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Abstract 

 The stochastic modelling of biological systems, coupled with Monte Carlo simulation of 

models, is an increasingly popular technique in bioinformatics. The simulation-analysis 

workflow may result computationally expensive reducing the interactivity required in the 

model tuning. In this work we advocate the high-level software design as a vehicle for 

building efficient and portable parallel simulators for the cloud. In particular, the Calculus of 

Wrapped Components (CWC) simulator for systems biology, which is designed according to 

the FastFlow pattern-based approach, is presented and discussed. Thanks to the FastFlow 

framework, the CWC simulator is designed as a high-level workflow that can simulate CWC 

models, merge simulation results and statistically analyse them in a single parallel workflow 

in the cloud. To improve interactivity, successive phases are pipelined in such a way that the 

workflow begins to output a stream of analysis results immediately after simulation is started. 

Performance and effectiveness of the CWC simulator are validated on the Amazon Elastic 

Compute Cloud. 
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Keywords: Stochastic simulation; cloud; multi-core; distributed computing; parallel 

patterns. 

 

Key points: 
• A methodological study on the design of a parallel, cloud-enabled simulator-analysis 

pipeline for systems biology, which is paradigmatic example of a broad class of 

algorithms for bioinformatics. 

• Portability and performance portability, from multi-core to the cloud, of parallel 

applications via high-level design and pattern-based development framework. 

• An extensive survey of the methods and the tools for bioinformatics on the cloud and 

the methodologies for their development with a specific focus on high-level 

approaches supporting easy engineering, performance and portability. 

1 Introduction 

The stochastic simulation of biological systems is an increasingly popular technique in 

bioinformatics, as either an alternative or a complementary tool to traditional differential 

equations (ODEs) solvers. This trend, starting from Gillespie’s seminal work [1], has been 

supported by a growing number of formalisms aiming to describe biological systems as 

stochastic models [2]. The stochastic modelling approach is computationally more expensive 

than ODEs. Nevertheless, it is still considered attractive for its superior ability to describe 

transient behaviours of biological systems, e.g. divergent trends and spikes that are typically 

hidden in the averaged process described by ODEs. The stochastic modelling typically relies 

on the Monte Carlo method, which is also used in related domains of systems biology, e.g. 

epidemiology and phylogeny [3, 4]. 

The high computational cost of stochastic simulations is well known and has led, in the 

last two decades, to a number of attempts to accelerate them up by using several kinds of 

techniques, such as approximate simulation algorithms and parallel computing. In this work, 

this latter approach is taken into account exploiting an Infrastructure-as-a-Service (IaaS) in 

the cloud as a parallel execution environment.  

Monte Carlo methods require the computation of many independent instances either to 

achieve statistically meaningful results or sensitivity analysis (via parameter sweeping). In 

both cases, these independent instances have been traditionally exploited in an 

embarrassingly parallel fashion, executing a partition of the instances (bag of tasks) on 

different platforms, and more recently on many-core GPGPU platforms [5]. This approach 

has been often coupled with High Performance Computing (HPC) infrastructures, such as grid 
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or clusters of multi-/many-core. However, it suffers from some drawbacks related to design, 

performance, and usability of simulation tools. 

Traditional HPC platforms are expensive to deploy (and rent); their configuration is 

hardly customisable. Moreover, HPC platforms suffer from reduced interactivity and might 

induce slow time-to-solution. Each experiment requires to enqueue the simulations in a shared 

environment, deploy initial data, simulate the model, gather results from a distributed 

environment, post-process them (often sequentially) and then eventually access the results. 

This process is typically repeated several times to fine-tune simulation parameters.  

A further issue that deteriorates the reactivity and time-to-solution is the 

“sequentialisation” of simulation and analysis phases, which slow down the modelling-to-

result process during the tuning of the biological model. The filtering and the analysis of raw 

results, which require the merging of data obtained from different simulation instances and 

their statistical analysis, is often demoted to a secondary aspect in the computation and treated 

with off-line post-processing tools, and frequently not even disclosed in performance results.  

The very same approach is used also in recent efforts exploiting GPGPUs [6]. The ever-

increasing size of produced data makes this approach no longer viable. As a solution, we 

advocate the offloading of the whole simulation-analysis process in the cloud as a single 

parallel pipeline with no storage of intermediate results on virtualised storage [7]. In this 

vision, data analysis is managed as an on-line process working on (high-frequency) streams of 

data resulting from the on-going simulations. This approach has non-trivial effects on tool 

design since both the parallel simulator and the parallel analysis should work on (high-

frequency) streams, and require efficient data dependencies management (both on distributed 

and shared-memory systems). While the Monte Carlo simulation “in insulation” is an 

embarrassingly parallel process, the whole simulation-analysis workflow is not [8, 9]. 

