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SUMMARY

In this paper, we present a bioinformatics knowledge discovery tool for extracting and validating associ-
ations between biological entities. By mining specialized scientific literature, the tool not only generates
biological hypotheses in the form of associations between genes, proteins, miRNA and diseases but also
validates the plausibility of such associations against high-throughput biological data (e.g. microarray) and
annotated databases (e.g. Gene Ontology). Both the knowledge discovery system and its validation are car-
ried out by exploiting the advantages and the potentialities of the Cloud, which allowed us to derive and
check the validity of thousands of biological associations in a reasonable amount of time. The system was
tested on a dataset containing more than 1000 gene–disease associations achieving an average recall of about
71%, outperforming existing approaches. The results also showed that porting a data-intensive application in
an Infrastructure as a Service cloud environment boosts significantly the application’s efficiency. Copyright
© 2013 John Wiley & Sons, Ltd.

Received 28 February 2013; Revised 15 July 2013; Accepted 19 July 2013

KEY WORDS: text mining; knowledge discovery; bioinformatics

1. INTRODUCTION

A huge amount of biomedical information is hidden in millions of scientific articles published in the
last 25 years, and this quantity is exponentially increasing. This overwhelming quantity of informa-
tion in the scientific literature compels, therefore, the need for new methodologies to discover new
knowledge available in the published papers in order to support biologists in their strive toward
understanding/analyzing biological data. One of the most effective and explored approaches to
uncover this hidden knowledge is by mining the scientific literature [1–3], especially for finding
gene–gene [4], gene–disease [1] and protein–protein [5] associations. However, usually, the number
of inferred associations (especially in the approaches which retrieve also first-order associations)
can be massive, thus making the analysis and interpretation of such information as complex (and
probably more cryptic) as reading all the scientific papers the associations were extracted from.
Therefore, issues such as validity, plausibility and feasibility of the inferred associations arise, and
for this reason, methods [6] to filter out the obtained associations in order to distill the derived infor-
mation and to propose it as significant scientific hypotheses have been investigated. A significant
support to meet this goal comes from the massive publication on the Web of annotated chemical,
genomic, clinical and other types of databases, which could provide evidence and validate specific
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1772 C. SPAMPINATO ET AL.

hypotheses. If, on one hand, experimental data may support the literature mining process, on the
other hand, scientific literature may support the interpretation of such data, for example, list of up
and down regulated genes.

Recent knowledge discovery systems, such as PathExpress [7], GenCLIP [8], CoPub [9],
ENDEAVOUR [10], GeneWizard [6], G2D [11] and BioWizard [12], have exploited this integration
between the literature and experimental data (biological, chemical, medical and drugs databases) for
hypothesis generation and validation. However, discovering hidden knowledge in massive volumes
of biological data necessitates unprecedented quantities of storage and data processing. In fact, with
the amount of data growing and the increasing complexity of bioinformatics algorithms and tools,
it is becoming highly demanding the introduction of advanced computational techniques to enable
efficient knowledge discovery from data following the new wave of scientific development, that is,
data-driven. However, it is rather complex, nowadays, for institutions to build up and sustain large
computational infrastructures for data processing. A recent solution to support institutions is the
cloud computing [13], which conveys computation and storage services as virtual resources via the
Internet, thus representing an important alternative to ensure high performance data processing and
easy management of complex tools in different areas of bioinformatics [14,15], data and text mining
[16]. As a consequence of this, the number of cloud resources is increasing at an accelerating pace,
with service-based cloud environments provided by Microsoft‡, Google§, Amazon¶, SGI|| and more,
lending an unprecedented opportunity to evaluate the capabilities of the Cloud for sustainable and
large-scale data processing in bioinformatics.

Generally, the cloud has been mainly used in the areas of economics, health and the entertainment
industry, whereas its application in bioinformatics has been mainly oriented to the field of compara-
tive genomics, for example, the Sanger Institutes fast matching and alignment algorithm to assemble
full human genome [17], Cloud Burst [18] to map next-generation sequencing data [19] and Cloud
Blast, a ‘clouded’ implementation of NCBI BLAST [20, 21].

The main contributions of this paper to the research on bioinformatics are the following:

! A review of the existing Cloud-based services, approaches and tools in
bioinformatics.
! One of the first examples of Cloud-based knowledge discovery system, which generates bio-

logical hypotheses in the form of associations between biological entities by mining scientific
papers and then validates the inferred associations against experimental data.

The remainder of the paper is as follows: Section 2 reviews the existing Cloud services and
infrastructure that might be adopted in the bioinformatics research; Section 3, instead, describes
the platform, a knowledge discovery tool that employs a natural language processing (NLP) based
approach for mining the literature and deriving associations between biological entities, which are
further validated against high-throughput data. Because the text and data mining processes are com-
putationally expensive, Cloud Foundry, a platform for development, deployment and operation of
cloud applications, is used. In Section 4, some experimental results are given, and Section 5, finally,
discusses on the conclusions and draws some future lines for the research on bioinformatics by using
the Cloud.

2. CLOUD TECHNOLOGIES IN BIOINFORMATICS

The rise of Cloud technologies is an incredible opportunity for bioinformatics in order to satisfy its
needs of processing large amounts of heterogeneous data and of storing massive amount of data.

‡http://www.windowsazure.com/en-us/.
§https://cloud.google.com/.
¶http://aws.amazon.com/ec2/.
||http://www.sgi.com/solutions/internet/.
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Figure 1. Example of the typical workflow in bioinformatics.

