Daz- and Pumilio-Like Genes Are Asymmetrically Localized in Pelophylax (Rana) Oocytes and Are Expressed During Early Spermatogenesis

This is the author's manuscript

Original Citation:
Daz- and Pumilio-Like Genes Are Asymmetrically Localized in Pelophylax (Rana) Oocytes and Are Expressed During Early Spermatogenesis / Marracci Silvia; Michelotti Valentina; Casola Claudio; Cristina Giacoma; Matilde Ragghianti; - In: JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION. - ISSN 1552-5015. - 316B(2011), pp. 330-338.

Availability:
This version is available http://hdl.handle.net/2318/139725 since

Published version:
DOI:10.1002/jez.b.21405

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Daz- and Pumilio-Like Genes Are Asymmetrically Localized in Pelophylax (Rana) Oocytes and Are Expressed During Early Spermatogenesis

SILVIA MARRACCI1*, VALENTINA MICHELOTTI1, CLAUDIO CASOLA2, CRISTINA GIACOMA3, AND MATILDE RAGGHIANTI1
1Laboratory of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
2Department of Biology, Indiana University, Indiana
3Department of Animal and Human Biology, University of Turin, Turin, Italy

In many organisms, the specification of cell fate and the formation of embryonic axes depend on a proper distribution of maternal mRNAs during oogenesis. Asymmetrically localized determinants are required both for embryonic axes and germline determination in anuran amphibians. As a model system of these processes, we have used a species complex of the genus Pelophylax (Rana), characterized by a hybridogenetic reproduction that involves events of genome exclusion and endoreduplication during meiosis in both sexes. With the aim of characterizing the still largely unknown molecular events regulating Pelophylax gametogenesis, we have isolated in this animal model homologues of the deleted in AZoospermia-like (DAZl) and pumilio gene families (named RiDazl and RiPum1, respectively), which encode posttranscriptional regulators. Expression pattern analysis of these genes showed that RiDazl is exclusively expressed in gonadal tissues, whereas RiPum1 is expressed in both somatic tissues and gonads. In situ hybridization carried out on gonads revealed that the two transcripts were asymmetrically localized along the animal–vegetal (A–V) axis of oocytes. In particular, the RiDazl transcript progressively collected to the vegetal pole during oogenesis, whereas the RiPum1 mRNA was preferentially enriched at the animal hemisphere. In adult testes, RiDazl and RiPum1 were expressed in specific phases of spermatogenetic divisions as shown by immunostaining with anti-H3 phosphohistone antibody. Our results indicate that RiDazl and RiPum1 represent two early indicators of oocyte polarity in this hybridogenetic vertebrate model. Additionally, RiDazl share with vertebrate DAZ-like genes a germ cell-specific expression pattern. J. Exp. Zool. (Mol. Dev. Evol.) 316:330–338, 2011.

RNA localization represents an evolutionarily conserved strategy of translational control that plays a pivotal role in the establishment of cell polarity and/or determination of cell fate (Graindorge et al., 2006; Martin and Ephrussi, 2009). In oocytes, RNA localization has profound implications for development, by creating local concentrations of regulatory proteins that will specify different cell fates in the embryo (King et al., 2005). In both Drosophila and Caenorhabditis, genetic pathways regulating...
germ plasm assemblage are also involved in antero/posterior (A/P) axis formation of the oocyte and embryo (Zhou and King, 2004). In anuran amphibians, germ plasm assemblage at the vegetal pole contributes to the establishment of oocyte polarity by determining the animal/vegetal (A/V) axis formation and by setting up polarities in genetic information that drive cell fate during embryogenesis (King et al., 2005).

