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Abstract: We present a theoretical and numerical analysis of the mechanical behaviour of self-healing materials using an analytical 

model and numerical calculations both based on a Hierarchical Fibre Bundle Model, and applying them to graphene- or carbon 

nanotube-based materials. The self-healing process can be described essentially through a single parameter, i.e. the healing rate, but 

numerical simulations also highlight the influence of the location of the healing process on the overall strengthening and toughening 

of the material. The role of hierarchy is discussed, showing that full-scale hierarchical structures can in fact acquire more favourable 

properties than smaller, non-hierarchical ones through interaction with the self healing process, thus inverting the common notion in 

fracture mechanics that specimen strength increases with decreasing size. Further, the study demonstrates that the developed 

analytical and numerical tools can be useful to develop strategies for the optimization of strength and toughness of synthetic bio-

inspired materials. 
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1. Introduction 

One of the most fascinating bio-inspired properties of materials, and thus far one of the least 

investigated, is that of self-healing (SH) i.e. the property of a material to autonomically heal cracks, 

in other words to “repair itself”. This characteristic is drawn from nature where tissues like skin or 

bone are able to undergo long-term reparation after an instantaneous “trigger” or damaging event. 

Although the idea to try and replicate this behaviour in artificial materials in itself is not new, its 

first successful realization dates to 2001, with the work of White et al. 
1
, who embedded 

microcapsules containing a healing agent in a polymer composite, the cracking of which caused the 

healing agent to disperse, interact with catalysts and polymerize in the composite. This concept was 

subsequently further developed to study fatigue life extension due to SH in the same system, 

obtaining up to 90% recovery of fracture toughness 
2
. With this method, healing agent depletion 

leads to a reduction of SH in time, so that these types of materials have a limited “working life”. 

Chen and co-workers developed an organic polymeric material capable of healing by heating at 

above 120° and then recooling, with the advantage of not requiring a catalyst 
3
. All of these 

approaches are well suited to stopping mainly macroscopic cracks, i.e. catastrophic failure, but are 

scarcely effective in the case of distributed micro-cracking, as is common in fatigue experiments. 

“Vascular-based” SH systems were accordingly developed to mimic blood circulation in the skin 

healing mechanism, thus avoiding healing agent depletion and enabling repeated healing. For 

example, a three-dimensional microvascular network was employed to deliver the healing agent to 

cracks in a polymer coating 
4, 5

. This technique allows repeated healing of the same crack, and has 

also been exploited to arrest and retard fatigue cracks 
6
. Another approach to SH has been through 

so-called molecular-based systems. For example, Cordier et al. synthesized thermoreversible rubber 

that when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal 

at room temperature 
7
. Molecular-based systems have also been developed: Burnworth et al. 

demonstrated the synthesis of metallo-supramolecular polymers that heal when exposed to light 
8
, 

and Chen et al. designed multiphase supramolecular thermoplastic elastomers that combine high 



modulus and toughness with spontaneous healing capability 
9
. A comprehensive review of some of 

the most promising approaches to SH is given in 
10

.  

 Despite the great potential of the topic, relatively little has been done on the numerical 

modelization of SH. Most of the studies have concentrated on specific aspects of experiments, e.g. 

the modelization of the fracturing of the micro-capsules containing the healing agent, and 

subsequent flow of the latter. For example, Verberg et al. used a hybrid approach with a coupled 

Lattice Boltzmann Model (LBM) and a Lattice Spring Model (LSM) to simulate the motion of 

microcapsules on a substrate with an adhesive coating under the effect of an imposed flow 
11

. Maiti 

et al. studied the behaviour of SH polymers applying coarse grained molecular dynamics on the 

atomistic scale in order to compute necessary parameters (e.g. local elastic modulus, reaction rates 

and cure kinetics) for the continuum macroscopic scale model. Balazs and co-workers developed a 

hybrid computational approach using LSM and the Hierarchical Bell Model (HBM) to investigate 

the mechanical properties and SH behaviour of nanogel particles connected by stable and labile 

bonds 
12

. The combined LSM and modified HBM was also used to address the problem of 

designing strong and tough biomimetic polymer networks with the capability of reforming links in 

their chain 
13

. A review of numerical methods applied to SH materials is given in 
14

. Despite the 

advances obtained through these studies, much remains to be done, and numerical modelling 

provides the means to minimize the cumbersome efforts in experimental work, optimizing the 

development of materials and highlighting the most relevant features of all tested solutions. In 