Cloud technology carries the potential to overcome most of the above issues. It makes 

available on-demand and on a pay-per-use basis an elastic parallel computing platform that 

can be customised with a specific set of tools such as simulators for systems biology. Cloud 

“elasticity” enables the users to deploy the same application on a virtualised parallel platform 

of configurable type, size and computational power. The typical platform can be abstracted as 

a virtual cluster of shared-memory multi-core platforms. Once deployed, the virtualised 

platform is immediately ready to compute and can be interactively used by the end user. This 

potentiality, however, can be fully exploited only if the running software (e.g. simulation tool) 

exhibits a similar flexibility and interactivity: 

• The application should benefit from both levels of parallelism available in a 

(virtualised) cluster of multi-core (and many-core if available), hopefully providing 

the end user with performance scalability with respect to both levels; 
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• The programming model should manage parallelism as a first-class concept to make 

the tools (e.g. simulator) easy to design, develop and extend; the programming model 

should be able to capture parallelism at all levels, i.e. distributed platforms, multi-

core, and many-core, and possibly it should be able to support the seamless porting of 

application across the described platforms with performance portability. 

• The software tools itself should be designed to be reactive and interactive in order to 

be dynamically steered by bioinformatics scientists.  

This paper presents the parallelisation of stochastic processes in the light of virtualised 

distributed cluster of multi-core platforms and tools that are required to derive an efficient 

simulator from both performance and easy engineering viewpoints. The presented 

methodology makes it possible to run the same code from multi-core to virtualised cluster of 

multi-cores (i.e. private and public clouds infrastructures). This latter will be a key factor for 

the next generation of biological tools, since bioinformatics scientists are more interested in 

the accurate modelling of natural phenomena rather than on the low-level protocols required 

to build efficient tools on both multi-core platforms and large distributed execution 

environments.  

In this work, the simulator for a stochastic calculus for systems biology, i.e. Calculus of 

Wrapped Compartments (CWC) [10], will be used as test-bed. The CWC simulator [7, 9], 

previously targeting multi-core platforms only, has been designed exploiting a high-level 

methodology based on parallel patterns and considering the whole simulation workflow: from 

simulation to on-line data analysis and mining. This solution can provide bioinformatic 

scientists with immediate feedback on simulation results and their main statistic estimators 

while the simulation is still running, thus with an early feedback on simulation effectiveness. 

The advocated high-level allows the design of the CWC simulator as a workflow of 

successive stages, where edges among stages are data dependencies. The exploitation of 

parallelism on multi-core, cluster and eventually in the cloud is almost entirely in charge of 

the parallel programming methodology provided by the FastFlow parallel programming 

framework [11, 12].  

Although the parallelisation of stochastic simulators has been extensively studied in the 

last two decades [13], the main contributions of our work with respect to the state of the art 

are:  

1. Addressing cloud IaaS-specific parallelisation issues;  

2. Advocating a general parallelisation schema rather than a specific simulator;  

3. Addressing the on-line data analysis, thus it is designed to manage data (possibly big 

data) in the cloud.  
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To the best of our knowledge, many related works cover some of these aspects, but none 

of them address all three aspects at the same time. 

The remainder of the paper is structured as follows: in Sec. 2 related works is discussed along 

three main directions: methods and tools for developing cloud applications (Sec. 2.1), existing 

cloud-enabled bioinformatics applications (Sec. 2.2) and theoretical tools for medullisation in 

systems biology (Sec. 2.3). In Sec. 3 and 4 the FastFlow programming framework and the 

design of the CWC simulator are presented, respectively. In Sec. 5 tool implementation is 

validated against effectiveness and performance obtained on the Amazon EC2 public cloud 

infrastructure. Section 6 concludes the paper. 

2 Background and related work 

2.1 Developing applications for the Cloud 

The cloud encompasses a pay-per-use business model. End users are not required to take 

care of hardware, power consumption, reliability, robustness, security, and the problems 

related to the deployment of a physical computing infrastructure. In IaaS cloud usage, the 

aggregate computing power and storage space are provided to user applications in an elastic 

fashion. In principle, they can be scaled up and down according to user needs, and billed 

accordingly. Applications running in an IaaS cloud are required to be scalable and designed to 

efficiently exploit a virtualised parallel platform, possibly exploiting different parallel 

programming models, e.g. shared-memory and message-passing.  Alternatively, cloud 

technology can be exploited in the Software-as-a-Service (SaaS) fashion by exposing 

applicative services (rather than a platforms) to end-users. In the SaaS model, cloud elasticity 

is typically managed by domain-specific applications (or applicative frameworks) that 

exposes domain-specific services to end-users. The pay-per-use business model is typically 

applied in term of the Quality of Service (e.g. performance, latency, storage space) provided 

by the service.  

In both cases, from developer viewpoint building a cloud-enabled application (or a 

service) is not easier than building a distributed application for cluster of multi-core 

platforms, which is well known to be a complex work.  

At the present time, the aggregate computational power of on-demand virtualised cluster 

did not have reached the figures possible in massively parallel platforms1. Cloud technology 

cannot being currently considered suitable to target  very high computational power needs. 

                                                      
1 As an example, in spring 2013, the Amazon EC2 maxium core count for on-demand clusters is 

160: 20 extra-large instances, each of them with 8 virtualised cores. 

Page 5 of 34

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6 

However, the shift toward cloud technology has many drivers that are likely to sustain this 

trend for several years to come. This is likely to make parallel computing methodologies 

increasingly accessible to a wider range of developers. Software technology is consequently 

changing: in the long term, writing parallel programs that are efficient, portable, and correct 

must be no more onerous than writing sequential programs. Such a transition will likely entail 

a significant raise of the level of abstraction of parallel programming models with respect to 

the current state-of-the-art in order to support the mainstream of software development, where 

human productivity, total cost and time to solution are equally, if not more, important than 

application performance. 

