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ABSTRACT

A general purpose fitting model for one-dimensional astrometric signals is developed, building
on a maximum likelihood framework, and its performance is evaluated by simulation over a set
of realistic image instances. The fit quality is analysed as a function of the number of terms
used for signal expansion, and of astrometric error, rather than RMS discrepancy with respect to
the input signal. The tuning of the function basis to the statistical characteristics of the signal
ensemble is discussed. The fit sensitivity to a priori knowledge of the source spectra is addressed.
Some implications of the current results on calibration and data reduction aspects are discussed,
in particular with respect to Gaia.

Subject headings: Astrophysical Data — Data Analysis and Techniques

1. Introduction

For efficient extraction of astrometric and pho-
tometric information from astronomical data, we
often rely on an effective mathematical represen-
tation of the signal, suitable to the processing and
analysis activities (Mighell 2005). The issue was
evidenced e.g. by the attempts at image deconvo-
lution of the initial HST images (Krist & Hasan
1993). The need for modeling the Point Spread
Function (PSF) variation, in particular over the
large field of view of some modern instruments,
leads to different techniques according to spe-
cific application needs (Řeřábek & Páta 2008).
The dependence of astrometry from source color
(i.e. spectral distribution) must be taken into
account, even for all reflective optics in space
(Le Gall & Saisse 1984; Nemati et al. 2010).
Also on ground usage of adaptive optics, which
recovers up to a point the diffraction limited per-
formance, requires a detailed model of the PSF for
precision measurements (Britton 2006). Modeling
and calibration of images for differential astrom-

etry has been addressed from both mathemati-
cal and experimental standpoints, demonstrating
micro-pixel precision (Chengxing 2011).

In modern spaceborne instruments, with com-
plex telescopes and large area imaging detectors,
the instrument response changes over the focal
plane, or over the corresponding field of view. The
change is due to both optics and detector, related
to the geometry and (electro-)optical parameter
variation. The effect is both local, modifying the
detected signal with respect to the case of diffrac-
tion limited images onto an ideal detector, and
global, affecting the projection of the focal plane
geometry onto the sky. The monochromatic PSF
variation is usually attributed to the optical sys-
tem, described in terms of wavefront error (WFE),
and for measurements over a finite bandwidth the
signal is weighted by the source spectral distribu-
tion. Realistic detector characteristics affect the
signal distribution, e.g. because of its geometry
and the Modulation Transfer Function (MTF); it
is therefore possible to describe the detected signal
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shape in terms of an equivalent wavefront, induc-
ing a comparable overall effect. However, detec-
tor parameters may have sharp variation over the
field, even from pixel to pixel. Besides, field dis-
tortion is a large scale effect, introducing smooth
variation of the ratio between given small angles
on the sky and their projected linear value on the
focal plane (e.g. with typical “barrel” or “pincush-
ion” distribution).

Both local and large scale effects can be made
acceptably small for many applications by proper
design and implementation, but in order to pre-
serve the ultimate measurement performance of an
instrument we have to account for them by cal-
ibration either on the sky, or through adequate
subsystems (e.g. metrology).

This paper deals with the issue of a convenient
mathematical representation of the profile varia-
tion, over the focal plane and throughout oper-
ation, of realistic polychromatic images from a
range of objects, in the perspective of a modular
approach to data reduction and calibration. For
simplicity, we deal with one-dimensional signals;
the method can be applied to conventional images
e.g. separately along each axis, in principle.

We previously addressed the signal modeling is-
sue, focusing on application to Gaia, in Gai et al.
(2010). Here we describe further results of our
investigation aimed at strengthening the concep-
tual framework and improving on specific imple-
mentation related aspects. The goal is to define
a compact, computationally efficient representa-
tion of the signal profile, over finite focal plane
regions, suitable to the processing of data from
stars spanning a range of magnitude and spectral
type. Therefore, the fit optimization is statistical,
i.e. focused on collective rather than individual
performance.

It is assumed that calibration of field distortion
and detector parameter is performed separately
from that of the local signal “shape”, although in
practice the implementation of one module may af-
fect the performance of others. Such issues, there-
fore, are not discussed in the current work. It
may be remarked that at least some detector pa-
rameter variations, e.g. smooth changes of MTF
and charge transfer efficiency (CTE), may be eas-
ily encoded by their effects on the signal profile
using the proposed modeling tool.

In our approach, the spatially variant PSF is ex-
panded in a sum of spatially invariant functions,
with coefficients varying over the field to describe
the instrument response variation for given spec-
tral distribution sources, as in Lauer (2002). The
fitting process follows the maximum likelihood ap-
proach, with some allowance: on one side, the
fit must be compliant with a reasonable range of
astrophysical parameter variation among sources;
besides, it should be tolerant with respect to in-
strument response evolution along operations.

In Sec. 2 we deal with the mathematical formu-
lation of an astrometrically sound fitting process,
minimizing the photo-center discrepancy between
input signal and output fit. This should minimize
the systematic errors introduced in applying the
fit result as a template, calibrated on a given data
set, for location estimate on new data.

Then, in Sec. 3, the fitting functions are defined
as an orthogonal set, in order to minimize noise
amplification effects and / or correlations in the
data reduction results (Makarov et al. 2012).