This importance is witnessed by the ever growing number of bioinformatics applications (from
DNA sequencing [22], to sequence alignment and similarity search [23], data mining [24], biolog-
ical systems modeling [25] and knowledge discovery [16]) relying on Cloud services. However,
cloud computing not only serves for large-scale computation but also provides a set of services that
are changing radically the traditional way of doing research leading to a new era of bioinformat-
ics [26]. For example, the typical workflow of DNA sequencing foresees that biologists design the
experiments and send samples to sequencing centers, which make available raw data (through spe-
cific services, such as FTP, HTTP) to biologists, who have to download in their local institutions
terabytes of data and, according to the research plans, publish these data in public databases. At the
same, biologists copy the data into local machines for being used by bioinformaticians for the sub-
sequent data analysis. Bioinformaticians, on the other hand, when process biologists’ data have also
to download data from public databases. Therefore, this typical flowchart (Figure 1) implies that
huge quantities of data are moved several times from sites to sites, thus slowing down the analysis
and the interpretation of the results.

The Cloud, instead, aims at creating an infrastructure (Figure 2) where sequencing centers store
their data into the Cloud, public databases are built on the top of the infrastructure, biologists
access these data directly from the Cloud and share what they need with bioinformaticians, who
will develop large-scale applications directly on the Cloud whose results will be made available to
the biologists for the interpretation. This new architecture will reduce the times data are transferred
and also will allow laboratories and institutions to cut down the expenses to carry out experiments
and data analysis.

In the next sections, the existing Cloud services and solutions for bioinformatics will be reviewed
according to the Cloud’s service model categorisation: Platform as a Service (PaaS), Software as
a Service (SaaS) and Infrastructure as a Service (IaaS). The Data as a Service (DaaS), which is a
Cloud service model that concentrates in distributing data on-demand instead of software applica-
tions or hardware resources and the Network as a Service (Naas), which is a Cloud service model
that provides network infrastructure and resources on demand, are omitted because they are out of
the scope of this work.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
DOI: 10.1002/cpe
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Figure 2. Changes on the bioinformatics workflow with the introduction of the Cloud computing.

2.1. Platform as a Service

Platform as a Service offers a development environment that allows users to create and run their
applications using specific programming languages and frameworks available in the platform itself.
Examples of PaaS environments are Google App-Engine** and Microsoft Azure††. However, to
perform large-scale data analysis in bioinformatics, it is necessary that Cloud-based environments
support the communication of parallel tasks in order to make full use of the available computa-
tion and storage resources. To address this need, most of the existing PaaS services are provided
with an additional abstraction level implementing the map-reduce programming model [27]. The
map-reduce computational paradigm divides the main application into many sub-applications, each
executed or re-executed on a node of the Cloud infrastructure, and consists of two main steps. Dur-
ing the first step (map), the master node takes the input, divides it into smaller sub-problems and
distributes them to worker nodes. The worker nodes process the smaller problems and pass the
answer back to its master node. In the second step (reduce), the master node collects the answers
to all the sub-problems and combines them to form the output. There exist many frameworks that
implement the map-reduce paradigm and also provide jobs management functions for data-intensive
computing such as Apache Hadoop‡‡ or Microsoft’s Dryad§§. Some of these frameworks are:

! Apache Hadoop framework, in which beyond the implementation of the map-reduce model,
provides a distributed file system, the Hadoop Distributed File System [28], for effective and
very low latency data storage on the worker nodes. In addition, there are many projects built on
top of Hadoop such as Pig¶¶, which is a high-level data-flow language and execution framework
whose compiler produces sequences of Map/Reduce programs for execution within Hadoop,
or Hive [29], which is a data warehouse framework built on top of Hadoop, developed at
Facebook, used for ad hoc querying with an SQL type query language and also used for more
complex analysis.

**http://code.google.com/appengine/.
††http://www.microsoft.com/windowsazure/.
‡‡http://hadoop.apache.org/.
§§http://research.microsoft.com/en-us/projects/dryad/.
¶¶http://pig.apache.org/.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
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! Microsoft Dryad, developed by Microsoft Research, allows developers to write parallel appli-
cations executing on the Cloud by modeling a directed acyclic graph (DAG). The DAG consists
of a set of vertices describing the operations to be performed, which are distributed at runtime
to different execution engines.
! Cloud MapReduce [30] is an implementation of MapReduce model [31] on top of the Amazon

Cloud OS. Cloud MapReduce can be considered as an optimized version of the other MapRe-
duce implementations, thanks to an architecture that ensures several advantages in terms of
speed, scalability and simplicity.

Recently, PaaS frameworks have been applied with increasing interest to bioinformatics research
as demonstrated by the quantity of works employing the map-reduce approach on the Cloud, mainly,
for parallel large-scale data processing. In [32], Windows Azure was used in particular for data stor-
age and as Virtual Machine (VM) hosting environment to conduct data mining for computational
drug discovery. In [33], Dryad and Hadoop were used to host two bioinformatics applications:
Expressed Sequence Tag [34] and Alu Sequencing [35]. An accurate performance evaluation has
shown the advantages of the two frameworks with respect to traditional MPI implementations.