Deleted in AZoospermia (DAZ)-like and pumilio-like proteins represent a highly conserved class of translational factors implicated in the different steps of germ cell development, from determination to differentiation (Houston and King, 2000; Wickens et al., 2002). Genes belonging to DAZ family comprising the boule, DAZ-like (DAZL) and DAZ homologues, encode highly conserved RNA-binding proteins that are specifically expressed in germ cells and are essential for gametogenesis in metazoans (Spassov and Jurecic, 2003). In Dazla defective mouse, female germ cells are arrested at the prophase of meiosis I, whereas male germ cells are affected at the proliferating stage (Ruggiu et al., '97; Saunders et al., 2003). The Xenopus XIDazl is expressed as an RNA localized to the mitochondrial cloud of early oocytes and to primordial germ cells (PGCs; i.e. precursors of gametes) of early embryos (Houston et al., '98). Interestingly, loss-of-function studies have put in evidence a specific role of XIDazl in PGC migration (Houston et al., '98).

The pumilio family is constituted by genes encoding translational repressor proteins characterized by a carboxyl terminus pumilio homologous domain (PUM-HD), responsible for binding to specific 3’UTR mRNA sequences, reported as nanos response elements (Moore et al., 2003). The pumilio RNA of Drosophila is enriched at the posterior pole of the egg and is involved in regulation of asymmetric divisions of germine stem cells in the Drosophila ovary (Wickens et al., 2002). In vertebrates, two pumilio paralogous genes have been described (Crittenden et al., 2002; Lee et al., 2008). The Xenopus Pumilio 2 homologue plays an important role in translational control of maternal determinant xCR1 that is required for A/P patterning (McDonald et al., 2007). In the developing germ cells of the hybridogenetic hybrid P. esculentus, one set of the parental genomes is excluded and the remaining one endoreplicates and then is hemiconically transmitted to gametes (Tunner and Heppich-Tunner, '91). In this article, we describe the isolation of homologues of DAZL and pumilio genes in Pelophylax and analyze their expression pattern during oogenesis and spermatogenesis.

MATERIALS AND METHODS

Animals

In this study, juveniles and adults of P. lessonae, P. ridibundus, and P. esculentus, from near Poznan (Poland), were identified by morphometric and molecular analyses (cf. Ragghianti et al., 2007). Frogs were anesthetized with MS222 (tricaine methanesulfonate, Sigma) and sacrificed, after which ovaries containing oocytes at different stages of development (cf. Ogierska and Kotusz, 2004) and somatic tissues were collected.

To obtain defolliculated oocytes, the ovarian tissue was incubated in 0.2% collagenase (type II, Sigma) in 0.1 M sodium sulfonate, Sigma) and sacrificed, after which ovaries containing oocytes at different stages of development (cf. Ogierska and Kotusz, 2004) and somatic tissues were collected.

We followed the guidelines for animal care established by the University of Pisa.

RNA Isolation, cDNA Cloning, and Sequencing

Total RNA was isolated from adult organs using Nucleospin RNA II kit (Macherey-Nagel, Germany). A SMART cDNA library was synthesized from P. lessonae testis using a RACE cDNA Amplification kit (BD Biosciences). The testis library was used for isolating partial cDNA clones of DAZL and pumilio-like genes by RT-PCR with the following degenerate primers, respectively.

RI Diazl

FOR 5′-TCTCTGAGTTGTGGIGGIGGALTHGA-3′
REV 5′-TAAAGCTTAAICCCRTAICGTYT-3′

RIPum1

FOR1 5′-GAYCARGAYGGNTCNGNTYYATHCA-3′
FOR2 5′-GTNITHCRRATRTTYYGARTTYGG-3′
REV1 5′-TARTNIGCTAYGRTCTYTTCATCAT-3′
REV2 5′-TGYTGDATNACRTARTTNCRTAYT-3′

To obtain complete sequences, 5′ and 3′ RACE reactions were performed using a SMART 5′/3′ RACE cDNA amplification kit (BD Biosciences) with sequence-specific oligonucleotides:

