Antibacterial efficacy and drug-induced tooth discolouration of antibiotic combinations for endodontic regenerative procedures [*V.Allizond is the corresponding author]

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/139354 since 2020-08-31T13:58:22Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
MANDRAS N., ROANA J., ALLIZOND V., PASQUALINI D., CROSASSO P., BURLANDO M., BANCHE G., DENISOVA T., BERUTTI E., CUFINI A.M.
Antibacterial efficacy and drug-induced tooth discolouration of antibiotic combinations for endodontic regenerative procedures
INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY (2013) 26
ANTIBACTERIAL EFFICACY AND DRUG-INDUCED TOOTH DISCOLOURATION OF ANTIBIOTIC COMBINATIONS FOR ENDODONTIC REGENERATIVE PROCEDURES

N.1 MANDRAS, J.1 ROANA, V.1# ALLIZOND, D.2 PASQUALINI, P.3 CROSASSO, M.3 BURLANDO, G.1 BANCHE, T.2 DENISOVA, E.2 BERUTTI, A.M.1 CUFFINI

1Department of Public Health Sciences and Paediatrics, University of Turin, Turin, Italy

2Department of Surgical Sciences, Dental School, Endodontics University of Turin, Turin, Italy

3Department of Pharmacy, AO Città della Salute e della Scienza of Turin, Turin, Italy

Key words
endodontic treatment, primary teeth, minocycline, triple antibiotic paste

Conflict of interest
The authors report no conflicts of interest

#Corresponding author: Dr Valeria Allizond
Department of Public Health and Paediatrics, Via Santena 9, 10126 Turin, Italy
Tel.: +39 011 670 5627 ; fax +39 011 670 5648
E-mail: valeria.allizond@unito.it
SUMMARY

Elimination of microbial contamination from the root canal system is a precondition for successful root canal treatment. Teeth with immature root development, necrotic pulps and apical periodontitis present multiple challenges for successful treatment. Disinfection is achieved by irrigation followed by the placement of an intracanal medicament. A mixture of ciprofloxacin, metronidazole and minocycline (3-MIX S) has been shown to be very effective in eliminating endodontic pathogens in vitro and in vivo. Among the components of the mixture, minocycline can induce tooth discolouration after long-term oral use. Therefore, the elimination of minocycline from the above-mentioned combination has been suggested to prevent the occasion of this undesirable effect.

The aim of this study was to investigate the potential antimicrobial efficacy of alternative antibiotic combinations [3-MIX C (clarithromycin); 3-MIX F (fosfomycin)] against bacteria from infected root canals. An additional objective was to evaluate their discolouration potential as possible alternatives to minocycline-based intracanal medicaments. Our in vitro results clearly demonstrated that 3-MIX C and 3-MIX F had a greater antimicrobial activity than 3-MIX S, underlying that clarithromycin still had higher capacity to kill endodontic pathogens in vitro compared to fosfomycin. Both 3-MIX C and 3-MIX F were able to avoid the permanent staining effect of the crown.
Successful endodontic treatment requires the removal of all vital and necrotic pulp tissue, microorganisms and their toxins. Bacteria penetrate more deeply into the tubules of infected teeth and in this location they may be protected from therapeutic antimicrobials in the root canal (1). The young permanent tooth with a necrotic pulp tissue requires a complex treatment (2,3). For years, apexification was the standard treatment. The revascularization/regeneration of non-vital immature permanent teeth might be another treatment option for restoring root development and apical closure (4). Regeneration protocols include the topical use of effective antibiotics with a broad depth of coverage against endodontic pathogens (5). Previous studies demonstrated the efficacy of a triple antibiotic paste which consists of ciprofloxacin, metronidazole and minocycline in for the sterilization of infected root dentine (6). However, minocycline can be responsible of for the development of an irreversible dentine discolouration with considerable esthetic concerns after long-term oral use; crown discolouration may appear in within 24 hour after application of minocycline (4), or even in only one hour after removal of smear layer and application of triple antibiotic paste with minocycline (7). To prevent this undesirable side effect, the sealing of dentinal tubules of the pulp chamber by a dentine bonding agent has been proposed (8), even if this procedure reduces the overall color change but does not prevent it (4). Therefore, some authors suggested the elimination of minocycline from the original proposed triple antibiotic association proposed (Bimix) in order to eliminate this undesirable side effect (9).