To the best of our knowledge, there exist only few applications exploiting Cloud-based map-
reduce solutions to perform literature text mining for biological hypothesis generation. Nazareno
et al. in [36] propose an ‘ad-hoc’ Cloud infrastructure for identifying molecular interactions by
mining the scientific literature, whereas Lin et al. in [37] describe, more generally, how to process
massively text data by using MapReduce. However, these solutions are at a very early stage, and
their implementations cannot be used reliably for massive text processing because mainly of the
lack of generalization. In fact, the deployment of these systems is too application-specific and often
restricted to a single private Cloud environment.

Unlike text processing, Cloud-based map-reduce methods (mainly based on Hadoop) have been
often used for processing high-throughput data analysis. Crossbow [38] proposes solutions exe-
cuting on Hadoop for whole genome resequencing analysis and single nucleotide polymorphism
genotyping from short reads. Contrail [39] uses Hadoop for ‘de novo’ assembly from short sequenc-
ing reads, whereas Myrna [40] proposes a method for calculating differential gene expression from
large RNA-seq data sets. On clusters, Myrna uses Hadoop, whereas in the Cloud, it uses Amazon
Elastic MapReduce||||.

Analogously, a few Cloud-based methods for microarray data mining have been proposed as in
[41] where the authors developed a MapReduce framework on Hadoop for mining association rules
from microarray gene expression datasets. Delmerico et al. in [42] provide an extensive performance
evaluation of clusters and Hadoop based solutions for computing genes correlations by processing
microarray data. The authors state that although the performance of the existing approaches for
identifying such correlations are generally improved on clusters, storage, hardware and network
(mainly) limitations restrict their scalability, on the contrary of Hadoop, which, instead, provides a
significantly better scalability.

However, two are the main downsides of the MapReduce solutions: first of all, the map/reduce
frameworks require re-writing most of the existing applications, which, for several reasons, is not
appreciated by bioinformaticians and biologists. Second, the current implementations of map/reduce
paradigm employ some overly simple mechanisms; for example, the job scheduling is often not
(well) supported, thus affecting the tools’ performance.

2.2. Software as a Service

Software as a Service is a Cloud solution, which coveys software applications through the Internet,
and it is commonly used in bioinformatics to support remote access to available tools. For SaaS
there is no client side software requirement for the user: the services are reachable through an
access point like a web portal or a visualization tool. The main advantage of SaaS is that it enables
large-scale data analysis over the web, thus eliminating the need for local installation of a large

||||http://aws.amazon.com/elasticmapreduce/.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
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variety of software tools and also providing up-to-date Cloud-based services for bioinformatic data
analysis.

An interesting example of SaaS in bioinformatics is EasyGenomics***, a key enabling platform
providing streamlined bioinformatics services. Basically, most of the available tools implement the
map/reduce paradigm for parallelization and scalability, but make it trasparent for the end-users
who have to call only the service with no knowledge about the underlying software and hardware
infrastructure. Relevant examples are: CloudAligner [43], a full-featured Hadoop MapReduce-based
tool for sequence mapping, and CloudBurst [18], an open source optimized tool for mapping
next-generation sequence data to the human genome with MapReduce.

However, one of the major requirements of SaaS services in bioinformatics is the interoperability
between multiple Cloud systems. The main difficulties to address this need are that the mechanisms
for service publishing, searching and subscription are not well-established and the existing tech-
nologies (WSDL, UDDI) do not describe sufficiently the semantics of such services [44]. For this
reason, the current trend is toward a metadata ontology for service description [45].

2.3. Infrastructure as a Service

The IaaS layer aims at offering computer infrastructures, virtualised resources, storage, networks
and other fundamental computing resources via self-services to the user. The challenge introduced
by bioinformatics on IaaS regards the enhancement of flexibility of Cloud platform for resource
management in order to satisfy user needs. The most appropriate approach to ensure such flexi-
bility is via virtualisation that mainly involves either the generation of multiple virtual machine
instances to partition the physical resources or multi-tenancy techniques, which enable users to
share application instances and treat them as independent ones.

However, currently, the most employed approach is the creation of suitable virtual machine
instances according to user requirements. This is a non-trivial task in bioinformatics because of
dependence and version matching issues arising when dealing with bioinformatics tools.

Amazon EC2 [46] represents an example of such a service, and it offers a variety of VM images
provided with a good variety of bioinformatics tools. Other important examples are Cloud BioLinux
[47] and CloVR [48]. The former is a publicly accessible virtual machine for high performance
bioinformatics computing. The latter, instead, is a portable virtual machine for automated sequence
analysis, and its performance are discussed in [49, 50]

The main limitation of the current IaaS services is that VM creation, update and sharing are too
ad hoc and tailored to the specific needs of bioinformaticians and biologists, who, basically, have
to create VMs from the beginning. On-demand packaging mechanisms are recently under investi-
gation to allow an automatic creation of virtual machine images provided with all the needed and
up-to-date tools with all the dependencies solved.

In the next section, the knowledge discovery tool for biological hypothesis generation exploiting
an IaaS Cloud service is described as an example on how to execute large-scale data analysis tool
on the Cloud.

3. A CLOUD-BASED PLATFORM FOR BIOLOGICAL HYPOTHESES GENERATION

The developed application allows users to produce new biological hypotheses through an intu-
itive and guided interface without requiring knowledge of text-mining and data mining methods. It
retrieves automatically associations between biological entities (gene–disease , gene–gene, protein–
protein, protein–disease, gene–miRNA and miRNA–disease) by mining Pubmed abstracts and
Oxford Journals full papers and validates them against biological data. Figure 3 shows all the types
of associations (excluded the ones involving miRNA as they are considered as a special case of the
ones involving genes) supported by our tool.