particular, since many macroscopic properties are a result of the behaviour of the underlying nano- 

and micro-scale structures, a multiscale approach is essential to extract global physical and 

mechanical properties. In addition, due to the inherently hierarchical nature of natural materials, it 

is of great interest to evaluate the interaction of SH with hierarchical structure. The objective of this 

paper is thus to provide analytical and numerical tools to calculate multiscale mechanical properties 

of SH materials and discuss in particular the role of scaling, material structure and hierarchy. In 

particular, we apply these concepts to nanomaterials of great interest such as graphene or carbon 



nanotubes (CNTs), due to their particular relevance for the realization of bioinspired high-

performance nanocomposites. Note that spontaneous healing mechanisms have been found at 

atomic level in CNTs through interaction with a metal catalyst 
15

 and in monoatomic graphene 

sheets as a result of their interaction with metal impurities 
16

, and new healing strategies can be 

conceived, e.g. through the activation of carbon nanoscrolls 
17

.  

 The paper is structured as follows: in Section 2, an analytical formulation of the problem is 

discussed, in Section 3, the numerical approach is presented; in Section 4 calculation and 

simulation results are discussed, and numerical predictions are made for hierarchical structures. 

Finally, conclusions and an outlook are given. 

 

2. Analytical formulation 

Many biological materials (e.g. cellular protein filaments, spider silk, tendon) display a fibrous 

structure, and several hierarchical levels can often be identified 
18-20

. On the other hand, synthetic 

materials of interest for structural applications are often also fibre-based (e.g. graphene/CNT 

macroscopic fibres or graphene/CNT-reinforced composites), and hierarchy could be an important 

feature for future applications 
21

. Therefore, to study the process of SH, we adopt a hierarchical 

fibre bundle model (HFBM) which extends the classical FBM, first introduced by Daniels 
22

 and 

extensively studied during the past years (see the review 
23

 and references therein). This model 

consists of arrays of fibres having statistically distributed strengths, arranged in parallel and in 

series to form hierarchical architectures. The "virtual" sample is loaded parallel to the fibre 

direction, and the fibres fail if the load exceeds their threshold value, with the load carried by the 

broken fibre being redistributed among the intact ones. This model is useful to simulate damage 

progression in a wide range of materials, not necessarily fibrous in structure. 

 

2.1 Engineering SH parameter 



Here, we extend the approach proposed in 24 to hierarchical materials. For a large number N0 of fibres in a 

bundle, the number of surviving fibres Ns0, under an applied strain ε and in the absence of SH, can be 

assumed to be: 
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where ε0 and m are the scale and shape parameters of the Weibull distribution for the fibres 25. The fraction 

of broken fibres in the absence of SH is given by: 
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In the presence of SH, when the number of actual surviving fibres is Nsh, this becomes:  
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We now introduce the parameter λ as the ratio between the number of broken fibres in the presence of SH 

and the number of broken fibres in the absence of SH: 
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Finally, we introduce the healing parameter η, as: 

 

00

01
s

ssh

NN

NN




      (5) 

 

so that 0 < η < 1. If η = 0, we have Nsh=Ns0 (no SH), whereas for η = 1, Nsh = N0, i.e. all fractured fibres heal. 

Since Eqs. (2) and (3) are reminiscent of the definition of engineering strain,   00 lll  , we shall refer 

to η as “engineering SH parameter”. 

 

2.2 True SH parameter 

We now introduce the “true” parameter *

h  as: 
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in analogy with the definition of true strain 
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  . In the absence of SH this becomes: 
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So that the true SH parameter can be defined as: 
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The introduction of the true SH parameter in Eq. (8) is needed in order to take into account the variation of 

the total number of fibres induced by SH (similarly to the fact that true strain accounts for variations in the 

overall length l). As can easily be verified, the parameters η and η* coincide for Nsh  Ns0  N0 , i.e. for 

relatively small damage levels. For simplicity, we will consider η and η* equivalent in the following. From 

Eq. (1) we immediately derive: 
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By substituting Eq. (9) into Eq. (8) we find: 
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and thus: 
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The introduction of SH into Eq. (11) generalizes the classical Weibull relation 25 which was used in Eq. (1). 

