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Abstract 

 

Here we show that fluorescent compounds that could be classified as “M-like” (marine-like) fulvic 

acids are formed upon phototransformation of phenol by a triplet sensitiser (anthraquinone-2-

sulphonate, AQ2S). The relevant process most likely involves phenol oxidation to phenoxyl radical 

by triplet AQ2S, followed by dimerisation of phenoxyl radicals into phenoxyphenols and 

dihydroxybiphenyls. It might be the first step of an oligomerization process that bears resemblance 

with the expected formation pathways of humic-like substances (HULIS) in the atmosphere. Such a 

process could account for the formation in surface waters of compounds having similar 

fluorescence properties as “M-like” fulvic acids. Presently it is thought that such species are formed 

upon photo-fragmentation of larger humic and fulvic acids (“top-down” pathway), and we propose 

that an opposite, “bottom-up” pathway could also be operational. 

 

Keywords: Surface water; phototransformation; HULIS; oligomerization; chromophoric 

compounds. 
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1. Introduction 

 

The family of humic substances, intended in its most general meaning, gathers a wide class of very 

important compounds that can be found in soil, surface waters and the atmosphere (Coble, 1996 ; 

Havers et al., 1998 ; Richard et al. 2011). Despite many similarities, there are also important 

differences between humic substances that are present in different environmental compartments. 

For instance, the diversity between surface-water humic and fulvic acids and atmospheric HULIS 

(HUmic-LIke Substances) is at least as important as their similarity (Piccolo, 2001; Graber and 

Rudich, 2006).  

Humic and fulvic acids as well as HULIS can be formed by a variety of processes, which 

include microbial processing of biological materials (e.g. plant-derived lignin) as well as 

photochemical transformation of dissolved organic compounds (Mostofa et al., 2007; Rezende et 

al., 2010). In particular, several papers advance the hypothesis that atmospheric HULIS might be 

formed upon photoinduced oligomerization of smaller molecules (see e.g. Net et al., 2010, and Liu 

et al., 2012). 

Fluorescence spectra, and in particular the Excitation-Emission Matrix (EEM) technique are 

extremely useful to characterise many important water components, including humic substances 

(Baker, 2001). EEM can also be used to monitor the modifications that these compounds undergo, 

e.g. upon microbial and/or photochemical processing (Leenher and Croue, 2003; Mostofa et al., 

2011). In this communication we report, for the first time to our knowledge, on the formation of 

fulvic-like substances upon phenol transformation photoinduced by the triplet sensitiser 

anthraquinone-2-sulphonate (AQ2S). The latter was used as model compound for the reactivity of 

organic matter chromophores in the aqueous solution. Such a process provides a new, potentially 

important pathway for the photoinduced formation of fulvic substances in surface waters, which 

would have some interesting similarities with the generation of atmospheric HULIS. 

 

2. Experimental 

 

2.1. Reagents and materials. Antraquinone-2-sulphonic acid sodium salt (AQ2S, purity grade 97%) 

and phenol (> 99%) were purchased from Sigma Aldrich. All reagents were used as received, 

without further purification. Water used was of Milli-Q quality. 
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2.2. Irradiation experiments. The photochemical experiments were carried out on 100 mL aqueous 

solution (initial AQ2S concentration 0.1 mM), placed in a Pyrex tube reactor. At fixed time 

intervals during irradiation, 5 mL sample aliquots were taken and used to characterise the 

fluorescence contours. The irradiation device consisted of six UVA polychromatic lamps (λmax = 

365 nm, Philips TL15W) fitted in a cylindrical metal enclosure. The lamps were arranged radially 

with respect to the reactor and the incident photon flux in solution (between 340 and 400 nm) was 

2.40×10
-6

 Einstein L
−1

 s
−1

, measured by Pyridine PNA actinometry (Dullin et al., 1982). Figure 1 

shows the emission spectrum of the lamps, measured with an Ocean Optics SD 2000 CCD 

spectrophotometer (calibrated by using a DH-2000-CAL Deuterium Tungsten Halogen reference 

lamp), and the absorption spectra of AQ2S and phenol (molar absorption coefficient, ε). The latter 

were taken with a Varian Cary 3 UV-Vis spectrophotometer, using quartz cuvettes of 1.00 cm 

optical path length. The same instrument was used to measure absorption spectra of irradiated 

solutions. 

