been observed also in the metropolitan region of Barcelona, Spain (Marull et al., 2010). During the Second World War the hazelnut oil was used as a surrogate for olive oil, but only in the late 80s its cultivation became really important and expanded in Piedmont region. The hazelnut cultivated surface increased by 20% in the last decade of the study period, and the highest increment peak was observed during the 1990 – 1995 period (Valentini and Me, 2002). Moreover, during the 1981 – 2000 period the surface expansion triggered an increase of hazelnut production from 9.171 tons to 11.959 tons and of its price from 1.66 €/Kg to 1.96 €/Kg. A shift of vineyard cultivation toward hazelnut is detectable from the historical statistics on cultivated surfaces of the Cuneo province (ISTAT 1971-2001). In a twenty year time span (1980 - 2000) hazelnut orchards have nearly doubled their surfaces, while vineyards have shown a remarkable decrease (Fig. 4). These historical statistics confirmed the results observed at Diano site through change detection analysis.

4.3 Agricultural policies concerning hazelnut cultivation

The strong increase of hazelnut surfaces occurred in Piedmont at the beginning of the 90s, reflected an increasing interest of landowners towards hazelnut and its economical potential (Valentini and Me, 2002). Even if we did not directly measure the effects of local and European agricultural policies on the hazelnut cultivation, it is interesting to mention those events that influenced its diffusion in Piedmont region. The European Union supported young farmers through a regulation devoted to improve the efficiency of agricultural structures (EC 2328/91) and encouraged the adoption of agronomic practices with a positive impact on the environment, through the agri-environment regulation (EU 2078/92). Probably the most important policy measure regarding
hazelnut in Piedmont is a decree of the Italian Ministry of Agricultural and Forestry Policies (DM n. 2/12/93) that recognized its Protected Geographical Indication (PGI) under the appellation “Nocciola Piemonte”. In 1996 the European Union registered the “Piedmont hazelnut” as a Protected Geographical Indication (PGI) through a regulation on the registration of geographical indications and designations of origin (EC 1107/96). The two latter regulations supported and acknowledged the quality of the hazelnut fruit, but other measures favoured the hazelnut expansion too. A direct Community aid to farmers producing hazelnuts was granted since the 2003 (EC 1782/03) and more recently (2007) the hazelnut variety cultivated in the Langhe region was registered within the Community Plant Variety Office (CPVO) with a new name (“Tonda gentile Trilobata”) for a more efficient preservation. All these European regulations were locally acknowledged by the PSR 2007-2013 (Action 214) rural development plan (Regione Piemonte, 2009). The success of hazelnut orchard in the Langhe region was favoured by the increasing demand for quality products related to the sweet factory market (Garrone and Vacchetti, 1994; Cova and Pace, 2006) that together with the EU food-labelling (PGI) policy facilitated the “Nocciola Piemonte” to survive against stronger producer countries such as Turkey (Reis and Yomralioglu, 2006). In fact, according to FAO database (FAOSTAT, 2010), hazelnut plantations in Turkey increased their surface by 40% during the 1961 – 2000 time span. A smaller increase (23%) of hazelnut surface in Italy and a stable situation in Spain have been observed in the same period.

4.4 Management issue

Hazelnut cultivation in the Langhe region expanded at the expenses of other orchards, fallow lands, grasslands and generally in places where the cultivation of grapes was less remunerative (Valentini and Me, 2002). Particularly important is the decline of crops in hilly regions such as Langhe that resulted less productive than those located in flat areas (Comunità Montana Alta Langa 2009). The rapid expansion of hazelnut plantations is radically transforming the rural landscape of Langhe region and its further expansion could result in a use of not suitable areas for its cultivation. This
phenomenon has been recently observed in Turkey, where the hazelnut production exceeds the demand mainly due to a lack in land use policy (Reis and Yomralioglu, 2006; Aydinoglu, 2010). Medium-term consequence for this may include the abandonment of no more profitable hazelnut orchards and consequent land degradation. These potential problems could be averted if the effective quality of Langhe hazelnut production will continue to be achieved and adequately protected. This paper highlights the potential of change detection investigations as a support for national and international bodies in evaluating rural policies for valuable agriculture (London Economics, 2008) and their effects on landscape, production and society (Westhoek et al., 2006; Martinez-Casasnovas et al., 2010; Van Berkel and Verburg, 2011). Future researches should extend the study area to give an accurate estimation of rural landscape dynamics filling the research gap regarding remote detection of hazelnut cultivations expansion in the Mediterranean area (Franco, 1997; Reis and Yomralioglu, 2006). Moreover, socio-economic factors should be integrated in the analysis of the drivers of land use change in order to achieve a more coherent and complete study of the process under study (e.g. De Aranzabal et al., 2008; Tzanopoulos et al., in press).