***www.easygenomics.com.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
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Figure 3. The biological entities associations supported.

As the association retrieval and validation involves large-scale text and data mining proce-
dures, we have used Cloud Foundry†††, a Cloud computing PaaS and IaaS solution developed by
VMware‡‡‡.
In detail, the main steps performed by the proposed system to generate and validate scientific
hypothesis are the following:

! Document retrieval and dictionaries building to create the test set from which the associations
are extracted.
! An NLP based approach that, starting from the above set, parses the documents and extracts

the associations between the terms of the dictionaries.
! Validation of the derived associations using high-throughput data (e.g. microarray data for

gene–disease and miRNA–disease associations, BioConstrast§§§ and STRING ¶¶¶ for associ-
ations involving proteins).
! Execution of the text and data mining algorithms on the Cloud.

Figure 4 recaps the resources and modules used by the system, while Figure 5 shows how each
module is distributed in the Cloud. In the next subsections, each module is described in detail.

3.1. Text mining module for hypothesis generation

The text mining approach implemented is based on a natural language processing method, which
parses fully syntax and semantics of the retrieved papers. The developed application infers an associ-
ation between two biological entities T1"T2 when it finds a meaningful triple (noun-verb-adjective)
with noun and adjective being biological entities (taken from the biological terms vocabulary) and
verb being a verb, which significantly correlates the two terms (e.g. T1 activates T2). In previ-
ous works [6, 12], we adopted co-occurrences processing for deriving associations that, unlike the
one herein proposed, produce many noisy associations (high recall, but low precision) making the
subsequent validation very time consuming and sometime also useless.

†††http://www.cloudfoundry.com/.
‡‡‡http://www.vmware.com.
§§§http://biocontrasts.biopathway.org/.
¶¶¶http://string-db.org/.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
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Figure 4. Outline of the modules and resources used.

Figure 5. Top-level architecture. The entry point of the platform is the Web-Service, which also has the role
of controlling the workflow and distributing the workload of the whole process.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
DOI: 10.1002/cpe
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Figure 6. GUI for document retrieval.

Figure 7. GUI for gene dictionary building.

The proposed approach consists of four main steps:

1. Document Retrieval and Dictionaries Building. As biological entities identified by mining
only abstracts are underestimated because of abstracts’ concise nature, the proposed approach
uses a set of full text articles retrieved from the Oxford Journal system using a biological
entity name as query term. At the same time, we use Entrez Gene [51], Mesh [52], miRBase
[53] and UniProt* for building the dictionaries, respectively, for genes, diseases, miRNA and
proteins. Such dictionaries are the basis of our text mining approach. Figures 6 and 7 show,
respectively, the GUIs for document retrieval either from Pubmed or from Oxford Journal and
for gene dictionary building.

2. Natural Language Processing for Parsing Full Text. In parallel to dictionaries building, the
retrieved papers are parsed by using the A Nearly New Information Extraction System module
included in GATE [54]. The text parsing consists of the following modules: (i) Text Tokenizing

*www.uniprot.org.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
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Figure 8. Multiple disease-gene associations. Diseases are green-coded, while genes are blue-coded.

to break the text into tokens, which provides useful information such as token category
(proper noun, verb, adjective), token length and orthography (hyphenation, capitalization,
word breaks) and (ii) Sentence Splitter to split tokens into sentences.

3. A Named Entity Recognition (NER) module, which improves the dictionaries’ creation. In fact
by only using the terms of standard vocabularies, it may happen that no association is derived
because of the dissimilarities between the vocabularies’ terms and the terms extracted from
parsing full papers and abstracts. We used ABNER [55] to tag genes and diseases within a
sentence, while UniProtJAPI† for proteins.

4. Associations discovery between meaningful terms. For each sentence, all the triples (noun,
verb, adjective) are detected, and then only those containing valid biological entity names (the
ones in the dictionaries and validated by the NER) and consistent verbs (previously defined)
are considered as hypotheses, which are subsequently validated with experimental data.

The tool, moreover, allows the users to re-use the inferred associations in different mining pro-
cesses in order to achieve multiple first-order associations: that is, if, for example, in a mining
process, we obtain an association between the entity E1 and the entity E2, and in another mining
process, we infer an association between the entity E1 and the entity E3, then a graph is created
with a connection between E2 and E3 through the entity E1. Figure 8 shows the case of multiple
associations between diseases and genes, whereas Figure 9 shows multiple associations between
proteins.

3.2. Validation of hypothesis generation against experimental data

For the validation of the generated hypotheses our system uses (i) microarray data retrieved from
the GEO database for validating associations involving genes or miRNA and (ii) BioContrasts and
STRING 9.0 for the associations involving proteins.