RI Diazl

FOR 5′-CGGACTGACATGCAGGAATTAAGAAG-3′
REV 5′-AACACCGCCGATCGATAATTATTTC-3′

RIPum1

FOR 5′-TGATATGGTGCAGAAGTGGGAGCCGGC-3′
REV5′-CAACCTTACGGATGCGTCGAGAGTGC-3′
In order to isolate full-length clones, the following sequence-specific primers, designed on the 5’ UTR and 3’ UTR of corresponding transcript sequences, were used:

RlDazl
- **FOR** 5’-CTCGGTTGTTCTAGGTTTG-3’
- **REV** 5’-TTATTAGCCTGGTGACGTATTAC-3’

RlPum1
- **FOR** 5’-GACCTAAATCCGACTCCCTCCTCCCG-3’
- **REV** 5’-AAGAGCTACACCCTGATTCCACG-3’

The PCR products were TA-cloned into pGEM-T easy vector (Promega, Italy) and sequenced by automated fluorescent cycle sequencing (ABI) by Primm, Italy.

Sequence Analysis
We used a BLAST search (Altschul et al., 1997) to identify sequences related to **RlDazl** and **RlPum1**. Sequence alignments were performed using MAFMF (Katoh et al., 2005). Phylogenetic trees were built using the Neighbor-joining method implemented in the MEGA 4.0 package (Tamura et al., 2007). Sequences were obtained from GenBank through the National Center for Biotechnology Information Web site (http://www.ncbi.nlm.nih.gov).

RNA Extraction and RT-PCR Analysis
Total RNA was extracted from different fresh or frozen adult tissues, as previously described. First strand cDNA was synthesized using Superscript II Reverse Transcriptase (Invitrogen, Italy), from 1 μg of total RNA. RT-PCR analysis was performed using gene-specific sets of primers. β-Actin primers were used for standardization, as described by Marracci et al. (2007). For control reactions, reverse transcriptase was omitted.

In Situ Hybridization
Whole-mount in situ hybridizations were carried out on oocytes at various stages of maturity, from *P. ridibundus*, *P. lessonae*, and *P. esculentus*, using digoxigenin-labeled antisense and sense RNA probes generated from the full-length clones (cf. Ikenishi and Tanaka, 2000). Paraffin-embedded in situ hybridized oocytes were cut into 12 μm sections with a microtome. For in situ hybridization on cryostat sections (8–10 μm), testes and ovaries were fixed in 4% paraformaldehyde at room temperature for 2 hr, cryoprotected with 30% sucrose in PBS overnight at 4°C, and stored at −80°C until cryosectioning. Both testis and ovary cryosections were hybridized, as described by Marracci et al. (2007).

Immunofluorescence Reactions With Serine-10 Phosphorylated H3 Histone Antibody
Phosphorylated H3 histone was used as a marker of mitotic and meiotic prophase and metaphase. Immunofluorescence experiments with antibody against Ser-10 phosphorylated H3 histone have been carried out on sections of adult testis previously in situ hybridized, using methods described by Marracci et al. (2007).

RESULTS

Isolation of RlDazl and RlPum1
We isolated from *P. lessonae* full-length cDNA several clones, some homologous to DAZL and others to Pumilio1; and these were named **RlDazl** (GenBank accession no. AM490198) and **RlPum1** (GenBank accession no. FN547888), respectively. A phylogenetic analysis of DAZL proteins from several vertebrates confirmed that **RlDazl** belongs to the DAZ gene family (Fig. 1A). Interestingly, the DAZL gene seems to evolve faster in anurans than in other vertebrates (Fig. 1A). The 849 bp long sequence of **RlDazl** encodes a predicted protein of 282 amino acids that shares 92% amino acid identity with *Lithobates* (*Rana*) *pipiens RpDazl*, although it showed less than 60% identity with DAZL proteins of other vertebrates, including *Xenopus* (Table 1). The predicted **RlDazl** protein sequence contains a conserved RNA recognition motif (RRM) and a single DAZ motif (Fig. 1B). The **RlPum1** clone is 3,728 bp long and encodes for a predicted protein of 1,228 amino acids. The evolutionary tree of vertebrate Pumilio genes indicates that **RlPum1** belongs to the Pumilio1 gene family (Table 2; Fig. 1C). The **RlPum1** protein shares a very high sequence identity (>85%) with Pumilio1 proteins from other vertebrates, especially with other anuran Pumilio1 proteins (Table 2). The **RlPum1** predicted amino acid sequence contains the PUM-HD domain, including the N-terminal conserved region, eight tandem imperfect Puf repeats, and the C-terminal region (Fig. 1D). The PUM-HD region shows the highest level homology (>90%) with other vertebrate species (data not shown).