Pragmatically, designing an application for the cloud requires dealing with the 

heterogeneous nature of the virtualised platforms in term of programming models needed to 

effectively exploit parallelism among virtualised cores of the same virtual machine and 

different virtual machines (and possibly different cloud deployments). Virtualised or not, 

shared memory multi-cores and clusters require different techniques and tools to support 

efficient parallelism exploitation. The de facto standard tools in these cases are OpenMP [14] 

and MPI [15], respectively. OpenMP can be considered a high-level of abstraction 

programming framework (at least for data-parallelism) but targets only shared-memory 

platforms. MPI, which is mainly exploited in distributed platforms, exhibits a rather low level 

of abstraction because it expose to developers the full complexity of a message-passing 

programming model. Applications developed with MPI often requires to be entirely re-

designed to accommodate communication primitives that require to be fully interweaved with 

business code. OpenMP and MPI can be used conjunction to target clusters of shared-memory 

platforms; the integration of two programming models is fully in charge of the application 

developers. 

Algorithmic skeletons approach (a.k.a. pattern-based approach) aims at reducing the 

development complexity of parallel software design by providing developers with a higher 

level of abstraction aiming to move most of the complexity due to 

communication/synchronisation management from developers to the programming 

framework [16, 17]. The algorithmic skeleton community has proposed various programming 

frameworks, aimed to provide the application programmer with quite high-level abstractions 

encapsulating parallelism exploitation patterns [18]. Some of them provide programmers with 

a higher level of abstraction, but are oriented to coarse grain computations (e.g. ASSIST [19], 

StreamIt [20], Brook [21]); some others target shared-memory platforms only (e.g. Intel TBB 

[22]). Not many of them provide a single programming models targeting heterogeneous 

environments such as clusters of multi-core platforms, which are the kind of platforms 

typically offered by IaaS cloud technology. One of them is the FastFlow framework, which 

will be presented in Sec. 3.  
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A popular specialisation of the pattern-based approach is represented by the MapReduce 

programming model [23], in which a single powerful pattern composed by the pipelining of 

Map and Reduce patterns is offered to the programmers (often also at level of cloud 

programming API). Being designed by Google for distributed computing to process data on a 

distributed file system on clusters, it might be not general enough to naturally cover all 

application needs (e.g. streaming, processing in memory, recursive computations) and 

deployment scenarios (e.g. virtualized multi-core). 

The high-level parallel programming approach, based on algorithmic skeletons, has been 

already exploited in computational biology for distributed environments and grids. As an 

example, the MACACO simulator is realised as a pipeline of simulation and post-processing, 

where the simulation phase is realised in parallel by farming out the parameter sweeping of 

the stochastic simulation of calcium currents [24]. An orthogonal approach aimed to raise the 

level of abstraction of computation in bioinformatics is via Problem Solving Environments 

(PSE) and Domain-Specific Languages (DSL).  As an example, in [25] a framework for 

morphogenesis simulation is presented. 

 

2.2 Bioinformatics in the Cloud 

The cloud has the potentiality to become an enabling technology for bioinformatics and 

computational biology. It can seamlessly provide applications and their users with large 

amount of computing power and storage in an elastic and on-demand fashion. This naturally 

meets the need of simple availability of processing large amount of heterogeneous data, of 

storing massive amount of data and of using the existing tools in different fields of 

bioinformatics. The ability of managing the whole data set in the cloud, as we advocate in this 

work, has been widely recognized as necessary for next generation bioinformatics [26]. As an 

example, the typical workflow of DNA sequencing [27] foresees that biologists design the 

experiments and send samples to sequencing centres, which make available raw data (through 

specific services, such as FTP, HTTP) to biologists, who have to download and use terabytes 

of data. At the same time, biologists copy the data into local machines for being used by 

bioinformatics scientists for the subsequent data analysis. This typical workflow implies that 

large (possibly big) amount data are moved several times from sites to sites, thus slowing 

down the analysis and the interpretation of the results. These multiple data movements can be 

partially or entirely avoided by moving the whole workflow in the cloud.  

DNA sequencing and sequence alignment are classic examples of computational biology 

application in which having computing power as more as possible is never enough [28]. 

Examples of these applications are: Crossbow [29], a software pipeline for genome re-
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sequencing analysis which runs in the cloud (according to a MapReduce paradigm [30]) on 

top of Hadoop [31]; CloudBurst [32], which accomplishes mapping of next-generation 

sequence data to the human genome for a variety of biological experiments (e.g. SNP 

discovery and genotyping) achieving a significant speedup with respect to sequential 

execution, and Myrna [33], a differential gene expression calculation tool in large RNA-Seq 

datasets that integrates all the RNA sequencing steps (read alignment, normalisation, 

aggregation and statistical modelling) in a single cloud-based computational pipeline.  

DNA sequencing is not the only bioinformatics application field for which the cloud has 

been adopted. Another example is in-silico organ modelling, which is a relatively new method 

for studying the development and functionality of human, and not only, body parts with 

computers. In [34], for example, a model of the human liver is emulated in a cloud-based 

system where each liver lobule is represented by Monte Carlo samples. By using this 

architecture, the authors demonstrate that the parallel computing paradigm permits to develop 

systems emulating organs with functionalities equivalent to those of an in-vitro specimen. A 

multi-scale model for the progression of pancreatic cancer that can be executed on a cloud 

platform is presented in [35]. This platform is designed for the needs of life science and 

pharmaceutical research allowing the integration of physiologically based and classical 

approaches to model drug pharmacokinetics and pharmacodynamics as well as metabolic and 

signalling networks.  