In the former case, once a microarray is selected, the tool starts data analysis in order to build
the relative gene relevance network (GRN) (i.e. a list of relevant genes for the given disease) con-
taining the gene of the gene–disease association to be validated. The genes of the GRN are then
re-codified using DAVID [56]. The microarray analysis modules are based on the Java classes

†www.ebi.ac.uk/uniprot/remotingAPI/.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
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Figure 9. Multiple protein–protein associations. The associations are divided into positive ones, and
contrastive ones and are depicted with different colors in the graph.

from the MultiExperiment Viewer software [57]. The first step of the data analysis is to apply
Hierarchical Clustering to the microarray data to obtain clusters of genes. Then the cluster con-
taining the gene under examination is selected, and a GRN (‘Main GRN’) is derived from it by
applying Cluster Affinity Search [58]. Because, often, the GRN may not contain a sufficient num-
ber of genes because of several factors (ranging from the clustering settings to the microarray data
quality), we iterate the procedure on building GRN for all the genes that make part of the ‘Main
GRN’. In detail, for each gene of the GRN, the microarray datasets that contain it are downloaded
from the GEO database, and then, according to the described procedure, another GRN that will be
connected to the main GRN (i.e. the one containing the disease under investigation) is built. Finally,
the genes of this extended GRN are used to query the Gene Ontology database in order to investigate
the biological meaning of such genes with respect to the given disease.

It is understandable that this validation process may not be executed on a single machine as it
involves, first, a computational intensive text mining procedure and, second, a recursive data mining
phase (several clustering steps executed on matrices with thousands of elements) for building the
extended GRN.

The validation of protein–protein associations is, instead, performed by using BioContrasts and
STRING 9.0, which is a database of known and predicted protein interactions that makes use of
genomic and high-throughput experiments data. In detail, each identified protein–protein associ-
ation is first passed for validation to BioContrasts which identifies contrasts between proteins by
identifying patterns in the form of ‘A but not B’ in MEDLINE abstracts. If there is not a contrast
between the two proteins, the final validation step is to check if the association exists in STRING
9.0, which also provides a set of further proteins involved in the association. Similar to the case of
gene–disease association, we use the Gene Ontology to investigate the biological meaning of the
proteins previously identified.

Protein–disease associations are instead automatically validated against the Human Protein Atlas‡

and the Human Protein Reference Database§.

‡www.proteinatlas.org.
§www.hprd.org.
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3.3. Data analysis on the cloud

The proposed tool is designed as a standalone desktop application that interfaces with a web service
located in the cloud. In this work, we exploited the PaaS and IaaS cloud service models offered by
CloudFoundry.

The web service is not only the entry point to the platform but also plays a key role in the coor-
dination of the workflow of the whole process. In fact, as shown in Figure 5, the web service is
interconnected to all the other modules of the system (I/O, Dictionary building, NLP processing,
Association Discovery and Microarray processing) interpreting the user’s requests, sychronizing the
underlying processes and returning the results to the user. For data management, a MySQL database
combined with the Hibernate library was chosen. The cloud execution requires to remove the inter-
face part; thus, we only execute the application engine giving the needed parameters/settings in an
XML file.

As soon as the platform is set up, the application launches. The execution time is monitored
through the Cloud Foundry command-line interface, but the running application’s standard output
can be checked. When the program’s execution ends, all the retrieved and produced data can be
found in the database. These data can also be used in order to derive performance parameters (such
as recall, efficiency metrics etc.).

4. EXPERIMENTAL RESULTS

Knowledge discovery systems often produce results that are based on a true scientific basis but does
not always hold true. This means that performance analysis of knowledge discovery systems is quite
approximate as the definition of ‘discovery’ is still controversial [59].

The only reliable way, adopted so far, to examine accurately the performance of a knowledge
discovery system is to use gold standard annotations and then compare the obtained associations
against them.The tool described in this paper allows us to extract different types of associations, but
we tested only the case of gene-disease associations as the main goal is to see how the system carried
out large scale analysis on the cloud. As a gold standard for gene-disease associations (Table I), we
used the list of 110 diseases with 1318 associations to genes described in [60]. For consistency, only
the diseases with a minimum count of 100 retrieved documents were considered. For the totality of
the diseases in the gold standard dataset, the application retrieved 220782 papers.

The performance evaluation of the system was divided in two main sections: (i) comparison,
in terms of efficiency and of valid (i.e. that have evidence in the used gold standard associations)
retrieved associations, between the NLP method and the co-occurrence-based approach [6] using an
optimized sequential (1 core) version of the application [12] both in the cloud and on a local com-
puter; and (ii) assessment of how the cloud implementation scales when the number of processor
cores available for processing increases.

For the former, the systems used were an Intel Core 2 Duo processor, running at 2 GHz, with 2 GB
of RAM for the local configuration and an equivalent 2-core at 2 GHz with 2 GB of RAM for the
cloud one. Being a sequential implementation, only one core of the two available was used by the
tool (and the application was set to run at real-time priority), while the one remaining was dedicated
to the operating system. For the latter, the platform was tested on a 64 core deployment, running
at 2 GHz, divided in 16 systems with 4 cores and 4 GB of RAM each, using multiple application
instances and following the architecture diagram shown in Figure 5. From the 64 available cores,
3 were assigned for dictionary building, 2 cores for input operations (PubMed, Oxford Journal), 1
core for the web service for each user (8 cores were preallocated) and 1 core for the processing of
the microarrays, leaving, 50 processor cores for the documents’ processing. The scalability (i.e. how

Table I. Dataset used for our experimental
evaluation.

Number of diseases 110
Number of papers examined 220782
Number of relevant associations 1318
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the system behaves when increasing the workload and how adding more hardware resources affect
the performance of it) of the platform in the cloud was assessed by testing the application using
10, 20, 30, 40 and 50 processors. The time needed to complete the processing of the papers in each
setting is shown in Table II.

