The first 40Ar–39Ar date from Oxfordian ammonite-calibrated volcanic layers (bentonites) as a tie-point for the Late Jurassic

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/140222 since 2015-12-09T12:43:40Z

Published version:
DOI:10.1017/S0016756813000605

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
The first 40Ar/39Ar age from Oxfordian ammonite-calibrated volcanic layers (bentonites) as a tie-point for the Late Jurassic

P. Pellenard1*, S. Nomade2, L. Martire3, F. De Oliveira Ramalho4, F. Monna5, H. Guillou2

1. Biogéosciences, CNRS-UMR 6282, Université de Bourgogne, F-21000 Dijon, France
2. LSCE-IPSL, CNRS-UMR 8212, CEA Orme, F-91191 Gif-sur-Yvette, France
3. Dipartimento di Scienze della Terra, University of Torino, via Valperga Caluso 35 10125 Torino, Italy
4. Statoil ASA, Grenseveien 21, 4313 Forus, Norway
5. ARTeHIS, CNRS-UMR 6298, Université de Bourgogne, F-21000 Dijon, France

* Tel.: +33 380-39-63-66; Fax: +33 380-39-63-87; e-mail: Pierre.Pellenard@u-bourgogne.fr

Running head: A new tie-point for Late Jurassic calibration

ABSTRACT

Eight volcanic ash layers, linked to large explosive events caused by subduction-related volcanism from the Vardar Ocean back arc, interbedded with marine limestones and cherts, have been identified in the Rosso Ammonitico Veronese Formation (north-eastern Italy). The thickest ash layer, attributed to the *Gregoryceras transversarium* ammonite biozone (Oxfordian Stage), yields a precise and reliable 40Ar/39Ar age of 156.1 ± 0.89 Ma which is in
better agreement with the GTS2004 boundaries, than the current GTS2012. This first
biostratigraphically well-constrained Oxfordian age is proposed as a new radiometric tie-point
to improve the Geologic Time Scale for the Late Jurassic whose ammonite-bearing
radiometric ages are particularly scarce.

Keywords: geochronology, palaeovolcanism, bentonite, Oxfordian, Jurassic Time Scale

1. INTRODUCTION

There are no well-constrained direct radiometric dates, closely tied to ammonite
biostratigraphy currently available for the whole of the Upper Jurassic (Gradstein et al.,
2012). Some Upper Jurassic Ar-Ar dates are integrated as secondary guides in the GTS2012:
1) a suite of dates from the almost totally non-marine Morrison Fm in USA (Gradstein, Ogg
& Smith, 2004; Ogg, Ogg & Gradstein, 2008), 2) dates from Oxfordian tuffs intercalated in
terrestrial sediments in China (Chang et al. 2009), and 3) dates from ocean floor basalt veins
in the Pacific (Gradstein et al., 2012). A single Re/Os date is available from ammonite-
bearing marine sedimentary successions in the Lower Kimmeridgian (Selby, 2007). As a
consequence, the Late Jurassic Time Scale derives mainly from the Pacific seafloor spreading
numerical model of the M-sequence magnetic polarity pattern and from limited recent
cyclostratigraphic studies (Ogg & Smith 2004; Ogg et al., 2010; Gradstein et al., 2012).
Magnetostratigraphy can be calibrated with ammonite assemblage biochronology, which is
mainly defined in north-western European domains (Cariou & Hantzpergue 1997; Morton
2006). However, provincialism in Boreal, sub-Boreal, sub-Mediterranean and Tethyan
domains prevents unequivocal zonation correlation, especially for certain intervals and hence,
introduces a temporal bias in the magnetostratigraphic model. Despite recent progress in
reducing this bias (Ogg et al., 2010; Przybylski et al., 2010; Gradstein et al., 2012), the
scarcity of interbedded volcanic units in ammonite-bearing marine succession hinders the
accurate numerical calibration of the Late Jurassic Time Scale, even with the progress made in
GTS2012, including improved numerical ages for stage boundaries obtained by selecting only
single-zircon U-Pb ages, recalculating \(^{40}\text{Ar}/^{39}\text{Ar}\) dates and more precise magnetostratigraphy
and cyclostratigraphy. Therefore, to obtain radiometrically calibrated tie-points for the Late Jurassic,
biostratigraphically-constrained volcanic ash layers in Tethyan basins have been studied
(Pellenard et al., 2003; Pellenard & Deconinck 2006). Here, we focus on eight volcanic ash
layers, weathered into bentonites, sampled in pelagic cherty limestones from the Altopiano di
Asiago (Trento Plateau domain, north-eastern Italy; Bernoulli & Peters 1970; Martire 1996).
We present a new \(^{40}\text{Ar}/^{39}\text{Ar}\) radiometric date from one of these bentonites providing the first
radiometric tie-point from biostratigraphically well constrained sedimentary strata for the
Middle Oxfordian and discuss volcanic events and potential sources.