 

2.3. Fluorescence measures. A Varian Cary Eclipse fluorescence spectrophotometer was used, 

adopting a 5 nm bandpass on both excitation and emission. The fluorescence excitation-emission 

matrix (EEM) was obtained at 5 nm intervals, for excitation wavelengths from 200 to 500 nm and 

emission ones from 220 to 600 nm. Identification of fluorescent constituents in water samples was 

performed on the basis of literature data (Parlanti et al., 2000), using the main fluorescence contours 

to identify the relevant peaks. 

 

2.4. Laser flash photolysis measures. The laser flash photolysis (LFP) system has been described in 

previous works (e.g. Maddigapu et al., 2010). The transient absorption experiments were performed 

by using the third harmonic (λ = 355 nm) of a Quanta Ray Nd:YAG laser system, operating with an 

output of 60 mJ per pulse. Transient absorption spectra were monitored by means of time-resolved 

absorption spectroscopy, using a 100 W xenon arc lamp as the light source. The samples were 

pumped through the cell with a peristaltic pump, replenishing the cell after the required laser pulses. 

The transient absorbance at each pre-selected wavelength was monitored by a detection system 

consisting of a pulsed xenon lamp (150 W), monochromator, and a photomultiplier (1P28). Stock 

solutions of AQ2S and phenol were prepared in Milli-Q water and an appropriate volume was 

mixed just before each experiment, to obtain the desired concentration of both species.  
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3. Results and discussion 

 

Figure 2 reports the EEM spectra of: 2A) 0.1 mM AQ2S as prepared; 2B) 0.1 mM phenol as 

prepared; 2C) 0.1 mM AQ2S after 8 h irradiation; 2D) 0.1 mM AQ2S + 0.1 mM phenol after 8 h 

irradiation. AQ2S alone shows no fluorescence, while phenol shows its typical fluorescence peaks 

at excitation/emission wavelengths Ex/Em = 200-230 nm/ 280-330 nm and 250-280 nm/ 280-330 

nm (Bosco et al;, 2006). The peaks at Em ∼ 580 nm represent second harmonics of phenol 

fluorescence emission and are a mere instrumental effect. Irradiation of phenol alone did not modify 

its EEM spectrum, coherently with the fact that this compound does not absorb radiation above 300 

nm. Therefore, phenol would not undergo direct photolysis under the adopted experimental 

conditions. 

When AQ2S was irradiated alone (2C), three weak to very weak signals or groups of signals 

appeared at Ex/Em = 200-240/400-450 nm, 280-350/400-450 nm and 200-500nm/540-600 nm. 

They are most likely due to AQ2S phototransformation intermediates, possibly the 

hydroxyderivatives. Indeed, the evolution of AQ2S triplet state upon reaction with water produces 

transient adducts with water (where water is attached to either the aromatic ring or an oxygen 

atom), which either yield back ground-state AQ2S, or evolve into AQ2S-OH isomers (Maurino et 

al., 2008; Maddigapu et al., 2010; Bedini et al., in press). To support this, we observed the 

formation of a broad absorption band in the 350-550 nm range (that is, right in the range of EEM 

excitation wavelengths), which is fully compatible with the occurrence of α and β-hydroxy-AQ2S 

(Loeff et al., 1983; see also Figure SM1). 

Irradiation of 0.1 mM AQ2S + 0.1 mM phenol gave quite different results (2D). In addition to 

the fluorescence of AQ2S intermediates and the residual one of phenol (after 8 h irradiation, phenol 

was present at about 10% of its initial concentration), a new strong signal appeared with a 

maximum at Ex/Em = 250-300/330-400 nm. Such a signal could be compatible with previously 

reported data attributed to marine-like (“M-like”) fulvic acids (Parlanti et al., 2000), which show 

similar excitation maximum range, but emission maximum shifted at 380-420 nm.  

Interestingly, compounds that show fluorescence in this region are formed upon irradiation of 

terrestrial fulvic acids (C-like), the photodegradation/photobleaching of which produces a blue shift 

in both the excitation and emission wavelengths (Mostofa et al., 2007). The blue shift might be 

caused by a photoinduced decrease of molecular weight and/or aromaticity degree of fulvic acids 

upon irradiation.  