It is clear how the cloud boosts the performance of the application. In fact, comparing it against
the locally running instance, we observed a gain in efficiency of about 25% when the NLP module
was used (1715 min against 2281 min) and about 26% when the co-occurrence module was used
(3207 min against 4307 min), when the sequential implementation was used on the cloud. This
increase in performance was achieved because the file transfers and I/O operations were carried out
between entities in the cloud (i.e. a very much broader bandwidth in the file transfer operations both
among the data sources and less memory and processor overhead for the operating system).

When more processors were available, the platform demonstrated that it can scale efficiently.
In fact, Table II shows that the performance of the platform scales well when the number of
cores increases, achieving an efficiency enhancement of about 10X for both the NLP and the co-
occurrence methods when 50 cores were used w.r.t. when only 2 cores were used. While such
amount of performance gain seems relatively small compared to the ideal one (25X ), it does not
consider the case when multiple users interact with the system simultaneously. Additionally, the

Table II. Performance in terms of time needed for each setting to
process the whole stack of documents.

Time in Minutes

NLP Co-occurrence

Sequential (local) 2281 4307
Sequential (cloud) 1715 3207
Parallel 2 cores 1321 2531
Parallel 10 cores 539 1033
Parallel 20 cores 287 566
Parallel 30 cores 202 391
Parallel 40 cores 158 305
Parallel 50 cores 132 255

NLP, natural language processing.

Table III. Experimental results of a subset of the dataset in terms of valid associations/retrieved
associations per disease and recall.

Co-occurrence NLP

Disease RA DA TP PA RC TL TC TP PA RC TL TC

Anemia 5810 33 20 18 0.61 10 7 26 21 0.79 4 3
Breast Cancer 10000 24 15 13 0.63 219 165 21 16 0.88 62 49
Diabetes Melitus 10000 38 13 19 0.34 190 143 28 28 0.74 123 91
Hypertension 10000 13 7 2 0.54 202 142 9 3 0.69 98 73
Leukemia 10000 39 20 16 0.51 233 178 24 26 0.62 146 113
Liver Cancer 8175 10 4 4 0.40 177 125 6 7 0.60 114 82
Lymphoma 10000 10 6 7 0.60 225 159 6 9 0.60 133 103
Melanoma 7931 6 3 7 0.50 181 143 4 4 0.67 113 84
Obesity 10000 24 15 15 0.63 145 114 17 21 0.71 110 86
Prostate Cancer 7652 14 5 8 0.36 120 85 11 8 0.79 76 58

RA is the number of the retrieved papers from Oxford Journal when the corresponding diseases name was queried,
DA denotes the number of the existing associations in the gold standard dataset. TP is true positives, that is, the
number of gene–disease associations that were both in the gold standard dataset and the applications output, and
PA denotes the number of associations that did not exist in the gold standard dataset, but the tool marked them as
valid (possible associations). RC represents the recall for the corresponding disease. TL and TC are the time, in
minutes, needed by the sequential version to complete the processing running, respectively, on the local computer
and the cloud one.
NLP, natural language processing.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
DOI: 10.1002/cpe



1784 C. SPAMPINATO ET AL.

platform scales approximately linearly, meaning that it can handle very large amounts of data, given
the necessary resources, in a predictable manner.

Table III shows the achieved results of the sequential implementation in terms of valid associ-
ations/retrieved associations and recall (defined as true positives over the whole association in the
gold standard dataset for a given disease).

Under this aspect, both the solutions performed identically because the algorithm’s logic was
identical. Observing the results, it can be deduced that the NLP based approach achieved consis-
tently better recall values than the co-occurrence based method. While the PA values (Table III)
could be considered as false positive values (i.e. associations not in the gold standard dataset but
identified by the tool), it represents possible hidden ‘knowledge’ that must be further investigated.

From the same table, we can also observe that the sequential version deployed on the cloud offers
a net performance boost, when the NLP implementation was used instead of the co-occurrence
method, with an average value of 89%.

5. CONCLUSIONS

In this paper, we have presented an open source, Cloud-based platform that assists life science
researchers in knowledge discovery. In particular, by integrating text mining methods on scientific
documents found in PubMed and Oxford Journal with high-throughput data, the proposed tool is
able to identify and validate possible associations between genes, diseases, proteins and miRNA
that may be involved in biological processes.

Furthermore, this work shows how parsing full text papers and porting an application on the
cloud increases its efficiency and effectiveness. In addition, to accomplish comparable performance
with other parallel computing architectures (GRID, MPI etc.), a more in-depth modification of the
program code would be necessary. As a consequence, applications in many scientific fields that
make use of large volumes of data (bioinformatics, medicine, astronomy etc.) can now expand their
datasets, obtaining better results both in terms of efficiency and accuracy.

In the near future, we aim to publish the tool herein presented as a free SaaS service to make it
available for other users who may want to integrate it in their platform, although the core web-
service (hence not the GUI) it is based on is available and can be obtained by contacting the
corresponding author. Future development will be focused on integrating multimedia retrieval meth-
ods [61] that could be used for extracting semantic information from images contained in the
scientific papers under examination of the application in order to increase even more the number
of the discovered associations.

ACKNOWLEDGEMENT

We would like to thank Sebastiano Milardo for his contribution in the development of the platform herein
presented.