2. MATERIAL AND METHOD

Six bentonite layers were identified by their field characteristics, mineralogy and geochemical
features at the Serrada section and a further five, 28 km away, at the Echar and Kaberlaba
sections, in the Altopiano di Asiago (Trentino Alto Adige and Veneto regions, Italy; Fig. 1a).
Weathering of volcanic ashes into clays produced bentonite deposits during the early stages of
diagenesis at the sediment/seawater interface. In the Rosso Ammonitico Veronese (RAV),
bentonites appear as continuous centimetre-thick red or white plastic clay-rich horizons,
interbedded with limestones and cherts (Figs. 1b and 3a). The RAV is an Upper Bajocian to
Tithonian pelagic limestone succession, which can be divided into three units (Figs. 1b, 2a;
Sarti, 1985; Martire, 1992; Martire et al., 2006). The lower unit (Rosso Ammonitico Inferiore:
RAI) and the upper unit (Rosso Ammonitico Superiore: RAS) are composed of massive
nodular limestones, while the Rosso Ammonitico middle unit (RAM), containing all the
bentonite layers, consists of thin, evenly bedded, non-nodular, chert-rich limestones. The RAM unit reaches a maximum thickness of 10 m although it occasionally thins out and disappears (Martire 1996; Fig. 2a).

Mineralogical (X-ray diffraction, Biogeosciences Dijon, France) and elemental (inductively coupled plasma-optical emission spectrometry [ICP-OES] and ICP-MS [MS, mass spectrometry], CRPG Nancy, France) analyses were performed on all powdered samples to confirm their volcanic nature (online Supplementary Material Table S1 available at http://journals.cambridge.org/geo). Principal Component Analysis (PCA) was used to evaluate the number of volcanic events. Prior to the correlation matrix-based PCA, trace element concentrations were re-expressed assuming an initial volcanic concentration of 15% Al$_2$O$_3$ (Spears et al., 1999; Pellenard et al., 2003). This procedure reduces variability in lithophile element concentration which could be owing to post-depositional diagenetic processes, such as dilution by authigenic phases, or concentration by dissolution of less stable minerals.

The 40Ar/39Ar dating (OSIRIS reactor CEA Saclay, France) was performed by step-heating about 30 small (<100 µm) transparent sanidines, carefully handpicked under a binocular microscope after several treatments from the Kaberlaba section AB4 bentonite (original sample weight 2 kg, see online Supplementary Material available at http://journals.cambridge.org/geo for details). Each Ar isotope measurement consists of 20 cycles by peak switching between the different argon isotopes. The J value was determined using three single ACs (Alder Creek sanidine) grains taken from the same hole as the sample. Recently, Renne et al. (2010, 2011) published an optimisation model for estimating the partial decay constants of 40K and 40Ar*/40K ratio of FCs (Fish Canyon sanidine). This calibration reduces systematic uncertainties in the 40Ar/39Ar system from ca. 2.5% (Steiger & Jäger, 1977) to 0.27%. The optimisation model yields an age for ACs of 1.2056 Ma, equivalent to
FCs of 28.294 Ma, that overlaps at the 2σ confidence level the astronomically tuned ACs and
FCs ages reported by Kuiper et al. (2008). The optimisation model of Renne et al. (2010,
2011) used pairs of $^{238}\text{U}/^{206}\text{Pb}$ and $^{40}\text{Ar}/^{39}\text{Ar}$ data as inputs. Therefore, $^{40}\text{Ar}/^{39}\text{Ar}$ ages
calibrated with this optimisation model could be directly compared to U/Pb. The
corresponding J value (0.0006846 ± 0.00000137, 1σ) was calculated using the Renne et al.,
(2011) calibration of ACs. The J uncertainty corresponds to the standard deviation of the
weighted mean of three ACs single grains (see Nomade et al., 2010, 2011 and Supplementary