We evaluate the feasibility and performance of
our method by simulation on a study case consis-
tent with the Gaia framework, described in Sec. 4,
although the tuning of the fitting method to other
applications appears to be straightforward. The
approach to calibration of detector and field dis-
tortion in Gaia will also be briefly discussed.

The data sets and the fitting algorithm perfor-
mance are discussed in Sec. 5, evaluating the fit
discrepancy with respect to the input signals from
the standpoint of photometric and astrometric er-
ror as a function of the model parameters. The
impact on implementation concerns the number of
fitting terms required, within a given range of as-
trophysical and instrumental parameter variation,
and of model related location error.

In Sec. 6 we evaluate the sensitivity of the pro-
posed fit model to the natural variation of spectral
distribution among stars. In particular, the loca-
tion error associated to a given spectral mismatch
between the signal template (i.e. the fit result) and
new data sets is evaluated. The investigation on
fit tolerance to the knowledge of the source effec-
tive temperature is relevant to practical implemen-
tation within the data reduction system, since it
defines the number of different templates required
over the whole spectral range to preserve an ade-
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quate precision level.

Finally, in Sec. 7, we discuss the potential im-
pact of our results on calibration and implemen-
tation aspects, and then we draw our conclusions.

2. Astrometric error of the fit

The detected signal, sampled on K pixels cen-
tered on positions xk, k = 1, . . . ,K, is a function
f (xk − τT ), located at the “true” photo-center po-
sition τT , which is the input to the fitting process.

It should be noted that our “signal” is not coin-
cident with the readout from the elementary expo-
sure of a single star, even a bright one, but rather
the synthetic representation of the instrument re-
sponse, for a given set of conditions, at very high
resolution, as in Guillard et al. ( 2010). It may be
derived from the measured data e.g. by combina-
tion of a large set of elementary exposures on a
given CCD, in order to achieve a very high signal
to noise ratio (SNR) and oversample the instru-
ment response, taking advantage of the natural
variation in the relative phase between individual
stars and the detector. In practice, the signal used
for the fit must have an equivalent noise much be-
low that of any individual exposure (at the µas
level or below) to minimize the effects of model
errors in its subsequent usage. Residual elemen-
tary exposure errors, e.g. from individual back-
ground subtraction, are supposed to be reduced
by averaging over the whole data set. Also, imple-
mentation will require suitable composition rules
e.g. for magnitude dependent weighting and con-
sistency check.

Let us assume that f̃ (xk), i.e. the output of the
fitting process, is an approximation of the input
function f , with a residual labeled hereafter as the
fit discrepancy h (xk):

f (xk − τT ) = f̃ (xk) + h (xk) . (1)

It may be noted that a general purpose fit is usu-
ally aimed at minimizing the discrepancy h (xk),
e.g. in the least square sense, whereas our goal
is to minimize the astrometric error δτ experi-
enced when using the fit result f̃ (xk) as a tem-
plate within the location algorithm on new sets
of measurements distributed according to f . Al-
though obviously the two requirements coincide in
the limit of small errors (δτ → 0 ⇔ h (xk) → 0),

the fit with a limited number of terms may have
different performance according to either criteria.

In this paper, we address the issue of signal fit-
ting with the focus on minimization of the system-
atic astrometric error or bias.

The Maximum Likelihood photo-center es-
timate builds on the approach described in
Gai et al. (1998), recalled below. The fit discrep-
ancy h can be represented in that framework as
a measurement error, introducing a photo-center
location error when the optimal location estimate
τE is searched for by minimization of a weighted
square error functional derived from the classical
definition of χ2:

χ2 =
∑

k

[

fk − f̃k

]2

σ2
k

. (2)

The variable dependence here is implicit to sim-
plify the notation: f (xk) = fk, and so on. The
photo-center location estimate is thus independent
from the Center Of Gravity (COG) algorithm,
which is known to be less than optimal and po-
tentially affected by systematic error, i.e. an as-
trometric bias (Lindegren 1978).

The variance σ2 (xk) associated to the signal
distribution f is assumed to be known. It will in
general account for several noise sources (signal
and background photon statistics, readout noise,
dark current, and so on), with the best case lim-
ited at the very least by shot noise: σ2 (xk) ≥
f (xk) ≥ 0 (with all quantities scaled to photons
for simplicity).

The location process must find the stationary

points of Eq. 2, i.e. solve the equation dχ2

dτ
= 0,

which may be expanded at first order to

∑

k

[

fk − f̃k

]

f ′

k

σ2
k

= 0 , (3)

assuming small errors, in particular the astromet-
ric error δτ = τE − τT , so that e.g. f (xk − τE) ≃
f (xk − τT ).