Thus, the primary objective of this study was to investigate the antimicrobial efficacy of alternative antibiotic combinations containing clarithromycin (3-MIX C) and fosfomycin (3-MIX F) against bacteria from infected root canals. Clarithromycin has been was used
because the macrolide has been suggested for non-surgical periodontal therapy in the
treatment of chronic periodontitis, and for its therapeutic benefits such as favorable tissue
distribution, especially in fibroblasts (10). Fosfomycin was used in order to compare its
antimicrobial activity with the literature data (11). An additional objective was to evaluate
the discolouration potential of 3-MIX C and 3-MIX F as possible alternatives to
minocycline-based intracanal medicaments.

MATERIALS AND METHODS

Patients. In the present study 29 healthy subjects (19 females and 10 males, 18-78 years of
age) diagnosed with pulp necrosis with or without apical periodontitis (acute or chronic)
were recruited at the Department of Surgical Sciences, Dental School, University of Turin.
All subjects were informed on an individual basis about the purpose of the study and gave
their written consent. The patients’ medical and dental status data were collected. For each
patient, pulpal and periradicular status were assessed through vitality thermal and electric
pulp tests (Diagnostic Unit, Sybron, Orange CA), palpation and percussion. Periapical X-
ray examination was performed (Planmeca Intra - Helsinki, Finland) using Rinn XCP
devices (Rinn Corp, Elgin Ill.). After local anaesthesia with 2% mepivacaine with
adrenaline 1:100,000 and isolation of the tooth with the rubber dam, the access cavity was
performed made.

Samples. Bacterial samples used in this study were collected from necrotic non-caries
permanent teeth and handled under strict anaerobic conditions in a special chamber, with
controlled atmosphere and temperature, taking into account those precautions necessary for
avoiding contamination. The samples were taken with the use of sterile paper cones,
maintained for about 20 seconds in the necrotic root canal, before irrigation with 5%
NaOCl. The paper cones were placed without introducing air in an anaerobic sterile transport tube containing 2 ml of an anaerobic transport media (Port-A-Cul™, Becton Dickinson, Italy) (12). The samples were sent to the Department of Public Health Sciences and Paediatrics (Microbiology Laboratory), University of Turin, and analyzed within one hour after the sample was taken.

Antibiotics. Metronidazole (VAGILEN®, Alfa Wassermann, Italy), ciprofloxacin (IBAXICIN®, IBI, Istituto Biochimico Italiano Giovanni Lorenzini, Italy), minocycline (MINOCIN®, Wyeth Lederle, Italy) and clarithromycin (MACLADIN®, Menarini Diagnostics, Italy) were used. Fosfomycin was employed as fosfomycin salified with trometamol (fosfomycin tromethamine; MONURIL®, Zambon Group, Italy).

Preparation of 3-MIXs for microbiological analysis. The enteric coating of metronidazole, ciprofloxacin, minocycline and clarithromycin was removed. The tablets were pulverized using a mortar and pestle. The powdered antibiotics (fosfomycin included) were stored and sealed separately in airtight containers separately from not exposed to moisture and/or light. Clarithromycin, fosfomycin, minocycline and ciprofloxacin concentrations used in 3-MIXs were obtained from minimal inhibition concentration (MIC) value on *Enterococcus faecalis* ATCC 29212 determined by broth microdiluition method, while the metronidazole concentration used resulted from MIC value recommended by the CLSI in document M100-S21 (13) for *Enterococcus spp.* *Enterococcus faecalis* was chosen as the test species because it is present in the infected root canal and capable of invading the dentine tubules. Powdered antibiotics were added to thyoglycollate medium enriched with vitamin K1 and hemin agar (TGA, Becton Dickinson) plates to obtain: a mixture of ciprofloxacin (2 µg/ml),
metronidazole (8 µg/ml) and minocycline (4 µg/ml): **3-MIX S**; a mixture of ciprofloxacin (2 µg/ml), metronidazole (8 µg/ml) and fosfomycin (64 µg/ml): **3-MIX F**; a mixture of ciprofloxacin (2 µg/ml), metronidazole (8 µg/ml) and clarithromycin (2 µg/ml): **3-MIX C**; a mixture of ciprofloxacin (2 µg/ml) and metronidazole (8 µg/ml): **2-MIX**.