Acknowledgments

The authors wish to thank the anonymous reviewers for their valuable comments and suggestions to improve the manuscript and the Italian National Research Council (CNR-IRPI) for providing aerial photographs and calibration certificates. Danilo Godone and Matteo Garbarino were funded by Piemonte Region, DGR 57/OC of January 28, 2002.
Tables

Table 1 Comparison of root mean square errors obtained through the orthorectification of the 1954 aerial photographs with calibration certificate or with focal length only.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
<td></td>
</tr>
<tr>
<td>Calibration certificate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-0.11</td>
<td>-0.95</td>
<td>-1.29</td>
<td>2.45</td>
<td>1.80</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>3.12</td>
<td>2.07</td>
<td>1.48</td>
<td>1.65</td>
<td>1.25</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Focal length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.36</td>
<td>4.27</td>
<td>14.86</td>
<td>8.42</td>
<td>16.73</td>
<td>18.78</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>13.51</td>
<td>19.95</td>
<td>15.86</td>
<td>10.10</td>
<td>9.63</td>
<td>9.88</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Description of the land use/land cover (LULC) categories adopted in the aerial images classification at *Diano* site.

<table>
<thead>
<tr>
<th>LULC class</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forests</td>
<td>FO</td>
<td>Forest patches or single trees, excluding arboriculture plantations</td>
</tr>
<tr>
<td>Fields</td>
<td>FI</td>
<td>Cultivated or uncultivated grasslands and polygons not univocally identified</td>
</tr>
<tr>
<td>Vineyards</td>
<td>VI</td>
<td>Surfaces cultivated with vine</td>
</tr>
<tr>
<td>Urban</td>
<td>UR</td>
<td>Human infrastructures and buildings</td>
</tr>
<tr>
<td>Orchards</td>
<td>OR</td>
<td>Arboriculture and hazelnut orchards</td>
</tr>
<tr>
<td>Waters</td>
<td>WA</td>
<td>Water bodies (lakes and rivers)</td>
</tr>
</tbody>
</table>
Table 3 Metrics on landscape level (McGarigal and Marks 1995) computed for the Diano study site at two periods (1954-2000 land use maps).

<table>
<thead>
<tr>
<th>Metrics (abbreviation)</th>
<th>Component measured</th>
<th>Units</th>
<th>Land Use maps (2651.59 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1954</td>
</tr>
<tr>
<td>Patch Density (PD)</td>
<td>Density</td>
<td>n/100 ha</td>
<td>213.26</td>
</tr>
<tr>
<td>Patch Area Mean (AREA_MN)</td>
<td>Area</td>
<td>ha</td>
<td>0.47</td>
</tr>
<tr>
<td>Largest Patch Index (LPI)</td>
<td>Area</td>
<td>%</td>
<td>4.25</td>
</tr>
<tr>
<td>Edge Density (ED)</td>
<td>Edge</td>
<td>m/ha</td>
<td>486.95</td>
</tr>
<tr>
<td>Landscape Shape Index (LSI)</td>
<td>Edge</td>
<td>-</td>
<td>63.78</td>
</tr>
<tr>
<td>Shape Index Mean (SHAPE_MN)</td>
<td>Shape</td>
<td>-</td>
<td>1.99</td>
</tr>
<tr>
<td>Contiguity Index Mean (CONTIG_MN)</td>
<td>Shape</td>
<td>-</td>
<td>0.66</td>
</tr>
<tr>
<td>Euclidean N.N. Distance (ENN_MN)</td>
<td>Isolation</td>
<td>m</td>
<td>7.06</td>
</tr>
<tr>
<td>Contagion Index (CONTAG)</td>
<td>Contagion</td>
<td>%</td>
<td>60.08</td>
</tr>
<tr>
<td>Simpson's Diversity Index (SIDI)</td>
<td>Diversity</td>
<td>-</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Table 4 Transition matrix showing land cover changes (ha) from 1954 to 2000. Values are expressed in hectares and in percent (in parentheses) relative to the total area of the class in 1954.