3. BIOSTRATIGRAPHY AND CORRELATION OF ASH LAYERS

At Kaberlaba, calcareous nanofossil assemblages indicate a Late Callovian age for the base
of the RAM unit, while the following ammonite assemblage: *Gregoryceras fouquei*,
*Passendorferia (Enayites) birmensdorffensis, Passendorferia cf. ziegleri, Perispinctes
(Otosphinctes) nectobrigensis, Perispinctes (Dichotomosphinctes) aff. elisabethae,
Sequeirosia (Gemmellarites) aff. trichoplocus, Subdiscosphinctes richei*, which is
characteristic of the *Gregoryceras transversarium* Biozone, indicates a Middle Oxfordian age
for the top of the RAM unit (Clari, Martire & Pavia., 1990; Martire 1992; 1996; Martire et al.,
2006, see Fig. S1 in Supplementary Material available at http://journals.cambridge.org/geo for
photographs of typical ammonites of the *G. transversarium* Biozone). All these ammonite
taxa come from the bed between bentonites AB3 and AB4 at Kaberlaba, where preservation is
better than in the rest of the section. They are all exclusive to the *G. transversarium* Biozone,
except for *G. fouquei*, which spans the *G. transversarium* Biozone and the overlying
Perispinctes (Dichotomoceras) bifurcatus Biozone. The overlying RAS unit contains
ammonites such as *Orthosphinctes (Ardescia) gr. inconditus, Crussoliceras aceroides* and
Idoceras (Lessiniceras) sp., characteristic of the *Taramelliceras strombecki* and *Presimoceras*
herbichi biozones of the Lower Kimmeridgian (Sarti, 1993; Clari, Martire & Pavia., 1990; Martire, 1992, 1996). Therefore, at Kaberlaba, there is a major hiatus (four ammonite biozones) between the upper part of the Middle Oxfordian and the lowermost part of the Lower Kimmeridgian (Fig. 2a). However, the RAM unit of the Echar section provides a biostratigraphic framework for bentonites AB4 and AB5 as here the overlying sediments are well dated, with no hiatus. The RAM unit at Echar contains the same five bentonites and is overlain by three stromatolitic beds, the first of which belongs to the G. transversarium Biozone, with the same taxa as Kaberlaba. The second stromatolitic bed is dated to the Lower Kimmeridgian (Sowerbyceras silenum Biozone), on the basis of the following assemblage: Taramelliceras cf. rigidum, Idoceras (Lessniceras) cf. raschii, Lithacosphinctes cf. stromeri, Mesosimoceras evolutum, Euaspidoceras (Epaspidoceras) sp. The third stromatolitic bed belongs to the P. herbichi Biozone (Lower Kimmeridgian, Fig. 2a). In the Serrada section, the RAM unit extends from the Upper Callovian to the Middle Oxfordian (G. transversarium Biozone). As all bentonites sampled were from the RAM unit, they therefore date from the Upper Callovian to the Middle Oxfordian. As ammonites diagnostic of the G. transversarium Biozone were found just below AB4 at Kaberlaba and just above at Echar, the two uppermost bentonite beds in these sections (AB4 and AB5), easily recognisable because of their thickness and vivid red colour (Fig. 3a), are attributed to the G. transversarium Biozone (Fig.2a).

The bentonites studied, which correspond to pure-smectite horizons containing occasional volcanic crystals (e.g. sanidine, quartz, biotite) are marked by positive anomalies in Th, Ta, Hf and Ga, which is characteristic of bentonite deposits (Spears et al., 1999; Pellenard et al., 2003, Table S1 in online Supplementary Material available at http://journals.cambridge.org/
Principal Component Analysis (PCA) was used to examine possible similarities between ash layers in the Serrada and Kaberlaba sections, 28 km apart, in order to correlate the bentonites and to evaluate the number of volcanic events and their preservation in the Trento Plateau domain. The most typically immobile, volcanogenic elements were selected for this analysis: Hf, Ga, Th, Ta, La, Zr and Ti (Fig. 2b). In the F2 vs F1 diagram (Fig. 2b), representing more than 80% of the total variance, four groups consistent with the stratigraphy can be clearly identified: (i) AB2, AB3, (ii) SB1, SB2, AB1, (iii) SB3, AB4, and (iv) SB4, SB5, SB6, AB5. The first Kaberlababa level, AB1, corresponds either to the first Serrada level SB1 or possibly to SB2. Samples AB2 and AB3 (Kaberlababa) have no equivalent in the Serrada section, indicating that these events were not systematically preserved. Sample AB4, a thick red bentonite from Kaberlababa, is geochemically similar to SB3, the thickest bentonite from Serrada. Sample AB5 from Kaberlababa probably corresponds to SB4, perhaps to SB5 or SB6. At least eight individual volcanic events are therefore identified using PCA (Fig. 2b), with correlations over a large geographic area, coherent with the biostratigraphic framework.