Therefore, taking advantage of the Taylor’s ex-
pansion of the signal model, i.e. that

f (xk − τE) ≃ f (xk − τT )−δτ ·f
′ (xk − τT ) , (4)
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we get the location estimate error as

τE − τT = −

∑

k h (xk) f
′ (xk) /σ

2
k

∑

k [f ′ (xk)]
2
/σ2

k

. (5)

The location error introduced by the fit may be
unbiased, i.e. with zero expected value, under the
assumption that the fit discrepancy is itself char-
acterized by zero mean. In general, the correlation
between pixels may not be zero, so that the vari-
ance estimation of the location error is not trivial.
However, it may be remarked that, through Eq. 5,
it is possible not only to assess the fit quality by
providing an estimate of the astrometric bias in-
troduced by the fitting process, correct from the
standpoint of the maximum likelihood approach,
but in principle to correct such error as well.

It may be noted that the χ2 formulation,
through Eq. 2, is strictly related to the individual
signal distribution.

3. Function basis

The parent function proposed for generation of
the monochromatic basis functions is the squared
sinc function, depending on an adimensional ar-
gument related to the focal plane coordinate x, the
wavelength λ and the characteristic width Lξ, as

ψm
0 (x) = sinc2ρ =

[

sin ρ

ρ

]2

, ρ = π
xLξ

λF
. (6)

This corresponds to the signal generated by a rect-
angular infinite slit having width Lξ, in the ideal
(aberration free) case of a telescope with effec-
tive focal length F . The contribution of finite
pixel size, nominal modulation transfer function
(MTF) and CCD operation in Time-Delay Inte-
gration (TDI) mode are also included. Higher or-
der functions are generated by suitable combina-
tions of the parent function and its derivatives

ψm
n (x) =

d

dx
ψm
n−1 (x) =

(

d

dx

)n

ψm
0 (x) , (7)

according to a construction rule ensuring ortho-
normality by integration over the domain, i.e.

〈

ψm
p ψm

q

〉

=
∑

k

ψm
p (xk) ψ

m
q (xk) = δpq, (8)

using the Kronecker’s δ notation.

The polychromatic functions are built accord-
ing to linear superposition of the monochromatic
functions, weighted by the normalized detected
source spectrum S (which includes the system re-
sponse), here discretized and indexed by l:

ψn (x) =
∑

l

Sl ψ
m
n (x; l) . (9)

Orthogonality is inherited from Eq. 8, due to in-
dependence of spatial and spectral variables.

The function basis, similar to that proposed in
Gai et al. (2010), is redefined here for minimiza-
tion of the astrometric error from Sec. 2, so that
the fit expansion up to a given term provides a
good estimate of the input signal position.

Also, a common polychromatic basis is used
throughout our investigation. With respect to our
previous work, this is more practical for applica-
tion to the real data reduction, since the basis
functions do not need to be generated anew for dif-
ferent spectral type stars. The model will thus be
dependent on star colors only through the fit coef-
ficient variation. The polychromatic basis is built
for a near solar type source with blackbody spec-
trum corresponding to temperature T = 6, 000K,
which seems to be a reasonable practical trade-off
from the results of our previous paper.

3.1. Maximum likelihood fit approach

The fit approach is now cast in a framework
similar to that of Sec. 2.

The detected signal f (xk) (the photo-center τ
is not explicited in the next few steps) is approxi-
mated by the fit, represented by the expansion to
the order n using the basis functions ψm (xk):

f̃n (xk) =

n
∑

m=0

cm ψm (xk) . (10)

The χ2 in Eq. 2, taking advantage of Eq. 1, is then
a function of the fit error to the same order:

χ2
n =

∑

k

h2n (xk)

σ2
k

. (11)

Taking the signal expansion from order n to order
n+ 1, the χ2 becomes

χ2
n+1 = χ2

n + c2n+1

∑

k

ψ2
n+1

σ2
k

− 2cn+1

∑

k

f ψn+1

σ2
k

.

(12)
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An ortho-normalization relationship can be im-
posed on the basis functions, introducing a modi-
fication to Eq. 8 such that

〈ψm ψn〉 =
∑

k

ψm (xk)ψn (xk)

σ2
k

= δmn . (13)

This formulation of scalar product between func-
tions over the domain implicitly gets rid of the
sum in the mid term of Eq. 12 (right-hand side).

Then, we define the next expansion coefficient
by requiring minimization of the χ2:

∂χ2

∂cn+1
= 0 , (14)

so that we get

cn+1 =
∑

k

f (xk)ψn+1 (xk)

σ2
k

. (15)

This expression corresponds to the projection of
our input signal f over the basis component ψn+1

using the definition of scalar product from Eq. 13;
it simplifies the above expression for χ2 to

χ2
n+1 = χ2

n − c2n+1 , (16)

showing that each additional term effectively con-
tributes to reduction of the fit discrepancy in the
maximum likelihood sense. Also, the contribution
of each term is limited, since the initial χ2 is also
a limited quantity, thus ensuring the convergence
of the fit process.

However, the above formulation must be some-
what mitigated in order to be consistent with dif-
ferent signal instances, e.g. to be able to use a
common basis to describe the different signal pro-
files, e.g. f (r) and f (s), from focal plane positions
r and s associated to different instrumental re-
sponse. The ortho-normalization relationship in
Eq. 13 may not be expressed consistently for both
signals, since in general σ(r) 6= σ(s).