Protein folding simulation is another notable example of calculation intensive process. In 

particular, it is the process that converts a two-dimensional unfolded polypeptide in a three 

dimensional structure. Folding@home initiative [36] attempted to attack the problem via 

opportunistic computing, distributing tasks to Internet users. Although Folding@home can be 

executed on a multitude of hardware platforms, given the unreliability of internet computer 

clients, the performance of the project is hindered by errors in the local network or the 

computers themselves wasting, otherwise useful, computer resources. The Microsoft@home 

project permits the execution of generic scientific computer-intensive applications, including 

Folding@home, in the cloud.  

Simulation modelling of biological processes is the backbone of systems biology and 

discrete stochastic models are particularly effective for describing molecular interaction at 

different levels [37]. Nevertheless, it is common knowledge that these types of stochastic 

simulations, as for instance the Monte Carlo ones, are computationally intensive, and among 

the bioinformatics applications they are the ones that could benefit from distributed 

implementations on the cloud.  

Despite the evident advantages of carrying out simulations on the cloud, at the moment, 

cloud based simulators occur at a slow pace and the scientific community is not fully 

exploiting the opportunity to grasp the potential of the cloud paradigm. While 
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implementations and services for Monte Carlo simulations on the cloud [35, 38, 39, 40, 41] 

are few, the convenience of having virtually unlimited resources will make the cloud platform 

the perfect candidate for calculation-intensive applications. 

Table 1 compares the features of some computational biology and bioinformatics tools 

freely available on the web.  

[Table 1] 

From a more general perspective, given that many existing bioinformatics tools and 

simulators rely on web services, their transition to a cloud based infrastructure will be quite 

natural and we expect, in the near future, that cloud-based bioinformatics applications and 

services will be created at accelerating pace. Examples of such a transition, which have been 

already put in place, are CloudBurst [32] which (as above described) maps next generation 

sequencing data [42] and Cloud Blast, a "clouded" implementation of NCBI BLAST [43], 

which basically have kept the same web service based architecture but changed the 

underlying hardware infrastructure to a cloud based one.  

Cloud computing, however, poses a few “still unsolved” problems both for developers 

and users of cloud based software, ranging from data transfers over low-bandwidth networks 

to privacy and security issues. These aspects lead to inefficiency for some types of problems 

and future solutions should address such issues [27]. 

2.3 Calculi and Tools for Bioinformatics 

In the field of biological modelling, tools such as SPiM [44], Dizzy [45], and Bio-PEPA 

Workbench [46] have been used to capture first order approximations to system dynamics 

using a combination of stochastic simulation and ODE approximation. These tools mainly 

target single processor boxes and, to the best of our knowledge, do not target distributed 

systems and cloud.  

The Swarm algorithm [47], which is well suited for biochemical pathway optimisation, 

has been used in a distributed environment, e.g. in Grid Cellware [48], a grid-based 

modelling and simulation tool. DiVinE is a general distributed verification environment meant 

to support the development of distributed enumerative model checking algorithms including 

probabilistic analysis features used for biological systems analysis [49]. 

StochKit [50] is a C++ stochastic simulation framework implementing the Gillespie 

algorithm that targets multi-core platforms in its second version. It does not implement on-

line trajectory reduction but it is performed in a post-processing phase. A first form of on-line 

reduction of simulation trajectories has been experimented within StochKit-FF [8], which is 

an extension of StochKit using the FastFlow runtime. 
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In [51] a parallel computing platform has been employed to simulate a large biochemical 

network using the Gillespie algorithm on multiple processors. The analysis of the simulation 

results to characterise the intrinsic noise of the network is done as a post-processing step. 

Hy3S software package [52], that includes hybrid stochastic simulation algorithms, and 

SRSim [53], that performs rule-based spatial modelling, are both embarrassingly parallelised 

by way of the MPI library. StochSimGPU [54] exploits GPGPU for parallel stochastic 

simulations of biological systems. The tool allows computing averages and histograms of the 

molecular populations across the sampled realizations on the GPGPU. The tool is built on top 

of a GPGPU-accelerated version of the Matlab framework. 

A schematic comparison of the main features of the biological simulation tools cited 

above is reported in Table 2. 

[Table 2] 

 

3 The FastFlow programming framework  

[Figure 1] 

FastFlow [55] is a structured parallel programming framework originally designed for 

shared-memory multi-core/many-core platforms. It has been recently extended to support 

distributed systems and cloud [12]. FastFlow provides programmers with predefined and 

customisable parallel design patterns (a.k.a. algorithmic skeletons) [16, 18]. They include 

stream-oriented patterns (farm, farm-with-feedback, pipeline) and data-parallel patterns (map, 

reduce). Patterns can be arbitrarily composed to express higher-level patterns, e.g. 

MapReduce, Divide&Conquer  [11].  