In the present case, the observed peak is red-shifted (at least as far as the emission wavelength is 

concerned) compared to that of phenol. Such an effect could likely be ascribed to an increase of the 
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molecular weight of the transformation intermediates compared to the starting compound (Mostofa 

et al., 2011). This is a reasonable hypothesis, considering that phenol dimers (dihydroxybiphenyls 

and phenoxyphenols) have been detected as intermediates of AQ2S-sensitised phenol 

transformation (Maurino et al., 2008). Such compounds may be formed upon dimerization of the 

phenoxy radical (Neta and Grodkowski, 2005), and Figure 3 provides evidence for the formation of 

such a transient species upon laser irradiation of AQ2S in the presence of phenol. Indeed, the 

difference of transient spectra obtained after excitation of AQ2S with and without phenol shows a 

transient species absorbing from 360 up to 420 nm, with λmax ~ 400 nm. It is compatible with the 

formation of phenoxyl radical (Gadosy et al., 1999). Further irradiation of phenol dimers is then 

expected to produce higher oligomers, as recently proposed by Net and coworkers (2010). Several 

papers report on the possible formation of atmospheric HULIS upon photoinduced oligomerization 

of phenolic compounds (Net et al., 2010). Here we show that a similar process would produce 

compounds that could be classified as “M-like” fulvic material on the basis of their EEM spectra. 

Considering that AQ2S is a good proxy for naturally occurring triplet sensitizers (Maddigapu et al., 

2011), the described process could be operational in natural waters under irradiation. 

 

4. Conclusions 

 

The sensitised transformation of phenol upon irradiation of AQ2S produces fluorescent material 

that can be classified as “M-like” fulvic substances. The likely formation pathway involves phenol 

oligomerization, initially started by its oxidation to the phenoxy radical. This primary process 

would then be followed by dimerisation of phenoxyl and, possibly, by similar reactions involving 

phenol dimers. 

Formation of fulvic substances showing fluorescence in the wavelength interval of interest has 

been observed upon irradiation of surface waters. The phenomenon has been attributed to 

photoinduced fragmentation of humic and fulvic substances (“top-down” pathway; Mostofa et al., 

2007). Here we show that compounds with very similar EEM spectra can be formed upon 

oligomerisation of phenolic species (“bottom-up” pathway). The two opposite pathways 

(fragmentation vs. oligomerization) are closely reflected in the trends of the relevant EEM spectra: a 

blue-shift has been observed upon photoinduced fragmentation of humic and fulvic acids, and a red 

shift is seen here in the transformation of phenol into “M-like” compounds. Because phenol 

oligomerization would obviously produce phenol-like substances, here we show that there could be 

a partial overlap between phenol-like and fulvic-like substances in environmental waters. 
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The “bottom-up” pathway described here has similarities with the formation of atmospheric 

HULIS, which takes place upon oligomerization of smaller molecules. It allows the hypothesis that 

partially similar processes could take place in surface and atmospheric waters. In surface waters, 

however, additional reactions would be operational (fragmentation of larger compounds) that might 

at least partially account for the difference in photoactivity between atmospheric and surface-water 

chromophoric organic matter. Interestingly, atmospheric chromophoric compounds are less 

photoactive than those found in surface waters (Albinet et al., 2010). Indeed, further research will 

be required to assess the relative importance of the “bottom-up” and the “top-down” pathways to 

the formation of humic and fulvic compounds in environmental waters. 
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Figure 1. Absorption spectrum (molar absorption coefficient ε(λ)) of AQ2S and Phenol in Milli-Q 

water, and emission spectrum of the six lamps (Philips TL15W) adopted for the 

irradiation experiments. 
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Figure 2. 3D fluorescence excitation-emission matrix of: as-prepared 0.1 mM AQ2S (A) and 0.1 

mM phenol (B), without irradiation; 0.1 mM AQ2S alone after 8-h irradiation (C); and 

0.1 mM AQ2S + 0.1 mM phenol after 8-h irradiation (D). The linear features correspond 

to the signal obtained when excitation equals the emission wavelength (Rayleigh 

scattering). 
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Figure 3. Absorption spectra obtained upon 355 nm excitation of 0.1 mM AQ2S, with and without 

0.1 mM phenol, at the natural pH and at ambient temperature in aqueous solution, 90 ns 

after the laser pulse.  

 

 