Additionally, such formulation is apparently
subject to degeneration in the photon limited (PL)
case, where the variance equals the signal value in
photon units: σ2

k(PL) = f (xk). In particular,
the denominator and numerator in the coefficient
computation (Eq. 15) or similar expressions would
cancel out. The degeneration is solved in practice
introducing an additional noise term σ2

Noise, tak-
ing into account at least the readout noise and the

shot noise related to the current background, i.e.

σ2
k = f (xk) + σ2

Noise . (17)

However, this variance definition still depends on
the individual exposure, i.e. on star magnitude,
spectral type, background contribution, and cur-
rent instrumental response.

Our goal is to define an algorithm for signal fit-
ting suitable to be applied in a straightforward
way to a reasonably large set of input signals
{

f (t) (xk)
}

, affected by different perturbations (t).

3.2. Choice of the weight function

The definition related to Eq. 13, although opti-
mal in the maximum likelihood sense with respect
to a specific signal instance, associated to variance
σ2
k, is not suited to match at the same time differ-

ent cases within an ensemble of realistic signals,
i.e. perturbations to the ideal system. The op-
timal basis for different signal instances are thus
different, due to the dependence on the variance,
which is impractical for implementation.

In order to define a convenient common ba-
sis for a set of realistic signal instances, a com-
mon weight distribution w is adopted to replace
the variance σ from Eq. 11 onward, mitigating
the stringent requirement related to the maximum
likelihood approach, and accepting some degrada-
tion with respect to the individual optimal fit. The
goal is to achieve a good overall fit performance
with a simple common model.

In practice, we use an expression depending on
a common reference function F and an additive
term p, corresponding to a pedestal applied to the
signal, both chosen according to performance on
the selected data set:

wk =
F (xk) + p

1 + p
. (18)

For convenience, F is normalized to unity peak.

It may be noted that the addition of a pedestal
to the noiseless signal helps in balancing the rel-
ative contribution between the central, high slope
region and the side pixels of the signal. Also, the
normalization of the weight and reference function
are of no consequence onto the astrometric error
estimate (Eq. 5), but they do affect the basis nor-
malization (Eq. 13).

5



The choice of reference function F and of
pedestal value p will be discussed in the frame-
work of the simulations below, showing how they
can be selected according to a convenient perfor-
mance trade-off for a given data set.

4. The Gaia study case

Gaia (Perryman 2005; de Bruijne 2012) is the
ESA space mission devoted to high precision as-
trometry, to be launched in 2013. It will per-
form global astrometric measurements, with a par-
allax accuracy ranging from a few micro-arcsec
(hereafter, µas) to few hundred µas on individ-
ual stars, and a few milli-arcsec (hereafter, mas)
for some asteroids, in the magnitude range be-
tween V ≃ 8mag and V ≃ 20mag. Gaia oper-
ates in scanning mode, with continuous observa-
tion along a great circle moving over the full sky.
It employs two telescopes with primary mirror size
Lξ × Lη = 1.45 × 0.5m, separated by a base an-
gle of 106◦.5, feeding a large common focal plane,
composed of a mosaic of Charge Coupled Device
(CCD) detectors operated in Time Delay Integra-
tion (TDI) mode.

The Effective Focal Length value EFL = 35m
corresponds to an optical scale s = 5”.89/mm: the
10µm detector pixel covers little less than 60mas
on the sky. The Airy diameter of a diffraction lim-
ited optical image at a wavelength λ = 600nm
is 2λEFL/Lξ ≃ 29µm ≃ 170mas, i.e. of or-
der of three pixels, or somewhat undersampled;
the measured image is also affected by the source
spectral distribution and realistic detection effects
(e.g. MTF and operation). The end-of-mission
accuracy goal, resulting from composition of the
whole set of measurements, corresponds to a loca-
tion error of the elementary exposure ranging from
a few ten µas for very bright stars to a few mas
at the faint end, i.e. from 1/1, 000 to a few 1/100
of the along scan size of the detector pixel.

The readout mode depends upon the target
brightness; binning is applied across scan (low res-
olution direction), to improve on signal to noise
ratio (SNR) and reduce the data volume, for stars
fainter than V ≃ 13mag. The output data is thus
a one-dimensional signal in the high resolution di-
rection, consistent with our problem formulation.
The signal is read out on a limited number of pix-
els (12 pixels for 13 . V . 16mag, six pixels for

fainter stars), centered on the signal peak, pro-
viding the elementary exposure data. During the
data reduction, the individual photo-centers are
computed for the whole star sample, thus gener-
ating the inputs to the global astrometric solution
(Mignard et al 2008).

The data reduction chain (Busonero et al 2010)
includes the provisions for calibration based on
self-consistency of the set of measurements, so that
the instrumental parameters are estimated as well
as astrometric and astrophysical parameters. The
Gaia design benefits from the built-in differential
measurement concept. Many stars are observed
subsequently, with a time elapse of less than two
hours, by both telescopes, over a limited region
of the focal plane, i.e. nearby areas of the same
CCDs. The field distortion contributions from ei-
ther telescope are thus added to the measurements
of each star, and may therefore be expected to av-
erage out in the repeated coverage of the whole
sky. The pixel to pixel variation of CCD param-
eters is expected to be strongly reduced by TDI
operation, thanks to averaging over each column.
In practice, field distortion and other instrumental
parameters are estimated from the measurements,
and data are corrected to provide “clean” individ-
ual photo-centers.