FastFlow design is layered (see Figure 1); each layer is implemented on to of the next 

layer down. From top to bottom: 

• Parallel patterns are in the top layer. It provides to the application programmers 

patterns abstractions that can be used on all platform families: multi-cores, many-

cores, distributed systems and clouds. Once applications have been developed using 

patterns, it can be seamlessly ported across different platform families without re-

designing or re-coding the application.  

• Arbitrary streaming networks layer provides basic abstractions to implement each 

pattern as a data-flow graph [56], i.e. nodes and channels. A node (so-called 

ff_node) implements the basic unit of parallelism and can be used to encapsulate a 

sequential computation or a channel mediator, which are used either to build 
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collective communications possibly with user-defined semantics, both in the shared-

memory or message-passing programming models. 

• Simple streaming networks layer provide low-latency zero-copy single-consumer-

single-producer channels for both shared-memory and message-passing programming 

models. The shared-memory channel is implemented via FIFO wait-free queues (FF-

SPSC) [57]; the message passing support is built on top of  ZeroMQ channels [58]. 

Overall, the FastFlow run-time support is realized as a header-only C++ template library 

and it is based on streaming of pointers, which are used as synchronisation tokens. This 

abstraction is kept also in the distributed version (i.e. across network channels) where data is 

transferred across network links by way of zero-copy channels. We refer back to [55] for 

further details. 

4 The CWC multi-core simulator 

4.1 The Calculus of Wrapped Compartments 

In this work, the simulator for the Calculus of Wrapped Compartments (CWC) will be 

used as test-bed. CWC [59, 10] is a recently proposed formalism, based on term rewriting, for 

the representation of biological systems. CWC extends the usual representation of 

biochemical systems with reaction rules by adding a nested structure of labelled 

compartments delimited by membranes. However, to better focus on the proposed 

methodology and make the paper self-contained, we will write all examples of the paper in 

the basic subset of CWC, in which biochemical reactions are denoted in a standard, self-

explanatory way. We only remark that in CWC a reaction is associated with a rate function 

depending on the overall content of the ambient in which the reaction takes place. This allows 

tailoring the reaction rates on the specific characteristics of the system, as for instance when 

representing nonlinear reactions as Michaelis-Menten kinetics. This function is simply 

represented by the kinetic constant for reaction whose rate is determined by the usual mass 

action law. We refer to [59, 10] for a complete presentation of CWC.  

4.2 The CWC simulator 

The CWC simulator [60] is an open source tool that implements Gillespie’s algorithm on 

CWC terms. It handles CWC models with different rating semantics (law of mass action, 

Michaelis-Menten kinetics, Hill equation) and it can run independent stochastic simulations. 

The CWC simulator was designed using the FastFlow high-level methodology and targets 

multi-core platforms. It exploits both parallel simulation and data analysis in a single 

workflow. To make it possible, all the logical phases of the process (i.e. data distribution, 
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parallel simulations, result gathering, parallel trajectory, data assembling and analysis) must 

be effectively pipelined. This implies that all phases work on a data streams.  

The simulation workflow is composed of a three-stage pipeline: simulation, analysis, and 

display of results. The former two stages are in turn pipelines, whereas the display of results 

is realised by way of a Graphical User Interface (GUI).  

4.2.1 The simulation pipeline 

The simulation pipeline is composed of three main parts: a generation of simulation tasks 

stage, a farm of simulation engines stage and an alignment of trajectories stage [9]. 

The input of the simulation pipeline (either from GUI or from file) contains the model to 

be simulated and the parameters of the simulation. The output is a stream of arrays of 

simulation results. Each of these arrays holds a point for each of the trajectories of all 

(independent) simulations, aligned at a given simulation time. Actually, each array represents 

a snapshot (called “cut”) at a given simulation time of the whole dataset of results. This not 

necessarily represents the current status (at a given point in wall-clock time) of all running 

simulations. Stochastic processes exhibit an irregular behaviour in space and time according 

to their nature, since different simulations may cover the same simulation timespan, following 

many different (randomly-chosen) paths, in a different number of iterations. Therefore, 

parallelisation tools should support the dynamic and active balancing of workload across the 

involved cores. This mainly motivates the structure of the simulation pipeline. The first stage 

generates a number of independent simulation tasks, each of them wrapped in a C++ object. 

These objects are passed to the farm of simulation engines, which dispatch them (on-

demand) to a number of simulation engines (sim eng). Each simulation engine brings forward 

a simulation that lasts a precise simulation time (simulation quantum). Then it reschedules 

back the operation along the feedback channel. Simulation results produced in this quantum 

are streamed toward the next stage, which sorts out all received results and aligns them 

according to the simulation time. Once all simulation tasks overcome a given simulation time, 

an arrays of results is produced and streamed to the analysis pipeline. 

In this process, the farm scheduler prioritises “slow” simulation tasks, in such a way that 

the front-line task proceeds as much aligned as possible to simulation time. This solves both 

the load-balancing problem by keeping all simulation engines always busy and reduces to the 

minimum the transient storage of incomplete results, thus reducing the shared-memory traffic. 
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[Figure2] 

4.2.2 The analysis pipeline 

By design, each cut of simulation trajectories (i.e. an array of simulation results), can be 

analysed immediately and independently (thus concurrently) from each other. For example, 

the mean and variance (as well as other statistical estimators) can be immediately computed 

and streamed out to the display stage. More complex analysis, i.e. ones aimed to understand 

system dynamics, has further requirements. In the most general case, they require the access 

to the whole dataset. Unfortunately, this can be hardly done with a fully on-line process. In 

many cases it is possible to derive reasonable approximation of these analysis from a sliding 

window of the whole dataset. For this reason, stream incoming in the analysis pipeline is 

passed through a stage that creates a stream of (partially overlapping) sliding windows of 

trajectories cuts. Each sliding window is processed in parallel and therefore is dispatched to a 

farm of statistic engines. Results are collected and re-ordered (i.e. gathered) and streamed 

toward user interface and permanent storage [7].  