Microbiological analysis. All samples were vortexed for 30 seconds, diluted 1:10 in sterile distilled water and spread on TGA control plates for initial colony forming unit (CFU) determination and on plates containing the mixed drugs to quantify the number of anaerobic bacterial strains grown in presence or absence of the different drug combinations: 3-MIX S, 3-MIX F, 3-MIX C and 2-MIX. All plates were incubated at 37°C for 3-4 days under anaerobic conditions in an anaerobic system (Anaerocult IS; Merck, Bracco, Italy). All cultures were kept for at least 2 weeks but examined for growth every 3 days. The microbial counts were reported as CFUs/ml (14). Survival fractions were calculated from each sample taking into account its initial bacterial load.

Preparation of 3-MIXs for discolouration test. The same amount of each drug powder (1:1:1) was mixed together. After that, the mixed drugs were combined with macrogol and propylene glycol (Vidhyasom Co., Ltd, Bangkok, Thailand) to form an ointment. Unused 3-MIXs were discarded at the end of the office hour.

Discolouration test. 65 root canals of extracted human single-root permanent teeth with a fully formed apex that had not undergone prior endodontic treatment were used. Teeth were sectioned at the cement-enamel junction and the crown was eliminated. After debriding the root surface, specimens were immersed in a 5% solution of NaOCl (Niclor 5; OGNA, Muggiò, Italy) for 1 hour and then stored in saline solution until preparation. Each root canal was preflared using PathFile (Dentsply Maillefer, Ballaigues, Switzerland) and then
shaped using ProTaper S1-S2-F1-F2-F3-F4-F5 (Dentsply Maillefer) at the working length.

Irrigation was performed with a 30-gauge needle syringe using 33 ml of 5% NaOCl at 37°C and alternating with 10 ml of 10% EDTA (Tubuliclean, OGNA); the total irrigation time was 10 minutes per specimen. The effect of smear layer on root discolouration was not investigated through the adoption of EDTA non-irrigated control teeth. After drying with paper points, root canals were randomly divided into 5 assigned to groups and brought into contact with the different antibiotic associations for 3 weeks.

Statistical analysis. A statistical analysis was performed on the collected data. Kolmogorov-Smirnov test for normality was used to analyze data, which were normally distributed. To compare the CFU counts in all groups a one-way analysis of variance model (ANOVA) was used. Correction for multiple comparisons with Bonferroni’s test was applied to the significance levels presented. The level of statistical significance was set at $P<0.05$. All statistical analyses were performed using the SPSS for Windows 17.0 software package (SPSS, Inc. Chicago, IL).

RESULTS

Data relative to the addition of different antibiotic combinations to 29 necrotic pulp samples showed that the initial infectious burden did vary widely among single samples with a mean value of 5.48×10^4 CFU/ml (range 5.3×10^5 to 5; median 1.28×10^3). This variation was probably caused by differences in the internal anatomy and geometry of the individual root canal systems and the duration of the infections. The addition of 3-MIX S, 3-MIX F, 3-MIX C, 2-MIX to TGA agar plates significantly decreased the bacterial detection: the mean microbial load was reduced to 7.45×10^2 (range 8.39×10^3 to 1; 1.3×10^2 median) in the
presence of 3-MIX S, to 3.27×10^2 (range 2.24×10^3 to 1; 5 median) with 3-MIX F, to 1.06×10^2 (range 2.35×10^3 to 1; 1 median) in the presence of 3-MIX C and to 5.33×10^2 (range 2.56×10^3 to 1; 2.4 $\times 10^2$ median) with 2-MIX.

The percentage of bacterial reduction in 3-MIX C and 3-MIX F (99.49% and 97.31% median, respectively) was greater than that achieved in 3-MIX S and 2-MIX (92.95% and 88.46% median, respectively) according to the bacterial load, being the difference among groups statistically significant ($P<0.05$).

Even the values for individual log reductions reveal a pronounced bactericidal activity of 3-MIX C and 3-MIX F compared to 3-MIX S and 2-MIX (Fig. 1-2). The bactericidal activity of each mix is best described by analyzing the action on the entire population of subjects (Fig.3): this was significantly greater in 3-MIX C (89%) and 3-MIX F (55%) compared with that observed in 3-MIX S (31%) and 2-MIX (17%), showing a microbicidal activity of 3-MIX C approximately 3-4 times higher than that observed in 3-MIX S and in 2-MIX, respectively.