It is possible to take advantage of the intrinsic
different phase of many individual star observa-
tions with respect to the grid of the detector pixel
array to retrieve the information on the underlying
full resolution signal, i.e. a super-resolution PSF,
as in Puschmann (2005). Such synthetic high reso-
lution signal can then be used for a convenient de-
scription of the “true” PSF in the data reduction.
For convenience, the fit may be defined on “clean”
data sets of sources not affected by exceeding pe-
culiarity in their spatial structure, spectral distri-
bution, temporal variability, astrometric behavior,
and so on. The derived model can then be used,
with proper cautions, for all objects observed, over
the same period of time, through the same tele-
scope, on that detector region. The model may
also be retained until detection of a significant de-
parture of the instrument response, based on mon-
itoring its consistency with new data.

Our simulations assume usage of such high res-
olution signals, representing the “true” PSF, as
input to the fit in different conditions.
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5. Data sets and fit results

The goal of the simulations is to evaluate the
practicality and performance of the above concep-
tual framework by application to different sets of
realistic (i.e., not diffraction limited) signals.

The first step of verification is focused on small
perturbations, i.e. a set of signal instances af-
fected by limited degradation with respect to the
ideal case; the algorithm response can then be ex-
pected to be more easily understood. Larger per-
turbations are introduced in another data set to
sample a more realistic range of variation. Here-
after, the two sets will be labeled as SAS and LAS,
respectively for “Small” and “Large” Aberration
Set; each contains N = 10, 000 independent signal
instances

{

f (n) (xk) = f(k;n)
}

(n = 1, . . . , N).

We generate a set of perturbed images by con-
struction of the optical point spread function
(PSF), according to the diffraction integral de-
scription (Born & Wolf 1999). The signal pertur-
bations are introduced by means of independent
wavefront errors, built by generation of random
coefficients applied to Zernike polynomials of the
pupil coordinates. The monochromatic PSF is
composed with simple source spectra (blackbodies
at given temperature) and detection effects (nom-
inal pixel size, MTF and TDI operation; across
scan binning) to build the effective detected sig-
nal, as in Gai et al. (1998). Such perturbations
may represent at first order the effects of other
disturbances, e.g. the charge transfer delay in a
radiation damaged CCD, also modifying the signal
profile.
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Fig. 1.— Distribution of RMS wavefront error for
the two simulation data sets.

The spatial resolution of the simulated signals
on the focal plane is 1µm along scan and 3µm
across scan, i.e. respectively the high and low res-
olution coordinates of the instrument. The signal
is simulated and analyzed over a range of ±65µm,
corresponding to 12 ± 0.5 pixels. The pupil sam-
pling is 1 cm in both directions. The simulation is
implemented in the Matlab environment. Some
key characteristics of the perturbation distribu-
tion associated to each data set are summarized
in Fig. 1, which shows the RMS WFE histogram
for SAS (dashed line) and LAS (solid line), and
in Table 1, reporting the RMS WFE mean and
standard deviation of both SAS and LAS. The
instrument response quality of SAS data corre-
sponds to a degradation of ∼ λ/20 and rarely
larger than λ/10, as expressed in terms of an effec-
tive wavelength∼ 700nm, typical for intermediate
type stars observed by Gaia. The LAS data are
more evenly spread up to a degradation of ∼ λ/4,
roughly corresponding to Rayleigh’s criterion for
acceptable images.

Each signal instance is generated according to
a different random blackbody temperature be-
tween 3, 000K and respectively 25, 000K (SAS)
and 30, 000K (LAS). The distributions, shown in
Fig. 2, do not represent any special stellar pop-
ulation, but are just defined in order to span a
reasonable range of spectral types. The spectral
resolution is 20nm.

In order to proceed to evaluation of the fit per-
formance on either data set, it is necessary to
choose the reference function F defined in Sec. 3.2.
The fit algorithm described in Sec. 3.1 is then ap-
plied to each signal instance. The fit quality is
evaluated in terms of RMS signal discrepancy be-
tween input signal and fit, and of mean and RMS
astrometric error.
The astrometric error is evaluated for each signal
instance according to Eq. 5 in the photon limit.

The former aspect concerns the fit quality in

Table 1: Mean and standard deviation of the RMS
wavefront error over each simulation data set.

RMS WFE Mean [nm] St. dev. [nm]
SAS 36.12 15.78
LAS 77.72 39.04
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the usual sense, whereas the latter two focus on
the astrometric quality. The statistics over the
data set is discussed as a function of the number
of fitting terms and of the pedestal value p, ranging
from p = 0.001 (which corresponds to attributing
negligible weight to the side pixels) to p = 1 (signal
central lobe weighted twice as much as the wings).

5.1. Fit of SAS

The selected reference function F for the vari-
ance is the polychromatic parent function from
Eqs. 6 and 9, geometrically scaled by ∼ 6% in
order to match approximately the typical RMS
width of the signal sample.

The RMS fit discrepancy as a function of the
number of fitting terms is shown in Fig. 3, in
terms of average (line) and standard deviation (er-
ror bar) over the data set for each pedestal value.