4.2.3 The graphical user interface 

The CWC simulation-analysis pipeline is wrapped in a back-end tool that can be steered 

either via command line tools or a graphical user interface, which makes it possible to design 

the biological model, run simulations and analysis and to view partial results during the run. 

Also, the front-end allows controlling the simulation workflow from a remote machine.  

The overall architecture of the CWC distributed simulator is shown in Figure 2. The first 

stage of the pipeline (simulation pipeline) has been implemented using a task-farm parallel 

paradigm where each simulation pipeline can be run on a different node in a cluster or cloud 

environment. It receives simulation parameters from the generation of simulation tasks node, 

and feeds the alignment of trajectories node with a stream of results.  

In Figure 3 is presented a screenshot of the graphical user interface, in which the user has 

the possibility apply different kind of statistical analysis to data resulting from simulation. 

 

[Figure 3] 

5 Experimental evaluation 

The evaluation of the CWC simulator takes into account the performance on both a single 

multi-core virtual machine and a small cluster of multi-core virtual machines running in the 

cloud. The ability of the CWC formalism to describe simple but significant biological 
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systems, together with the effectiveness of the proposed on-line analysis to capture the 

behaviour of the system has been discussed in previous works [7, 10]. A simple yet 

significant example is reported in the following. 

5.1 Simulation and analysis of an oscillatory system 

As an example, consider the theoretical model for circadian oscillations based on 

transcriptional regulation of the frequency (frq) gene in the fungus Neurospora [61].  In this 

system the only specific feature of CWC used is the possibility of evaluate reaction rates 

introducing functions depending on time as well on the overall state of the system.  For the 

sake of simplicity, we represent the model using a standard syntax for biochemical reactions 

[1]: when a reaction is decorated with a number it is understood that its rate is determined by 

the mass action law and then the number decorating it represents the kinetic constant of the 

reaction. 

The model relies on the feedback exerted on the expression of the frq gene by its protein 

product FRQ. In this model, sustained rhythmic variations in protein and mRNA (Mcyto) levels 

occur, in the form of limit cycle oscillations [61]. The CWC rules2 modelling this case are: 

!"#$%

&.(
)* !"#$%	,-."/$%	  ,-.01"2314 			

56789$:
);;;;* ,-.01"2314	!"#$% 

!"#$%

5<
)*	∘     ,-."#$%

5>
)*	∘  

,-."#$%
&.(
)*	,-.01"2314               FRQ01"2314

&.B
)* ,-."#$% 

 

where the nucleus and cyto subscripts identify the elements in the nucleus and the cytosol, 

respectively.  

The model is based on the negative feedback exerted by the protein FRQ on the 

transcription of the frq gene; the rate of gene expression is enhanced by light. The FRQ 

protein is represented by ,-."#$%	in its cytosolic form and FRQ01"2314	in its nuclear form.  

The model includes gene transcription in the nucleus, accumulation of the corresponding 

mRNA in the cytosol with the associated protein synthesis, protein transport into and out of 

the nucleus, and regulation of gene expression by the nuclear form of the FRQ protein. The 

function CDEF9G: denoting the rate of frq transcription is defined by  

 

                                                      
2 To better focus on the proposed methodology the example is expressed in a basic subset of the 

CWC, in which reactions are denoted in a standard self-explanatory way.  
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CDEF9G: H I49G:
JK
0

,-.01"2314 L JK
0 

 

where 

I49G: H M
200	when	2PQ R G S 92P L 1:Q												

160	when	92P L 1:Q R G S 92P L 2:Q
							9P V 0: 

and T represents the period of the dark-light phases. 

 

The parameter I49G: defined by increases in light conditions of the current time of the 

simulation, where T represents the period of the dark-light phases. The constant KI is related 

to the threshold beyond which nuclear FRQ represses frq transcription; the Hill coefficient n, 

characterises the degree of cooperatively of the repression process. In the functions, the name 

of an atom indicates its multiplicity. The mRNA degradation is given by the Michaelis rate 

function 

 

CW H IX
!"#$%

JW L!"#$%

 

 

The FRQ degradation is given by the Michaelis rate function  

CY H IY
,-."#$%

JY L ,-."#$%
 

 

where I4 is the maximum rate of FRQ degradation and the Michaelis constant related to 

this process is JY.  

[Figure 4] 

[Figure 5] 

 

As in [61] we modelled the oscillations under two different conditions: i) constant dark 

condition, ii) alternate light and dark phases. Following [61], the values of the parameters are 

set as: IX H 50.5, IY H 140, \4 H 0.5, \] H 0.5, \^ H 0.6, JX H 50, JK H 100, JY H

13,	` H 4. Concentrations have been made discrete by scaling 1nM to 100 atomic elements. 