REFERENCES

1. Özgür A, Vu T, Erkan G, Radev D. Identifying gene-disease associations using centrality on a literature mined
gene-interaction network. Bioinformatics 2008; 24(13):i277–i285.

2. Ananiadou S, Kell DB, Tsujii Ji. Text mining and its potential applications in systems biology. Trends in
Biotechnology 2006; 24(12):571–579. DOI: 10.1016/j.tibtech.2006.10.002.

3. Jensen LJ, Saric J, Bork P. Literature mining for the biologist: from information retrieval to biological discovery.
Nature Reviews Genetics 2006; 7(2):119–129.

4. Liu Y, Navathe S, Civera J, Dasigi V, Ram A, Ciliax B, Dingledine R. Text mining biomedical literature for dis-
covering gene-to-gene relationships: a comparative study of algorithms. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 2005; 2(1):62–76.

5. Von Mering C, Jensen L, Snel B, Hooper S, Krupp M, Foglierini M, Jouffre N, Huynen M, Bork P. String: known and
predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Research 2005;
33(suppl 1):D433–D437.

6. Faro A, Giordano D, Spampinato C. Combining literature text mining with microarray data: advances for system
biology modeling. Briefings in Bioinformatics 2012; 13:61–82.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
DOI: 10.1002/cpe



KNOWLEDGE DISCOVERY ON THE CLOUD 1785

7. Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T. Pathway mapping tools for analysis of high content data.
Methods in Molecular Biology (Clifton, N.J.) 2007; 356:319–350.

8. Wu J, Mao X, Cai T, Luo J, Wei L. KOBAS server: a web-based platform for automated annotation and pathway
identification. Nucleic Acids Research 2006; 34:W720–724.

9. Frijters R, Heupers B, van Beek P, Bouwhuis M, van Schaik R, de Vlieg J, Polman J, Alkema W. CoPub: a
literature-based keyword enrichment tool for microarray data analysis. Nucleic Acids Research 2008; 36:W406–410.

10. Tranchevent L, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y.
Endeavour update: a web resource for gene prioritization in multiple species. Nucleic Acids Research 2008; 36
(suppl 2):W377–W384.

11. Perez-Iratxeta C, Wjst M, Bork P, Andrade MA. G2D: a tool for mining genes associated with disease. BMC Genetics
2005; 6(1):1–9.

12. Spampinato C, Giordano D, Kavasidis I, Milardo S. Biowizard: Discovering and validating associations between
biological entities by integrated analysis of scientific literature and experimental data. 2012 25th International
Symposium on Computer-based medical systems (CBMS), IEEE, Rome, Italy, 20–22 June 2012; 1–6.

13. Mell P, Grance T. The NIST definition of cloud computing. NIST Special Publication 2011; 800:1–3.
14. Bateman A, Wood M. Cloud computing. Bioinformatics 2009; 25(12):1475–1475.
15. Dai L, Gao X, Guo Y, Xiao J, Zhang Z. Bioinformatics clouds for big data manipulation. Biology Direct 2012;

7(1):1–7.
16. Hey A, Tansley S, Tolle K. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research Redmond:

WA, 2009.
17. Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 2009;

25(14):1754–1760.
18. Schatz M. Cloudburst: highly sensitive read mapping with MapReduce. Bioinformatics 2009; 25(11):1363–1369.
19. Shendure J, Ji H. Next-generation dna sequencing. Nature Biotechnology 2008; 26(10):1135–1145.
20. Matsunaga A, Tsugawa M, Fortes J. Cloudblast: combining MapReduce and virtualization on distributed resources

for bioinformatics applications. IEEE Fourth International Conference on Escience, 2008. eScience’08, IEEE,
Indianapolis, Indiana, USA, 7–12 December 2008; 222–229.

21. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden T. NCBI blast: a better web interface.
Nucleic Acids Research 2008; 36(suppl 2):W5–W9.

22. Stein L. The case for cloud computing in genome informatics. Genome Biology 2010; 11(5):207.
23. Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinfor-

matics 2010; 11(5):473–483.
24. Grossman R, Gu Y. Data mining using high performance data clouds: experimental studies using sector and sphere.

Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM,
Las Vegas, NV, USA, 24–27 August 2008; 920–927.

25. Aldinucci M, Torquati M, Spampinato C, Drocco M, Misale C, Calcagno C, Coppo M. Parallel stochastic systems
biology in the cloud. Briefings in Bioinformatics 2013. DOI: 10.1093/bib/bbt040.

26. Sun X, Fan L, Yan L, Kong L, Ding Y, Guo C, Sun W. Deliver bioinformatics services in public cloud: challenges
and research framework. 2011 IEEE 8th International Conference on E-Business Engineering (ICEBE), Beijing,
China, 19–21 October 2011; 352–357.

27. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM 2008;
51(1):107–113. DOI: 10.1145/1327452.1327492.

28. Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed file system. Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST) (MSST ’10), 2010; 1–10.

29. Thusoo A, Sarma J, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hive: a warehousing
solution over a map-Reduce framework. Proceedings of the VLDB Endowment 2009; 2(2):1626–1629.

30. Liu H, Orban D. Cloud MapReduce: a MapReduce implementation on top of a cloud operating system. 2011 11th
IEEE/ACM International Symposium on Cluster, cloud and Grid Computing (CCGrid), IEEE, Newport Beach, CA,
USA, 2011; 464–474.

31. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM 2008;
51(1):107–113.