The average and RMS astrometric errors as a
function of the number of fitting terms are shown
respectively in Fig. 4 and Fig. 5.

The fit performance improves in general with
increasing number of fitting terms, but the
pedestal has opposite effects on photometric and
astrometric errors. Increasing pedestal values are
associated to increasing photometric errors and
decreasing astrometric errors.

The RMS fit discrepancy is smaller for lower
pedestal values, and/or for a larger number of fit-
ting terms (which allow for better fitting the sig-
nal wings). Very low pedestal values appear to be
detrimental to the astrometric performance, since
both average and RMS astrometric errors exhibit
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Fig. 2.— Distribution of source temperature for
the two simulation data sets.
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Fig. 3.— Fit RMS discrepancy for SAS; average
values (lines) and standard deviation (error bar)
over the data set.
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Fig. 4.— Average astrometric error over the SAS
data, with pedestal values between 0.01 and one.
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Fig. 5.— RMS astrometric error over the SAS
data, with pedestal values between 0.01 and one.
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significant fluctuations as a function of the num-
ber of fitting terms; larger pedestal values induce
more monotonic behaviors. The sub-µas varia-
tions for eight terms or more may be related to
model limitations.

5.2. Fit of LAS with SAS basis

The selected reference function F for the LAS
weight is based on the average f̄ of the signal sam-
ple {f(k;n)},

f(xk) =
1

N

∑

n

f(k;n) , (19)

using in particular its symmetric component to
avoid introducing bias terms through the variance
definition:

F (x) =
1

2

[

f (x) + f (−x)
]

. (20)

The selected basis function is the same as for SAS,
i.e. derived by ortho-normalization of the non
aberrated polychromatic signal and its derivatives,
according to Sec. 3.

The RMS fit discrepancy as a function of the
number of fitting terms is shown in Fig. 6, again
in terms of average (line) and standard deviation
(error bar) for each pedestal value.

The average and RMS astrometric errors as a
function of the number of fitting terms are shown
respectively in Fig. 7 and Fig. 8.

As for the SAS case in Sec. 5.1, the fit perfor-
mance has a tendency at improving with increas-
ing number of fitting terms, with opposite effects
of the pedestal on photometric and astrometric er-
rors. Increasing pedestal values are associated to
increasing photometric errors and decreasing as-
trometric errors. However, both photometric and
astrometric errors are significantly larger than in
the SAS case, because the larger perturbations re-
quire a larger number of fitting terms to account
for the signal profile variations. Although it is pos-
sible to use the previous simple model for the cur-
rent case of large signal perturbations, the need for
many expansion terms to achieve µas level fitting
precision appears to be inconvenient for practical
implementation.

5.3. Basis tuning for LAS

The selected reference function is the same as
above, but the basis functions are modified to im-
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Fig. 6.— Fit RMS discrepancy for LAS, with SAS
basis; average (lines) and standard deviation (er-
ror bar) over the data.
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Fig. 7.— Average astrometric error over the LAS
data, using the SAS basis.
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Fig. 8.— RMS astrometric error over the LAS
data, using the SAS basis.
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Fig. 9.— Fit RMS discrepancy for LAS, with the
modified basis; average (lines) and standard devi-
ation (error bar) over the data.
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Fig. 10.— Average astrometric error over the LAS
data, using the modified basis.
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Fig. 11.— RMS astrometric error over the LAS
data, using the modified basis.

prove their similarity to typical LAS data. In par-
ticular, the parent function becomes the symmet-
ric average signal used above as reference function
F for the variance, and the subsequent basis terms
are obtained by derivation and ortho-normality ac-
cording to the prescriptions in Sec. 3. For conve-
nience, the new parent function may be expanded
in terms of the SAS basis.

The RMS fit discrepancy as a function of the
number of fitting terms is shown in Fig. 9, again
in terms of average (line) and standard deviation
(error bar) for each pedestal value.

The average and RMS astrometric errors as a
function of the number of fitting terms are shown
respectively in Fig. 10 and Fig. 11.

The overall trend with number of fitting terms
and pedestal value is similar to the previous cases,
but the improvement on fit quality achieved by
tuning the basis to the data set is significant. The
photometric error of the fit drops to values compa-
rable with the SAS case, i.e. RMS fit discrepancy
below 0.5% with few fitting terms and intermedi-
ate pedestal values. In the same conditions, the
astrometric error drops to < 2µas values.

Modification of the basis according to the cur-
rent data set characteristics appears therefore to
be convenient with respect to the achievable per-
formance, and easily implemented for consistency
with the current data.

The two parent functions, i.e. the aberration
free polychromatic signal (used for SAS) and the
symmetric average signal (used for LAS through-
out this section), are shown in Fig. 12, respectively
with solid and dashed lines; it may be noted that
the change in the function profile is small with re-
spect to the peak value, and it may be described
as a low intensity “halo” around the signal cen-
tral peak, e.g. related to an average symmetric
perturbation.