Spatial Expression of RlDazl and RlPum1 in Different Pelophylax Tissues
The expression pattern of these genes was investigated by RT-PCR on both somatic and gonadal tissues and showed that **RlDazl** was exclusively expressed in gonadal tissues, similar to DAZL genes characterized in other organisms (Fig. 2A). **RlPum1** is expressed not only in germline tissues, but also in somatic tissues, such as heart and spleen (Fig. 2B). The expression pattern of these genes seemed to be conserved in *P. lessonae*, *P. ridibundus*, and *P. esculentus* (data not shown).

Expression Profile of RlDazl and RlPum1 During Pelophylax Oogenesis
In situ hybridization carried out on both juvenile and adult ovaries of *P. ridibundus*, *P. lessonae*, and *P. esculentus* females showed that **RlDazl** and **RlPum1** were expressed at early stages of oogenesis, with distinct profiles of mRNA distribution along the A/N oocyte axis. **RlDazl** is distributed throughout the cytoplasm of some but not all pre-vitellogenic stage I oocytes (Fig. 3a). Hoechst staining of hybridized sections, obtained from immature ovaries of metamorphosed frogs, highlighted the presence of the **RlDazl** transcript in oocytes at the beginning of meiotic prophase I (Fig. 3b and c). The intensity of the hybridization signal increases in the cytoplasm of oocytes I as meiotic prophase...
Figure 1. Sequence, structure, and phylogeny of RlDazl and RlPum1 proteins. Phylogenetic trees of Dazl proteins (A) and Pumilio1 family proteins (C) from the alignment of amino acid sequences. Neighbor-joining algorithm, 1,000 bootstrap replicates. Abbreviations correspond to species names shown in Tables 1 and 2. (B) Amino acid sequence alignment of Dazl proteins of P. lessonae (RlDazl; AM490198), L. pipiens (RpDazl; AAV30542), X. laevis (XlDazl; AHH97658), and mouse (Dazl; NP_034151). Identical amino acids are in black, conservative substitutions are in gray. The RNA recognition motif (RRM) and DAZ motif are highlighted in frame and are boxed with continuous and dotted lines, respectively. (D) Alignment of the deduced amino acid sequences of the Pumilio proteins of P. lessonae (RlPum1; FN547888), X. laevis (XlPum1; BAC57980), mouse (Pum1; AAG42319), and Homo sapiens (PUM1; NP_055491). Identical amino acids are in black, conservative substitutions are in gray.
Table 1. Identity of RpDazl to Dazl proteins from other vertebrates.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Length</th>
<th>Identity</th>
<th>Coverage</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RpDazl</td>
<td>280</td>
<td>92</td>
<td>100</td>
<td>AY645797.1</td>
</tr>
<tr>
<td>XIDazl</td>
<td>286</td>
<td>57</td>
<td>91</td>
<td>BC071023.1</td>
</tr>
<tr>
<td>CyDazl</td>
<td>302</td>
<td>56</td>
<td>92</td>
<td>AB164065.1</td>
</tr>
<tr>
<td>AxDazl</td>
<td>266</td>
<td>57</td>
<td>93</td>
<td>AF308872.1</td>
</tr>
<tr>
<td>GgDazl</td>
<td>289</td>
<td>53</td>
<td>92</td>
<td>NM_204218.1</td>
</tr>
<tr>
<td>HsDazl</td>
<td>295</td>
<td>56</td>
<td>92</td>
<td>U66726.2</td>
</tr>
<tr>
<td>CpDazl</td>
<td>302</td>
<td>56</td>
<td>97</td>
<td>AB164065.1</td>
</tr>
<tr>
<td>XlDazl</td>
<td>286</td>
<td>57</td>
<td>91</td>
<td>BC071023.1</td>
</tr>
<tr>
<td>RpDazl</td>
<td>280</td>
<td>92</td>
<td>100</td>
<td>AY645797.1</td>
</tr>
</tbody>
</table>