From Eq. (11) it is possible to derive the tensile stress corresponding to an applied strain  as :  
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where E is the single fibre Young’s modulus. Thus, if the single fibre and bundle properties (E, N0, m and ε0) 

are known, stress-strain curves (in displacement control) can be calculated. Examples of these are shown in 

Fig. 1 for N0 = 51010, E = 1 TPa, ε0 = 3.4% and m = 2, i.e. typical parameters for CNTs (also similar to 

graphene nanoribbon characteristics). It is apparent that the bundle strength, ultimate strain and 

toughness all increase with increasing healing parameter η. The mean strength 
D  can be derived 

analytically from Daniel's theory 22 as:  
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with standard deviation  
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2.3 Heterogeneous SH materials 

Equation (12) can also be generalized to the case of a healing agent with different mechanical 

characteristics (E2, m2 and ε2) from those of the original material (E1, m1 and ε1), usually with ε2 < ε1. This 

amounts to modelling a heterogeneous material, as discussed in 26, with the percentage of the two phases 

varying with strain, and therefore damage level. Let us suppose that the specimen is made up initially only 

of type 1 fibres and that it heals only with type 2 fibres. The variation of the number of fibres of type 2 is 

described by Eq.(11), but instead of a constant initial number of fibres N0, the exponential part must 

multiply the number of broken type 1 fibres (i.e.
























1

1

00 exp

m

NN



), multiplied by the healing 

parameter  . Thus: 

 

 




























































































































2

2

2

2

1

1

0

1

1

0 exp1expexp1exp

mmmm

sh NNN

















(15) 

 

Since from Eq.(5)  can be rewritten as    )1(

00

)2(

0 sssh NNNN  , where the superscript indicates the 

fibre type and   00)2(

0 tNs , we have: 
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and thus 
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and finally 
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This equation provides the correct limiting behaviour:  
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for  =1: 
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which both for  =0 and for   gives 0NNsh  . 

 

2.4 Hierarchical SH 

Finally, we consider the effect of SH in hierarchical materials. We adopt the procedure outlined in 27, 

whereby the Weibull parameters at hierarchical level n are derived from those at hierarchical level (n-1) 

using Daniel's theory 22. For example, based on Eq.(11), the Weibull distribution at the first hierarchical 

level can be taken to be: 
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with (1) and m(1) the unknown scale and shape parameters at level 1. The mean strength and standard 

deviation of this distribution are: 
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By setting 
1Wh

  and 
1Wh

  equal to the mean strength and standard deviation obtained at level 0 through 

equations (13) and (14), it is possible to derive h1 and mh1 
27. By repeating this procedure iteratively up to 

level n, the Weibull parameters h(n+1) and mh(n+1) at any hierarchical level n+1 can also be obtained from 

those at level n (hn and mhn), by numerically solving the two following coupled equations: 
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The effect of SH occurring at different hierarchical levels can therefore be evaluated, and the corresponding 

strength of different hierarchical structures can be calculated.  

 

3. Numerical Hierarchical Fibre Bundle Model 

Though some interesting features of SH can be derived analytically, as discussed in the previous 

section, it is necessary to resort to numerical FBM simulations to additionally derive more advanced 

features. In previous work, we have developed a recursive, or “hierarchical”, formulation of a FBM, 



which we have called HFBM 
28

, and which has been used to study multiscale problems ranging 

from nanoscale to macroscale 
27, 29

 and composite materials with mixed brittle-ductile properties 
30

. 

The multilevel scheme is implemented by formulating the problem at all relevant size scales using 

various (n) hierarchical levels and recursively deriving level (n+1) fibre characteristics like strength, 

toughness, Young’s modulus, from level n simulations 
29

. This model has recently been applied to 

heterogeneous materials, constituted of fibres with different mechanical characteristics, to 

determine the influence of hierarchy and material mixing in the optimization of the global material 

properties 
26

. In spite of its simplicity, the HFBM can capture many important aspects of damage 

phenomena in heterostructured materials, and SH can be easily included in the model. This can be 

done by replacing fractured fibres with intact ones having appropriate mechanical properties, 

volume fractions, replacement rates and locations as damage evolves during simulations. This is 

schematically shown in Fig. 2a. The multiscale hierarchical scheme can be applied in this case too, 

by calculating level n single fibre properties from repeated simulations on level (n-1) bundles, as 

shown in Fig. 2b. Thus, the simulations can account for SH at any given hierarchical level, 

providing useful information about the scaling of material properties with size, and the 

effectiveness of SH at each hierarchical scale.  