6. Spectral sensitivity

The tolerance to the knowledge of the source
effective temperature suggests that a limited num-
ber of different templates over the whole spec-
tral range may be sufficient, thus alleviating the
requirements of practical implementation within
the data reduction system. The fit model per-
formance as a function of the source temper-
ature is a relevant issue, due to the potential
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Fig. 12.— Parent functions for SAS (solid line)
and LAS (dashed line)
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Fig. 13.— Histogram of the fit error distribution
for LAS data, using the modified basis, above and
below the median source temperature.

risk of chromatic errors (Gai & Cancelliere 2007;
Busonero et al. 2006). A preliminary indication
on the model sensitivity can be deduced from the
results of the previous simulation, e.g. splitting
the astrometric error (for a given fitting choice)
according to the instance temperature. We select
a temperature threshold TT = 8, 800K, close to
the median value of the LAS temperature distri-
bution (solid line in Fig. 2), in order to have a
comparable number of instances below and above
such value.

We select six terms for the fit, with a pedestal
value p = 0.5. The results are shown in Fig. 13;
the two histograms exhibit negligible difference.
The fit errors seem thus to be mostly independent
from the source temperature.

In order to check the fit sensitivity to source

temperature in more detail, similarly to the case
of Sec. 2.2 of our previous paper, we simulate and
analyze the data of a subset of 500 perturbations,
over the full range of source temperature. Using
20 temperature values, with uniform logarithmic
spacing between 3,000 K and 30,000 K, we get a set
of 10,000 signal instances, as in Sec. 5, processed in
a few hours by our hardware and software system.

The signal perturbation is considered through-
out this section as purely optical, and therefore
completely described by diffraction; therefore, the
variations with the source temperature may be dif-
ferent in practical cases for other kinds of distur-
bance. In case of perturbations with negligible de-
pendence on the photon wavelength, the current
results may thus represent a worst case.

We retain six terms for expansion of the signal
fit. The RMS fit discrepancy is practically inde-
pendent from source temperature. The astromet-
ric error as a function of the source temperature
for the first four signal instances of LAS are shown
in Fig. 14. The slope variation is typically larger in
the effective temperature range associated to near
solar and later spectral types, whereas for higher
temperatures the curves are smoother.

The collective astrometric error is shown in
Fig. 15 vs. source temperature, respectively as
mean (solid line) and RMS (dashed line) of the
500 perturbed cases. The mean is basically con-
stant, whereas the RMS features a shallow reduc-
tion for near solar type cases, possibly due to the
temperature match between the source and the ba-
sis (Sec. 3). Both mean and RMS errors are close
to the 1µas level, i.e. significantly smaller than
the corresponding results of our previous paper.
However, by comparison with Fig. 14, the individ-
ual variation appears to be significant, suggesting
that instrument response is relevant on the µas
range, requiring calibration and correction, with
moderate requirements on knowledge of the source
temperature.

To verify the latter consideration, we simulate
and analyze the data of the whole LAS data, upon
application of a small variation to the source tem-
perature, respectively ±1% and ±5%, similarly to
the case of Sec. 2.3 of our previous paper.

This analysis may be relevant to two practical
situations, related but not coincident. The for-
mer occurs during system calibration, in which
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the source temperature for the first four LAS in-
stances.
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Fig. 15.— Mean (solid line) and RMS (dashed
line) astrometric error vs. source temperature, av-
eraged over the first 500 LAS instances.
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Fig. 16.— Astrometric error on LAS, nominal and
with ±1% source temperature error.

the instrument response is being characterized, us-
ing the measurements on a set of different stars
with similar, but not identical, detected spectrum.
The latter concerns data reduction, in which the
instrument response representation (encoded into
the signal model represented by the fit) is used on
all stars within the selected range of spectral types.
The simulated model sensitivity can thus be used
to select convenient spectral ranges for both com-
putation and application of the signal model.

The spectral distribution discrepancy between
the reference signal (associated to the fit on nom-
inal LAS data, limited to six terms) and the data
generated with a given source temperature error
induces an astrometric error, evaluated according
to Eq. 5. As above, the RMS fit discrepancy vari-
ation is marginal. In Fig. 16 the distribution of
astrometric error associated to the nominal LAS
data and ±1% source temperature error is shown.
Similarly, the astrometric error distributions re-
lated to ±5% source temperature error are shown
in Fig. 17. The distributions exhibit a small sys-
tematic shift with respect to the nominal case,
with the sign correlated to the temperature error.

The mean and standard deviation of the astro-
metric error associated to the source temperature
error is summarized in Table 2. The standard de-
viation over the sample ranges between 2.41µas
and 2.90µas, close to the dispersion of nomi-
nal data (2.46µas); besides, the average value
of astrometric error appears to be displaced by
∼ 0.3µas per each 1% variation in the source tem-
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Fig. 17.— Astrometric error on LAS, nominal and
with ±5% source temperature error.
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Table 2: Mean and standard deviation of astro-
metric error associated to nominal LAS data and
with ±1% and ±5% source temperature error

Astrometric error Mean [µas] St. dev. [µas]
Nominal 3.50 2.46
−1% 3.20 2.41
+1% 3.82 2.53
−5% 1.93 2.50
+5% 5.00 2.90

perature.