Coverage indicates the proportion of RpDazl that aligned with each Dazl protein. Rp, Rana pipiens (Anura); Xi, Xenopus laevis (Anura); Cy, Cynops pyrrhogaster (Urodela); Ax, Ambystoma mexicanum (Urodela); Gg, Gallus gallus; Hs, Homo sapiens; Mm, Mus musculus; Bt, Bos taurus.

Table 2. Identity of RpPum1 to Pumilio proteins from other vertebrates.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Length</th>
<th>Identity</th>
<th>Coverage</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>XiPum1</td>
<td>1,185</td>
<td>93</td>
<td>100</td>
<td>CU075675.1</td>
</tr>
<tr>
<td>XfPum1</td>
<td>1,185</td>
<td>92</td>
<td>100</td>
<td>AB091091.1</td>
</tr>
<tr>
<td>GgPum1</td>
<td>1,189</td>
<td>87</td>
<td>100</td>
<td>D275191.1</td>
</tr>
<tr>
<td>HsPum1</td>
<td>1,188</td>
<td>87</td>
<td>100</td>
<td>NM_01020658.1</td>
</tr>
<tr>
<td>MmPum1</td>
<td>1,188</td>
<td>86</td>
<td>100</td>
<td>NM_001193123.1</td>
</tr>
<tr>
<td>BtPum1</td>
<td>1,186</td>
<td>86</td>
<td>100</td>
<td>BC048174.1</td>
</tr>
<tr>
<td>GgPum2</td>
<td>1,061</td>
<td>74</td>
<td>89</td>
<td>NM_001039292.1</td>
</tr>
<tr>
<td>HsPum2</td>
<td>1,064</td>
<td>73</td>
<td>89</td>
<td>NM_015317.1</td>
</tr>
<tr>
<td>MmPum2</td>
<td>1,066</td>
<td>72</td>
<td>89</td>
<td>NM_030723.2</td>
</tr>
</tbody>
</table>

Coverage indicates the proportion of RpPum1 that aligned with each Pumilio protein. Xi, Xenopus laevis (Anura); Xf, Xenopus tropicalis (Anura); Gg, Gallus gallus; Hs, Homo sapiens; Mm, Mus musculus; Bt, Bos taurus.

Expression Profile of RlDazl and RlPum1 During Pelophylax Spermatogenesis

In males of the P. esculentus complex, the seminiferous tubules contain groups or cysts of spermatogenic cells synchronously differentiating (Ogielska and Bartmanska, '99). In situ hybridizations on adult testis sections of P. ridibundus, P. lessonae, and P. esculentus revealed that both RlDazl and RlPum1 are expressed in single primary spermatagonia and groups of primary spermatocytes, whereas their mRNAs are absent in secondary spermatocytes, spermatids, and spermatozoa (Fig. 5a and d). Using serine-10 phosphorylated H3 as marker of meiotic division, we observed that both genes share the highest expression signal in nondividing primary spermatocytes, whereas the signal decreased as they entered in prophase-I and then disappeared in subsequent spermatogenic stages, such as secondary spermatocytes, spermatids, and spermatozoa (Fig. 5b and c). Hoechst staining of the hybridized sections have been used for recognizing spermatogenic cell types (Fig. 5c and f). Neither of the two genes was expressed in somatic cells of the testis (data not shown).