4. \(^{40}\text{Ar}/^{39}\text{Ar}\) RESULTS

We used the laser-fusion step-heating \(^{40}\text{Ar}/^{39}\text{Ar}\) method to date level AB4, which contains the highest abundance of well-preserved sanidines and which is also biostratigraphically the most precisely constrained. The apparent age spectrum obtained for the AB4 sanidines is 100% concordant (Fig 3b, details in Supplementary Material Tables S2 and S3 available at http://journals.cambridge.org/geo): all steps yield indistinguishable ages, with a well-defined plateau age of 156.1 ± 0.89 Ma (2\(\sigma\) full uncertainty propagation). As the inverse isochron displays low scatter because of its highly radiogenic content, it was not used, given the imprecise initial atmospheric \(^{40}\text{Ar}/^{36}\text{Ar}\) ratio obtained. The plateau age we obtain can be directly compared to U–Pb ages available for the Jurassic Time Scale (GTS2004, GTS2012
and Pálfy, 2008). We however present alternative calculations (Table 1) using several standards (Nomade et al., 2005; Kuiper et al., 2008) and total \(^{40}\)K decay constants (Steiger & Jäger 1977; Renne et al., 2011) since the Mesozoic GSSP time scale (GTS2004 and GTS2012) was based on many \(^{40}\)Ar-\(^{39}\)Ar ages, using different \(^{40}\)K constant and various standards. The full uncertainty propagation of the Steiger & Jäger (1977) \(^{40}\)K total decay constant (ca. 2.5% at 2σ) results in an AB4 error of about 4.0 Ma, while the Min et al., (2000) \(^{40}\)K decay constant, proposed by Kuiper et al., (2008), could not be retained because of its high degree of uncertainty of 3.9% at 2σ, compared to the 0.27% from Renne et al., (2010, 2011) that has been adopted in this study.

5. NATURE AND SOURCE OF VOLCANIC EVENTS

The bentonite profile in the MORB-normalised multi-element plot clearly shows that the initial ash layers result from an evolved calc-alkaline magma (Fig. 3c and online Supplementary Material Fig. S2 available at http://journals.cambridge.org/geo). The characteristic Nb depletion and the Hf-Th-Ta diagram are typical of subduction-related arc materials, while the Zr/TiO\(_2\) vs Nb/Y diagram indicates mainly andesite to rhyodacite products (online Supplementary Material Fig. S2 available at http://journals.cambridge.org/geo). As no lavas or thick pyroclastic deposits have been identified in or nearby the Trento domain within the Upper Jurassic (Bernoulli & Peters 1970; Pellenard et al., 2003), sources must be distant. In addition, fine-grained ashes emitted by highly explosive eruptions are known to be distributed over long distances (>1000 km). This hypothesis is supported by (i) the correlation indicated by the PCA of several events with similar features (e.g. thickness), over a large area in the Venetian Pre-Alps, and (ii) the size (50-100 \(\mu\)m) of the preserved pyroclastic minerals (i.e. sanidine and quartz). Emissions of tholeiitic basalts, andesites and pyroclastites are reported for the Middle-Late Jurassic from
the island-arc magmatism in the eastern Rhodope-Thrace region in Bulgaria and Greece (Bonev & Stampfli 2008). This volcanism was associated with the southward subduction of the Meliata-Maliac Ocean under the supra-subduction back-arc Vardar Ocean/island-arc system (Bonev & Stampfli 2008). The Vardar geodynamic context undoubtedly produced huge eruptions and subsequent widespread ashes. The age of the Vardar subduction, ranging from the Early Jurassic incipient proto-arc to the Middle-Late Jurassic arc-back arc spreading, is coherent with the biostratigraphic age of the bentonites studied here, whose geochemical fingerprint is similar to that of the Vardar pyroclastics (Fig. 3c). This evidence supports Vardar island-arc volcanism as the probable source of the ash layers found in the Venetian Pre-Alps.