7. Discussion

The estimate, from Eq. 5, of the systematic as-
trometric error associated to the fit can be used to
advantage in the development of a data reduction
pipeline, and above all in providing a straightfor-
ward method to assess its behavior. The crucial
point is that the bias introduced by the fit can be
estimated in a straightforward way, either for in-
troducing corrections in the data reduction, or to
support in-depth analysis of the error distribution.

It is not necessary to impose extremely high
precision to the fit, e.g. using a large number of
terms for expansion of the set of signals, since the
error introduced to a given order can be easily
assessed, and potentially used to correct the in-
termediate results. The trade-off can be set by
the convenience of retaining limited errors over the
whole focal plane, and for a suitably large range
of source spectral variation, in order to keep the
corrections small.

The bias estimate can be applied to any fitting
method, as it is derived from a general maximum
likelihood approach. Its application to the basis
proposed herein for signal expansion is a special
case, in this sense. The performance is good, re-
quiring order of six terms to reduce the RMS error
to the µas range over a large set of realistic signals.

The signal profile is potentially different for
each detector of a large focal plane, because of
the variation on both optical image and device re-
sponse. In the case of Gaia, it will be different
for the two telescopes, at the µas precision level.
The signal fit must therefore be defined for at least
7×9×2 = 126 different profile instances, as many

as the number of CCDs in the Gaia astrometric
focal plane. A feeling of the implications on cal-
ibration and/or monitoring can be achieved in a
straightforward way.

The astrometric precision of an elementary ex-
posure of an intermediate magnitude and spectral
type star is ∼ 300µas. Therefore, in order to as-
sess the instrument response at the 1µas level,
i.e. to estimate the best fitting signal profile with
such precision, we need to reduce the random er-
ror by a factor ∼ 300, which requires averaging
order of 3002 ≃ 105 measurements. Any astromet-
ric CCD, with across scan size ∼ 5′ and scanning
rate ∼ 60”/s, covers one square degree in about
12 minutes. Thus, with an average star density
of ∼ 1, 000 stars per square degree, the required
number of objects is collected in about 20 hours.

Actual application of the concept requires more
detailed analysis, taking into account the real per-
formance and stellar distribution. However, this
back-of-the-envelope computation suggests that
the science data may indeed be able to provide a
self-calibration of the astrometric response of Gaia
at the µas level over a one day time scale. Sim-
ilarly, the response variation across a CCD can
be evaluated with comparable precision on a time
scale of a few days.

The spectral sensitivity is comparably small,
since a ±5% error on the knowledge of the effec-
tive source temperature involves an astrometric er-
ror of order of 1µas, negligible at the elementary
exposure level for most stars, and partially aver-
aged in the overall data set due to measurement
over different focal plane positions of both tele-
scopes. A set of ∼ 20 templates, each computed
for a different temperature mean value for a given
focal plane position, can therefore provide an ac-
ceptable model for the spectral variation of the
detected signal. This takes the number of fit in-
stances required to describe the whole astrometric
focal plane over the spectral range to ∼ 2, 500. Us-
ing a six term expansion, this results in ∼ 15, 000
parameters.

The instrument response variation over the field
and with the source spectral type may represent a
natural data set (with ∼ 2, 500 instances) for def-
inition of the best basis at a given time. However,
the natural evolution of the instrument response
during its life will introduce a corresponding vari-
ation of the optimal basis. At least two different
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strategies may be implemented. On one side, the
signal basis may be updated from time to time,
using within each period the best set of functions
describing the current performance. On the other
hand, the full set of measurements can be consid-
ered as a unique statistical sample to define the
overall best common basis. The latter approach
has the benefit of a common signal representation
for the whole set of data, potentially at the ex-
pense of some increase of the astrometric noise.
The impact on overall systematic errors (e.g. re-
gional astrometric errors for the Gaia catalog) may
be evaluated by further large scale simulations.

8. Conclusions

We propose an estimate of the fit quality of
one-dimensional signals for astrometry, based on
a maximum likelihood approach. Building on this
framework, and on a simple definition of the func-
tion basis, we derive a fitting model easily tailored
to a given set of signals. Its performance is eval-
uated by simulation over a set of realistic signal
instances, affected by significant perturbation lev-
els. The fit quality is analyzed as a function of the
number of terms used for signal expansion, taking
into account not only the RMS discrepancy with
respect to the input signal, but above all the as-
trometric error associated to the fit.

The maximum likelihood fit provides micro-
arcsec astrometric errors, and RMS fit discrepancy
of a few 0.1%, using six terms. The basis functions
can be conveniently tuned to a selected set of sig-
nal profiles, e.g. to match the actual instrument
response and/or its evolution. The sensitivity to
a priori knowledge of the source spectral distribu-
tion is low, allowing usage of a limited number of
templates.

Some implications on monitoring and calibra-
tion of an astrometric instrument using the pro-
posed signal expansion method are discussed, with
reference to the typical parameters of Gaia.

The activity is partially supported by the con-
tract ASI I/058/ 10/0. The authors understanding
of the subject and its implications benefits from
discussions with M. Shao and with M. Lattanzi.
The paper clarity significantly improved thanks to
the amendments suggested by the referee.
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