In the constant dark condition, parameter I4 is equal to 160, in the alternate condition; I4 is 

equal to 160 during the dark phase and to 200 during the light phase. Figure 4 shows an 

extract of a single stochastic simulation of the circadian oscillations in the dark/light alternate 

condition, plotting the number of FRQ proteins within the nucleus (,-.01"2314), the total 

number of FRQ proteins in the cell and the number of mRNA molecules leading the synthesis 
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of FRQ. Figure 5 shows the outcome of the peak detection tool, which is able to summarise 

the frequency of the peak events over time. The plot results after capturing the peaks in the 

curve of the cytosolic mRNA for the FRQ protein synthesis. Measuring the distance between 

two consecutive peaks, we compute the period of each oscillation and then plot the moving 

average, over 200 simulations, of the local periods. In the constant dark condition, the 

circadian period is close to 21 and half hours, but increases; producing damping oscillations 

with a period of approximately 24 hours, in the dark/light alternate condition. 

5.2 Performance evaluation 

[Figure 6] 

[Figure 7] 

[Figure 8] 

 

The performance of the simulator was tested on the Neurospora model, described in Sec. 

5.1. We ran two set of experiments: the first one considering 8 virtual machines (VMs) each 

having 4 cores Intel E-2670 2.6 GHz with 20MB of L3 cache running in the Amazon Elastic 

Compute Cloud (Amazon EC2)  [62]; the second set considering an heterogeneous 

environment of virtual and physical machines which allowed to scale the core count up to 96. 

The heterogeneous environment, which can be considered a private cloud including a public 

cloud comprises: 8 EC2 virtual machines with 4 virtualised cores, two workstations at 

University of Pisa each having 16 cores Intel Sandy Bridge  @2GH.z with 20MB of L3 

shared cache, and 1 workstation, at University of Torino, having 32 cores Intel Nehalem 

@2.0GHz with 18MB of L3 shared cache. Virtual and physical machines run Linux x86_64. 

In the first test we measured the speedup and the execution time of the simulator when 

running 96 days of simulation time on a single quad-core VM. The results obtained are shown 

in Figure 6.  In this case, the maximum speedup using all available cores is 3.15 out of 4 so 

that the execution time decreases from about 224 minutes of the sequential run down to about 

71 minutes. Observe that in this case the speedup is not ideal because of the additional work 

needed for on-line alignment of trajectories at the simulation time. In this regard, it is worth to 

recap that simulation time advances along random walks, thus different simulations instances 

proceeds at different speed with respect to simulation time. In traditional approaches this cost 

is typically paid during post-processing phase.  

Next, we executed the same test using 8 quad-core VMs. Figure 7 reports the speedup for the 

same simulation time varying the number of virtual cores used. The trend is almost ideal.  

With 32 virtual cores we obtained a completion time of 10.5 minutes, with a gain of about 

21x with respect to the sequential execution time of the simulator on a single-core VM of the 
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same clock frequency and a gain of ~7x with respect to the execution time obtained on the 

single quad-core VM. 

In the second set of experiments, we executed the simulation using different platforms. 

Initially we ran the simulator on the 32 cores Nehalem workstation using the shared memory 

implementation of the simulator. The minimum execution time obtained on that machine 

using all cores available is 67.3 minutes (i.e. almost the same time) obtained using the 8 

Amazon VMs (having an overall number of 32 virtualised cores).  This result confirms the 

quality of the distributed implementation of the simulator.  Next, in order to further decrease 

the simulation time, we used together the Nehalem workstation, the Amazon VMs, and the 

two 16 cores Sandy Bridge workstations. In this case, since the machines were not 

homogeneous in terms of number of cores and computational power, we used a weighted 

dispatching policy for the distribution of the simulations, where the weights used are the 

number of virtualised or physical cores of the target platform. The results obtained for the 

execution time and the speedup (the speedup is computed w.r.t. the execution time obtained 

on single-core Amazon VM), are shown in Figure 8. For this test, the analysis pipeline was 

mapped on the 32 cores Nehalem workstation.  The minimum execution time obtained using 

96 cores (32 cores in the 8 quad-core VMs, 32 cores in the Nehalem workstation and 2x16 

cores in the 2 Sandy Bridge workstations) is 69.3s carrying a gain of ~62x in the execution 

time, which a remarkable result considering the low computation granularity (~20 ms) of the 

single worker thread and the high frequency of communication (30 – 80 ms) for collecting 

results computed by remote machines running the simulation pipeline. As a general rule, the 

lower the communication/computation ratio, the higher the speedup obtained. The test 

considered, has a not optimal communication/computation ratio and for this reason we were 

not able to obtain a performance improvement with more than 64 cores.  

6 Conclusions 

We presented the design and the implementation of the CWC simulator for the cloud, 

which is obtained with low engineering and coding efforts from the previous multi-core 

version [7, 9]. Since the CWC simulator implements a Monte Carlo algorithm for systems 

biology, the issues for its portable and efficient design for the cloud are paradigmatic for a 

broad class of algorithms for Bioinformatics. We believe that its design and implementation 

are also paradigmatic for the implementation of other Monte Carlo algorithms. 