6. A NEW TIE-POINT FOR THE LATE JURASSIC TIME SCALE

Among the few direct radioisotopically and biostratigraphically well-constrained radiometric tie-points for the Middle-Late Jurassic, the only available U-Pb ages are from (i) British Columbia bentonites, ascribed to the early Late Bathonian (Pálfy, 2008), and (ii) an ash layer (164.6 ± 0.2 Ma) in the Neuquén province (Argentina), at the Bathonian-Callovian boundary (Kamo & Riccardi, 2009). There are no biostratigraphically well-constrained radiometric ages for the Oxfordian-Tithonian interval, while only a few 40Ar/39Ar dates from oceanic basalts are retained in the current GTS2012: (i) 159.86 ± 3.33 (2σ) Ma and 161.17 ± 0.74 (2σ) Ma from Pacific tholeiitic basalts (site 801) assigned to the Oxfordian, based on radiolarian calibration, (ii) a revised 156.3 ± 3.4 (2σ) Ma reported for the Hawaiian basalt seafloor (site 765) correlated to the base of the Kimmeridgian (P. baylei ammonite zone) using the M26r magnetochron (Gradstein et al., 2012, Appendix 2, p. 1045), and (iii) an earliest Berriasian
$^{40}\text{Ar}^{39}\text{Ar}$ date of 145.5 ± 0.8 (2σ) Ma from oceanic basalt sill in the Pacific Ocean (Mahoney et al., 2005). Robust $^{40}\text{Ar}^{39}\text{Ar}$ ages of 160.7 ± 0.4 (2σ) Ma and 158.7 ± 0.6 (2σ) Ma have recently been obtained from two tuffs of the Lanqi Formation in north-eastern China but the terrestrial fossils do not allow the attribution of a more precise stratigraphy other than a Late Jurassic age (Chang et al. 2009). The only biostratigraphically well-constrained age, documented by Selby (2007) on a black shale deposit from the Isle of Skye, yields a Re-Os age of 154.1 ± 2.2 Ma (2σ) in the Lower Kimmeridgian just above the proposed Oxfordian/Kimmeridgian GSSP.

As a consequence, Middle-Late Jurassic biozone duration and stage boundary ages are mainly estimated by secondary radiometric guides, indirect methods and mathematical interpolations. These approaches combine a magnetostratigraphic age model based on the cycle-scaling of the M-sequence spreading rate model correlated to the magnetostratigraphy of outcrops (Ogg et al., 2010; Przybylski et al., 2010, Gradstein et al., 2012) and cycle-derived durations of ammonite zones from cycle stratigraphy (Boulila et al., 2008; 2010; Ogg et al., 2008; Huang et al., 2010; Gradstein et al., 2012). Cyclostratigraphy from south-east France has considerably modified ammonite biozone durations. Using a condensed section in Britain, the entire Oxfordian stage had previously been fixed at 0.6 Ma, in the GTS2004. New data from cyclostratigraphysuggest that the Oxfordian spanned 6.0 myr with 2 myr attributed to the *Quenstedtoceras mariae* Zone alone (Boulila et al., 2008; Gradstein et al., 2012). The age of the Oxfordian/Kimmeridgian boundary is now set at 157.3 ± 1.0 Ma in the GTS2012, whereas it was 155.6 ± 4.0 Ma in the GTS2004 and GTS2008 (Gradstein et al. 2004; Ogg et al., 2008). In this study, the $^{40}\text{Ar}^{39}\text{Ar}$ age of 156.1 ± 0.89 Ma (2σ full uncertainty propagation), attributed to the *G. transversarium* Biozone (Middle Oxfordian), is consistent with the existing Re-Os age and the $^{40}\text{Ar}^{39}\text{Ar}$ ages retained as secondary guides of the
GTS2012. Nevertheless, it falls outside of the current base and top limits of the G. *transversarium* biozone proposed respectively at 160.09 ± 1.0 Ma (2σ) and 159.44 ± 1.0 Ma (2σ), both interpolated from Oxfordian stage boundaries (Gradstein et al., 2012). The age proposed here remains compatible with the Oxfordian boundaries (163.5 ± 1.1 Ma and 157.3 ± 1.0 Ma) proposed by the GTS2012 if maximum uncertainties are taken into account. However, there is a better fit with the previous Oxfordian base (161.2±4.0 Ma) and top (155.6±4.0 Ma) from the GTS2004 and GTS2008, where the proposed boundaries were around 2 Ma younger.