<table>
<thead>
<tr>
<th>Land uses in 2000</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forests</td>
<td>Fields</td>
<td>Vineyards</td>
<td>Urban</td>
<td>Orchards</td>
<td>Water</td>
<td>Total area (ha)</td>
</tr>
<tr>
<td>Forests</td>
<td>388.21 (60%)</td>
<td>58.77 (9%)</td>
<td>56.07 (9%)</td>
<td>41.93 (6%)</td>
<td>105.17 (16%)</td>
<td>0.89 (<1%)</td>
<td>651.04 (25%)</td>
</tr>
<tr>
<td>Fields</td>
<td>160.81 (15%)</td>
<td>221.19 (20%)</td>
<td>268.69 (24%)</td>
<td>72.50 (7%)</td>
<td>375.24 (34%)</td>
<td>0.77 (<1%)</td>
<td>1099.20 (41%)</td>
</tr>
<tr>
<td>Vineyards</td>
<td>78.69 (11%)</td>
<td>83.34 (11%)</td>
<td>370.93 (50%)</td>
<td>36.59 (5%)</td>
<td>165.09 (22%)</td>
<td>0.18 (<1%)</td>
<td>734.82 (28%)</td>
</tr>
<tr>
<td>Urban</td>
<td>12.16 (11%)</td>
<td>19.03 (17%)</td>
<td>13.85 (12%)</td>
<td>54.62 (48%)</td>
<td>14.19 (12%)</td>
<td>0.16 (<1%)</td>
<td>114.00 (4%)</td>
</tr>
<tr>
<td>Orchards</td>
<td>6.16 (18%)</td>
<td>1.25 (4%)</td>
<td>3.66 (10%)</td>
<td>1.56 (4%)</td>
<td>22.31 (64%)</td>
<td>0.00 (<1%)</td>
<td>34.92 (1%)</td>
</tr>
<tr>
<td>Water</td>
<td>7.20 (41%)</td>
<td>2.97 (17%)</td>
<td>0.05 (<1%)</td>
<td>1.74 (10%)</td>
<td>4.16 (24%)</td>
<td>1.49 (8%)</td>
<td>17.60 (1%)</td>
</tr>
<tr>
<td>Total area (ha)</td>
<td>653.23 (25%)</td>
<td>386.54 (15%)</td>
<td>713.23 (27%)</td>
<td>208.93 (8%)</td>
<td>686.16 (26%)</td>
<td>3.49 (<1%)</td>
<td>2651.59 (100%)</td>
</tr>
</tbody>
</table>

Table 5 Total land surface area occupied by hazelnut orchards in Italy. Data are given as a whole and divided by region (ISTAT, 2012). Statistical records are also reported for Turkey (Turkish Statistical Institute, 2009).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Piemonte</td>
<td>8042</td>
<td>8042</td>
<td>8042</td>
<td>8043</td>
<td>9211</td>
<td>9519</td>
<td>9718</td>
<td>10531</td>
<td>11671</td>
<td>12366</td>
<td>12388</td>
<td>12142</td>
<td>12133</td>
<td>ISTAT</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>Campania</td>
<td>24805</td>
<td>24841</td>
<td>25417</td>
<td>25064</td>
<td>23496</td>
<td>22872</td>
<td>22831</td>
<td>22834</td>
<td>22828</td>
<td>22819</td>
<td>22849</td>
<td>12616</td>
<td>22787</td>
<td></td>
</tr>
<tr>
<td>Lazio</td>
<td>18930</td>
<td>18878</td>
<td>18949</td>
<td>18999</td>
<td>19033</td>
<td>18996</td>
<td>18974</td>
<td>18985</td>
<td>18929</td>
<td>18914</td>
<td>18968</td>
<td>18969</td>
<td>19008</td>
<td></td>
</tr>
<tr>
<td>Sicilia</td>
<td>15878</td>
<td>15730</td>
<td>15368</td>
<td>15368</td>
<td>15431</td>
<td>15146</td>
<td>15090</td>
<td>15080</td>
<td>16482</td>
<td>14930</td>
<td>16075</td>
<td>14350</td>
<td>14740</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>2140</td>
<td>2134</td>
<td>2058</td>
<td>2071</td>
<td>2094</td>
<td>2080</td>
<td>2244</td>
<td>2245</td>
<td>2394</td>
<td>2011</td>
<td>1749</td>
<td>1521</td>
<td>1814</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>69795</td>
<td>69625</td>
<td>69834</td>
<td>69545</td>
<td>69265</td>
<td>68613</td>
<td>68857</td>
<td>69675</td>
<td>72304</td>
<td>71040</td>
<td>72029</td>
<td>59598</td>
<td>70482</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>530700</td>
<td>549500</td>
<td>550000</td>
<td>560000</td>
<td>600000</td>
<td>621200</td>
<td>621200</td>
<td>621200</td>
<td>621200</td>
<td>621200</td>
<td>621200</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Figure captions

Figure 1 Location of the 2651 ha study area (white dot) within Piedmont region (upper image) and its topography (lower image) with main rivers and settlements.

Figure 2 Land use classifications of 1954 (upper map) and 2000 (lower map) orthoimages.

Figure 3 Land uses expressed as proportion of the total study site surface in 1954 (black bars) and 2000 (grey bars) at Diano site.

Figure 4 Agricultural statistics of Cuneo (Piedmont, Italy) province in the 1971-2001 period.
References

<http://webgis.arpa.piemonte.it/elenco_servizi/index.html>

Landscape and Urban Planning 86, 38- 46.