Experimentation on both physical and virtualised execution environments (such as Amazon 

EC2 cloud) demonstrate that its high-level design via the FastFlow framework provides the 

application designer with easy engineering, seamless portability on distributed and multi-core 

platforms physical or virtualised, and automatic load balancing. The possibility to execute the 
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whole simulation-analysis pipeline in the cloud make it possible to greatly reduce the data 

transfer from user desktop to the cloud and to deploy the tool in the cloud in a SaaS fashion. 

The stream-oriented design of the simulation-analysis pipeline make it possible to perform the 

statistical analysis and data mining of simulation results as an on-line process starting together 

with simulation e immediately starting to provide the user with a stream of final results, thus 

enforcing a fast feedback to the bioinformatics scientists. Experimental evaluations show that 

the design is flexible and robust with respect to target platform, and it is able to provide 

performance scalability also for fine-grained problems. 

A recent extension of FastFlow framework supporting many-core GPGPUs via OpenCL 

[63], will make it possible to transparently target clusters of GPGPUs [64]. We believe that 

the design has the potentiality to survive in the hostile environment populated by platform 

heterogeneity, coding complexity and the need of performance portability.  
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System Description Used Resources Cloud How to use Ref 

CloudBurst 
System to map sequence data to a 

reference genome 
Apache Hadoop 

Amazon 
EC2 

Homepage 

Source code to be 
compiled and 
executed on a 

Hadoop cluster 

[37] 
 

Computational 
Systems Biology 
Software Suite 

Bayer 

Platform for computational 
biology by integrating body 

physiology, disease biology, and 
molecular reaction networks 

Apache Hadoop 
PK-Sim, MoBi 
R and Matlab 

D-Grid 
GmbH  

Homepage 

Executable to be 
installed 

[40] 
 

Crossbow 
Software pipeline for genome 

resequencing analysis 
Bowtie 

SoapSNP 

Amazon 
EC2 

Homepage 

 
Crossbow Web 

Application 

[36] 

Folding@home Protein folding simulation -- 
Windows 

Azure  
Homepage 

Folding@home 
website 

[41] 
 

Myrna 
Calculate differential gene 

expression in RNA-seq datasets 

Bowtie 
R/Bioconductor 
Apache Hadoop 

Amazon 
EC2 

Homepage 

Myrna Web 
Application 

[38] 

 

Table 1: Comparison of some cloud based computational biology and bioinformatics 
tools available on the Web. 
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Tool Calculus Simulation Schema Parallelism Data Analysis Ref 
SCWC CWC Gillespie FastFlow online statistics [31] 
SPiM π-calculus Gillespie none none [19] 
Dizzy Reaction Model Gillespie, Tau-Leap, ODE none none [20] 
BioPEPA Process Algebra ODE, Gillespie none none [21] 
Cellware Reaction Model Gillespie, Gibson-Bruck, ODE none none [23] 
DiVinE Model Checker ODE MPI none [24] 
StochKit Reaction Model Gillespie, Tau-leaping MPI post-processing [25] 
StochKit2 Reaction Model Gillespie, Tau-leaping POSIX threads post-processing [25] 
StochKit-FF Reaction Model Gillespie, Tau-leaping FastFlow online statistics [5] 
Hy3S Reaction Model Gibson-Bruck, Hybrid MPI post-processing [27] 
StochSimGPU Reaction Model Gillespie, Gibson-Bruck, Li NVidia CUDA post-processing [29] 
 

Table 2: Schematic comparison of the main features of several biological simulation tools. 
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Figure 1: Layered architecture of the FastFlow programming framework.  
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Figure 2: Architecture of the CWC parallel simulator with on-line parallel analysis. The FastFlow framework 
automatically generates the implementation of patterns connecting ff_nodes and ff_dnodes with streams, 

which are implemented either in the shared-memory model within the single virtual machine or in the 
message-passing model across virtual machines.    
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Figure 3: Screenshot of the simulation tool interface: output analysis plotting. The interface enables the 
usage of the application in a SaaS fashion.  
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Figure 4: An extract (72 hours of simulated time) of a single stochastic simulation of the circadian 
oscillations in the dark/light alternate condition (Vs), plotting the number of FRQ proteins within the nucleus 

(Fn), the total number of FRQ proteins in the cell (Ft) and the number of mRNA molecules leading the 
synthesis of FRQ (M).  

127x88mm (300 x 300 DPI)  
 
 

Page 30 of 34

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 5: Output of the simulation-analysis workflow with peak detection analysis module applied to FRQ(M) 
for both alternate dark/light and dark conditions. The frequency of the peak events over time is shown along 

evolution of 10 days of simulated time.  
127x88mm (300 x 300 DPI)  
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Figure 6: Performance of the simulator for the Neurospora model in a single quad-core VM in the Amazon 
EC2 cloud: speedup and execution time varying the number of virtualised cores.  
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Figure 7: Performance of the simulator for the Neurospora model on a virtual cluster of 8 quad-core VMs in 
the Amazon EC2 cloud:  speedup varying the number of virtualised cores.  

127x88mm (300 x 300 DPI)  
 
 

Page 33 of 34

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 8: Performance of the simulator for the Neurospora model on an heterogeneous environment of 

virtualised and physical machines (8 quad-core Amazon EC2 VMs, 1 32-core Nehalem workstation, and 2 

16-core Sandy Bridge workstations): speedup and execution time varying the number of cores.  
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