The age proposed age, well constrained within the standard Jurassic biostratigraphic zonation (Cariou and Hantzpergue 1997), provides the first accurate and reliable numerical age currently available for the Late Jurassic Time Scale. This precise new tie-point can be used to anchor floating cyclostratigraphy and magnetostratigraphy, thus contributing to the improvement of seafloor spreading models, and above all, will aid in the calibration of the Late Jurassic timescale.
ACKNOWLEDGEMENTS

This work was supported by the Centre National de la Recherche Scientifique and the Commissariat à l’Energie Atomique et aux énergies alternatives. The authors thank Carmela Chateau-Smith for English proof-reading. We are grateful to J.F. Deconinck and D. Bernoulli for support and discussions about bentonites and G. Pavia and Dr G. Meléndez for help with ammonite biostratigraphy. We thank A. Coe and F. Jourdan whose constructive criticisms and detailed remarks have greatly contributed to improve the manuscript.

REFERENCES

Kamo, S. L. & Riccardi, A. 2009. A new U-Pb zircon age for an ash layer at the Bathonian-

Martire, L., Clari, P., Lozar, F. & Pavia G. 2006. The Rosso Ammonitico Veronese (Middle-

Min, K. W., Mundil, R., Renne, P. R., Ludwig K.R. 2000. A test for systematic errors in Ar-

Renne, P. R., Mundil, R., Balco, G., Min, K. & Mudwig, K.R. 2010. Joint determination of 40K decay constants of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for Ar-40/Ar-39 geochronology. *Geochimica et Cosmochimica Acta* **74**, 5349-5367.

Renne, P. R., Mundil, R., Balco, G., Min, K. & Mudwig, K. R. 2011. Response to the comment by W. H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010). *Geochimica et Cosmochimica Acta* **75**, 5097-5100.

Figure 1. (a) Locality map of the sections sampled in the Altopiano di Asiago region: Kaberlaba (45°50’27.38"N ; 11°29’47.56"E), Echar (45°51’21.24"N ; 11°34’44.47"E) and Serrada (45°53’16.10"N ; 11°09’12.40"E); (b) view of the 3 members of the RAV in the Kaberlaba quarry. Scale bar corresponds to 5.2 m, the thickness of the middle unit (RAM). The RAM unit contains typical chert layers and several bentonite layers. The position of the thickest bentonite AB4 is indicated (white arrow).
Figure 2. (a) Detailed logs of the three sections measured, showing correlations between bentonite layers and the 40Ar/39Ar dated AB4 bentonite (Kaberlabà), attributed to the G. *transversarium* Biozone. (b) PCA based on Al$_2$O$_3$-normalised Hf, Ga, Th, Ta, La, Zr and Ti concentrations. Circles correspond to proposed correlations between bentonite layers. E1 to E8 number the volcanic events.
Figure 3. (a) Photograph of AB4 and AB5 bentonites intercalated between nodular limestones of the RAM unit (Middle Oxfordian) and overlain by the unconformity between the RAM and RAS units. (b) Apparent age spectra for AB4, showing a well-defined plateau age of 156.1 ± 0.89 Ma (2σ external). (c) MORB-normalised multi-element diagram for bentonite layers, pyroclastic deposits from the Vardar domain and comparative patterns for standard rocks from various geodynamic contexts.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard used ACs (1.194 Ma) (1)</td>
<td>ACs (1.201 Ma) (2)</td>
<td>ACs (1.206 Ma) (3)</td>
<td></td>
</tr>
<tr>
<td>Equivalent FCs age</td>
<td>28.02 Ma</td>
<td>28.20 Ma</td>
<td>28.29 Ma</td>
</tr>
<tr>
<td>Age (Ma)</td>
<td>154.6</td>
<td>155.6</td>
<td>156.1</td>
</tr>
<tr>
<td>2σ (Ma)*</td>
<td>4.0</td>
<td>4.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table 1: Calculated ages and corresponding uncertainties using various total K decay constants. *The uncertainty reported is the full propagated uncertainty. (1): Nomade et al., 2003; (2): Kuiper et al., 2008; (3): Renne et al., 2011. Alder Creek sanidine; FCs – Fish Creek sanidine.