DISCUSSION

We have isolated from species of Pelophylax genes homologous to Dazl and Pumilio and examined their expression patterns. Both genes encode for proteins with conserved RNA-binding motifs. Like DAZL genes characterized in other species, RlDazl showed an RRM and a single DAZ motif that has been demonstrated to be involved in multiple protein–protein interactions (Moore et al., 2003). RlPum1 revealed a highly conserved PUM-HD region shared by all the other members of the Pumilio family. The crystal structures of Drosophila Pumilio and human PUM-HD domain have revealed that the Puf repeats are aligned in tandem to form an extended curved molecule (Wang et al., 2002). The RNA binds to the concave surface of the molecule, where each of the eight repeats makes contact with a different RNA base via three conserved amino acid residues positioned in the middle of the repeats (Wang et al., 2002). The presence of proximal RNA base via three conserved amino acid residues positioned in the middle of the repeats (Wang et al., 2002). The presence of...
Figure 3. Expression pattern of *RlDazl* during oogenesis. Whole-mount in situ hybridization showing the localization of the *RlDazl* transcript in some pre-vitellogenic stage I oocytes of *P. lessonae* (a); sections from immature ovaries hybridized with *RlDazl* probe (b) and Hoechst staining of the hybridized section (c). Whole-mount in situ hybridization (d, f, h) in oocyte stage II (d), late stage II (f), stage III (h) with *RlDazl* probe of both the parental species and hybrid. Paraffin sections of whole-mount in situ hybridized oocytes (e, g, i) and of oocyte stage VI (j) showed that the *RlDazl* transcript progressively accumulated at the vegetal pole (downwards). The white arrowhead points to a pre-vitellogenic oocyte; the black arrowheads indicate *RlDazl* transcript detected in the subcortical region of the vegetal pole. Scale bars represent 50 μm (a, b); 100 μm (d–j).

Figure 4. Expression pattern of *RlPum1* during oogenesis. (a) Whole-mount in situ hybridization showed a strong signal in stage I oocytes. This signal declined in oocyte stages II and III. (b) Paraffin section of whole-mount in situ hybridized stage I oocyte showed that *RlPum1* mRNA was widely distributed in the ooplasm. (c) Paraffin sections of whole-mount in situ hybridized stage III oocyte shows that the *RlPum1* transcripts are located at the animal pole (upwards). Scale bars represent 400 μm (a); 25 μm (b); 100 μm (c).
highly conserved RNA-binding domains suggested for these two genes a possible role as translational regulators.

The spatial expression analysis performed on different adult tissues showed that \textit{RlDazl} is exclusively expressed in germ line tissues, whereas the \textit{RlPum1} transcript has been also detected in some somatic tissues. Both \textit{RlDazl} and \textit{RlPum1} were expressed during the early oogenesis, revealing a differential mRNA distribution along the A/V axis of the oocyte. Because maternally localized mRNAs are differentially segregated into blastomeres during early development, the unequal distribution of \textit{RlDazl} and \textit{RlPum1} mRNAs along the A/V axis suggests that the two genes differentially contribute to the embryo axis formation as well as the specification of the cell fate. The \textit{RlPum1} transcript was preferentially enriched at the animal hemisphere of oocytes of \textit{P. ridibundus}, \textit{P. lessonae}, and \textit{P. esculentus}. Some localized mRNAs so far identified are enriched at the animal pole, but their developmental significance remains to be demonstrated (Schnapp et al., '97; Mowry and Cote, '99; King et al., 2005).