The experimental set-up for the discolouration test before (a) and after 3 weeks of incubation (b) is reported in Fig. 4: from the time of drug placement, a dark greenbrown shade appeared in only 3-MIX S samples containing minocycline. In the other 3 groups and in the control group, the colour of the roots remained unchanged.

DISCUSSION

Regenerative endodontic procedures can lead to the development of a nearly fully matured root, with normal thickness and length (15,16). Traditional apexification procedures with calcium hydroxide to promote the formation of a calcified barrier or, in alternative, the
creation of an artificial apical barrier with mineral trioxide aggregate, are predictable and
successful (17). However they do not allow complete development of the root (15) and the
long-term calcium hydroxide therapy might negatively affect the mechanical properties of
dentine (18). Regenerative procedures require high level disinfection of the root canal
system spaces. Antimicrobial efficacy of irrigant solutions may be decreased by the
presence on root canal walls of the smear layer produced during root canal instrumentation,
composed of dentine, odontoblastic processes, nonspecific inorganic contaminants, and
microorganisms (19) that may inhibit the adherence of implanted dental pulp stem cells,
potentially causing the failure of regenerative endodontic treatment (20). The removal of
the smear layer also allows the direct contact of 3-MIX to the root walls, which
significantly influences disinfection and risk of discoloration (7). However, regenerative
procedures still lack standardization of treatment protocols, with intracanal medicaments,
and irrigants (2,15). At the moment to remove the bacterial constituents harbored in the root
canals and deepest dentine layers, a 3-mix paste of metronidazole, ciprofloxacin, and
minocycline is largely used and its bactericidal efficacy and penetration through dentine
from prepared root canals have been clearly demonstrated in vitro (6,11). However, minocycline has been reported to cause tooth discoloration after long-term oral use by
binding to calcium ions via chelation to form an insoluble complex (4,21). The literature
reports many attempts to solve this problem but without success (4,11,22). In our study,
the bactericidal efficacy and the ability to prevent the crown coloration by 3-MIX C or 3-
MIX F were compared. The antimicrobial activity of both 3-MIX F and 3-MIX C was more
effective than that of 3-MIX S and 2-MIX: 3-MIX F showed a good efficacy confirming
what reported by other authors (11); 3-MIX C induced a bacterial load significantly
decreased compared to 3-MIX F. Furthermore, the bactericidal activity of each mix is best
described by analyzing the action on the entire population of subjects where 3-MIX C
exhibited a microbicidal activity approximately 3-4 times superior to that observed in 3-
MIX S and in 2-MIX and 2 times to that detected with 3-MIX F, probably related to
clarithromycin best antimicrobial properties. The most interesting result is that a severe
discolouration only occurred in the 3-MIX S samples; discolouration by the tetracycline
family is thought to be a photoinitiated reaction (4); in our experimental conditions, the
tooth samples became dark after minocycline treatment despite a lack of sunlight. No
significant differences in terms of the surface darkness of the samples were observed
among all the other groups, 2-MIX included, confirming that minocycline is the cause for
coronal discolouration. To overcome the issue of staining, both 3-MIX F or 3-MIX C
would be preferred as alternative.
The following conclusions can be drawn: the bactericidal effect of 3-MIX C and 3-MIX F
was significantly superior to that of 3-MIX S and 2-MIX, against anaerobic
microorganisms isolated from necrotic permanent teeth; 3-MIX C shows a higher capacity
to kill endodontic pathogens in vitro compared to 3-MIX F; both 3-MIX C and 3-MIX F
were able to avoid the permanent staining effect of the crown.
Within the limitations of this study, the results obtained in vitro show that 3-MIX C is
highly encouraging as a feasible alternative in the pulp treatment of irreversibly infected or
necrotic permanent teeth. Clarithromycin antimicrobial substantivity, the property of a
substance to bind to the soft and/or hard tissue walls of the pocket, will be further assessed
to suggest its clinical use as an endodontic antimicrobial medicament.
REFERENCES

7. Ahmed HMA, Abbott PV. Discolouration potential of endodontic procedures and