32. Watson P, Leahy D, Hiden H, Woodman S, BerryLiu J. An azure science cloud for drug discovery. Microsoft External
Research Symposium, Redmond, Washington, USA, 30–31 March 2009.

33. Ekanayake J, Gunarathne T, Qiu J. Cloud technologies for bioinformatics applications. IEEE Transactions on
Parallel and Distributed Systems 2011; 22(6):998–1011.

34. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B,
Moreno RF. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 1991;
252(5013):1651–1656.

35. Häsler J, Strub K. Alu elements as regulators of gene expression. Nucleic Acids Research 2006; 34(19):5491–5497.
36. Nazareno F, Lee K, Cho W. Mining molecular interactions from scientific literature using cloud computing. 2010

IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), IEEE, Hong Kong, China,
18–21 December 2010; 864–865.

37. Lin J, Dyer C. Data-intensive text processing with MapReduce. Synthesis Lectures on Human Language Technologies
2010; 3(1):1–177.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
DOI: 10.1002/cpe



1786 C. SPAMPINATO ET AL.

38. Langmead B, Schatz M, Lin J, Pop M, Salzberg S. Searching for SNPS with cloud computing. Genome Biology
2009; 10(11):1–10.

39. Contrail project home page (Contrail: Assembly of Large Genomes using Cloud Computing). http://sourceforge.net/
apps/mediawiki/contrail-bio/index.php?title=Contrail.

40. Langmead B, Hansen K, Leek J. Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome
Biology 2010; 11(8):1–11.

41. Rezaul K, Golam B, Jeong B, Choi HJ. Cloud technology for mining association rules in microarray gene expression
datasets. International Journal of Database Theory & Application 2012; 5(2):61–74.

42. Delmerico J, Byres N, Brunn A, Jones M, Gall S, Chandlery V. Comparing the performance of clusters, Hadoop,
and Active Disks on microarray correlation computations. 2009 International Conference on High Performance
Computing (HIPS), IEEE, 2009; 378–387.

43. Nguyen T, Shi W, Ruden D. CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping.
BMC Research Notes 2011; 4:171, pp. 1–7.

44. Splanchnomega K, Vera K, Sheath A, Miller J. Adding semantics to web services standards, Proceedings of the
International Conference on Web Services, New York: USA, 2003; 395–401.

45. Roman D, Killer U, Clause H, de Bruin J, Larva R, Stroller M, Pollers A, Fever C, Bustler C, Fennel D. Web service
modeling ontology. Applied Ontology 2005; 1(1):77–106.

46. Fusaro VA, Patil P, Gafni E, Wall DP, Tonellato PJ. Biomedical cloud computing with Amazon Web Services. PLoS
Computational Biology 2011; 7(8):1–6.

47. Krampis1 K, Booth T, Chapman B, Tiwari B, Bicak M, Field D, Nelson K. Cloud BioLinux: pre-configured and
on-demand bioinformatics computing for the genomics community. BMC Bioinformatics 2012; 13:42, pp. 1–8.

48. Angiuoli SV, Matalka M, Gussman A, Galens K, Vangala M, Riley D, Arze D, White J, White O, Fricke W. CloVR:
A virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC
Bioinformatics 2011; 12:356, pp. 1–15.

49. Angiuoli S, White J, Matalka M, White O, Fricke W. Resources and costs for microbial sequence analysis evaluated
using virtual machines and cloud computing. PLoS ONE; 6(10):1–10.

50. Dudley J, Pouliot Y, Chen R, Morgan A, Butte A. Translational bioinformatics in the cloud: an affordable alternative.
Genome Medicine 2010; 2:51, pp. 1–6.

51. Maggot D, Osteal J, Spruit KD, Tractus T. Entrez gene: gene-centered information at NCBI. Nucleic Acids Research
2005; 33(suppl 1):D54–D58.

52. Liposome CE. Medical subject headings (mesh). Bulletin of the Medical Library Association 2000; 88(3):265.
53. Griffith-Jones S, Saint HK, Van Dongle S, Unright AJ. miRBase: tools for microns genomics. Nucleic Acids Research

2008; 36(suppl 1):D154–D158.
54. Cunningham H, Maynard D, Bontcheva K. Text Processing with GATE. Gateway Press CA, 2011.
55. Settles B. ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text.

Bioinformatics 2005; 21(14):3191–3192.
56. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA.

David bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from
large gene lists. Nucleic Acids Research 2007; 35(suppl 2):W169–W175.

57. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A,
Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quack-
enbush J. TM4: a free, open-source system for microarray data management and analysis. Biotechnology 2003;
34:374–378.

58. Ben-Don A, Shammer R, Yakking Z. Clustering gene expression patterns. Journal of Computational Biology 1999;
6(3/4):281–297.

59. Antigen-Yield M, Prate W. A new evaluation methodology for literature-based discovery systems. Journal of
Biomedical Informatics 2009; 42:633–643.

60. Gob K, Carsick M, Vale D, Chills B, Vidual M, Barbásci A. The human disease network. Proceedings of the National
Academy of Sciences 2007; 104(21):8685–8690.

61. Giordano D, Kavasidis I, Pino C, Spampinato C. A semantic-based and adaptive architecture for automatic multime-
dia retrieval composition. 2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI), Madrid,
Spain, 13–15 June 2011; 181–186.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:1771–1786
DOI: 10.1002/cpe