Like \textit{XlDazl} of \textit{X. laevis} and \textit{RpDazl} of \textit{L. pipiens}, the \textit{RlDazl} transcript, from stage II of oogenesis, was found progressively localized to the oocyte vegetal pole. Molecular studies carried out in \textit{Xenopus} highlighted that some vegetally localized RNAs are involved in germ cell specification (Nakahata et al., 2001, 2003); \textit{RlDazl} may play an analogous role in these water frogs. The expression of \textit{RlDazl} is variable in stage I oocytes, just as is the expression of \textit{XlDazl} (Houston et al., '98) and \textit{RpDazl} (Nath et al., 2005). In particular, the intensity of the hybridization signal of \textit{RlDazl} increased in the cytoplasm of stage I oocytes as the meiotic prophase progresses, suggesting that \textit{RlDazl} expression could be regulated in oocytes advancing through meiosis. Interestingly, Haston et al. (2009) showed that, in \textit{DAZL}-null mice, female germ cells fail to progress through meiosis. In \textit{C. elegans} the DAZ-1 protein plays an essential role at premeiotic and early meiotic stages in female germ cells and facilitates the proper progression of oogenesis (Maruyama et al., 2005). In the oocytes of the urodele amphibians \textit{Cynops pyrrhogaster} and \textit{Ambystoma mexicanum} (axolotl), the \textit{CyDazl} and \textit{AxDazl} mRNAs, respectively, show no specific localization in the ooplasm, which is consistent with there being no germ plasm (Bachvarova et al., 2004; Tamori et al., 2004).

\textit{RlDazl} and \textit{RlPum1} showed a similar expression pattern during spermatogenesis. Both genes are expressed in spermatogonia and primary spermatocytes entering into meiosis. A similar pattern was shown by \textit{Xenopus XlDazl}. The authors demonstrated
that XIDazl can rescue meiotic entry of spermatocytes in Drosophila Boule mutants, suggesting a possible role of this gene as regulator of meiotic division (Houston et al., '98). In mouse models, the absence of the autosomal DAZL gene resulted in a final block at zygote of meiotic prophase (Reynolds et al., 2005, 2007). The C. elegans pumilio homolog puf-8 is required for a normal progression of meiosis of primary spermatocytes and in puf-8 mutants, primary spermatocytes dedifferentiate into mitotic germ cells (Subramaniam and Seydoux, 2003).

The genome exclusion and genome endoreduplication typical of the Pelophylax hybridogenesis are believed to occur only during the germline development in the hybrids. Given such a massive reorganization of the germline genome, one would expect to find substantial differences during the gametogenesis of the hybrids when compared with the parental species. We have shown in this article that the expression pattern of RlDaz1 and RlPum1 during the gametogenesis does not differ among R. ridibundus, R. lessonae, and R. esculentus. These results mirror our previously reported molecular analyses of the expression pattern of other genes (Marracci et al., 2007, 2008), and suggest that despite the remarkable changes in the hybrids germline associated with the hybridogenesis (cf. Ogielska and Kotusz, 2004), both oogenesis and spermatogenesis follow similar genetic pathways of differentiation in adults of hybrids and parental species.

In addition, we noticed strong similarities in the expression pattern of DAZL during the gametogenesis of Pelophylax and Xenopus species. Since the families Ranidae, which includes Pelophylax, and Pipidae, comprising Xenopus, diverged about 230 million years ago (Roelants et al., 2007), our results indicate that the expression pattern of genes involved in the gametogenesis is highly conserved between these distantly related anurans. Intriguingly, the consistent expression pattern of DAZL in Pelophylax and Xenopus is not reflected at the protein sequence level, as we observed an accelerated evolution of this gene in anurans compared with other vertebrates.

RlDaz1 joins RlVlgl and RlYb2 (Marracci et al., 2007, 2008), as the only specific markers of germ cells so far known in water frogs. These genes constitute distinctive markers of specific phases of oogenesis and spermatogenesis, useful in order to explore the hybridogenetic process in these water frogs.

Overall, these findings point to the relevance of the Pelophylax group of water frogs as a model system complementing our knowledge in the development and maturation of the germline derived from studies on other vertebrates, and highlight the importance of gene expression analyses in the study of the hybridogenetic gametogenesis.

ACKNOWLEDGMENTS

We thank Prof. G. Mancino for his critical comments. We are grateful to M. Fabbri and D. De Matienzo for their expert technical assistance and S. Di Maria for frog care.

LITERATURE CITED