 In this case, the control parameter is the so-called "healing rate"  defined as the ratio 

between the number of “healed fibres” Nh and the number of fractured fibres Nf in a given fixed 

time interval. Since Nsh = N0 - Nf + Nh and Ns0 = N0 - Nf, the definition of coincides with that of 

introduced in Section 2 
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In the following, results will be presented as a function of η. Contrary to the analytical treatment of 



the problem, in the numerical case it is possible to control another critical simulation parameter, 

which is the location where fibres are reintroduced. In the present study two different scenarios are 

considered: a) Distributed healing: Fibres are reintroduced at a random locations in the fibre bundle 

where fibres have previously fractured; b) Local healing: Fibres are reintroduced at the location of 

the last fractured fibre. These two modelling situations correspond, roughly speaking, to two 

limiting cases in which the effectiveness of SH is (a) minimized and (b) maximized, respectively, 

with distributed material damage in the first case (i.e. uniformly distributed microcracking), or 

macroscopic cracking in the second.  

 

4. Numerical Results  

4.1 Homogeneous material-healing agent properties 

Firstly, we perform numerical simulations and consider the case in which the mechanical 

characteristics of the healing agent are identical to those of the host material. This means that when 

healing occurs, fractured fibres in the bundle are replaced by fibres with statistically equivalent 

mechanical characteristics. We use the same CNT material properties as above for the single fibre 

type involved in the simulations: Young’s modulus E = 1 TPa, Weibull shape parameter m=2, 

Weibull scale parameter 0 = 3.4 %. 

Various healing rates are analysed to begin with, ranging from =0.1 to =0.5, and both 

distributed and local healing are considered. Simulations are carried out in crack-opening 

displacement control instead of displacement or load control, in order to monitor damage evolution 

for every fibre-break.  

A typical example of the stress evolution in a specimen subjected to uniaxial tensile loading 

is shown in Fig. 3a, in the case of distributed healing. The oscillating behaviour in the numerical 

curves is due to the alternating fibre ruptures and healing events. The effect of increasing healing 

rate is evident in the data. Stress strain curves (Fig. 3b) display only minimal softening before 

specimen failure, indicating SH in this case does not modify the brittle material behaviour. Here, 



the crack-opening displacement control of the numerical test is responsible for the simultaneous 

decrease of both stress and strain after fibre rupturing. 

 In the local healing configuration, the time evolution of stress curves up to specimen failure 

shows a longer time-to-failure (Fig.3c), although the strength remains similar to the distributed 

healing case (Fig.3d). This fact highlights the greater effectiveness of local healing, for equivalent 

healing rates, in ensuring structural integrity of the material. Also, stress-strain curves display some 

softening before failure for high values.  

 This observation is confirmed by further analysis on the simulation data. For example, Fig. 

4a and 4b illustrate the failure strength distributions obtained in repeated simulations on specimens 

in distributed and local healing configurations, respectively. It is apparent that the mean strength 

increases monotonically with healing rate, as does the dispersion of the distributions.  Looking at 

mean strength values, the effect of SH is to cause the material strength to increase by up to 57% in 

the case of distributed healing (from 8.8 GPa in the absence of healing to 13.9 GPa for )and 

by 95% in the case of local healing (from 8.8 GPa to 17.2 GPa for ). These data are 

compared to analytical results in Fig. 5a. The latter slightly underestimate numerical values, 

probably due to the simplified analytical approach. Energetic aspects of material damage can also 

be considered using both the analytical approach and the HFBM. The dissipated energy in the 

formation of a crack surface at micro- or meso-scale is estimated by performing integration of the 

resulting stress-strain curves obtained analytically and numerically. Results are shown in Fig. 5b. 

Here, while the distributed healing configuration can increase dissipated energy, and hence the 

material toughness, by up to 50% for  the improvement reaches 270% in the case of local 

healing for This indicates that SH can bring about considerable strength enhancements, but 

even more so toughness improvements. Analytical results do not underestimate numerical values in 

this case, probably due to the fact that stress-strain curves are analytically calculated in 

displacement control, while numerical curves are obtained in crack-opening displacement control, 

so that the underlying areas are smaller in the numerical case. It is interesting to note that all curves 



in Figs. 5a and 5b display a nonlinear dependence with respect to and are approximately 

quadratic in all cases. 

 Another important effect of SH is the influence on the time to failure for specimens tested in 

crack-opening control. Using the HFBM it is also possible to estimate this quantity as a function of 

SH rate. This is shown in Fig.5c. In this case, no analytically calculated values are reported, as they 

would not be comparable to the numerically derived values, due to the different adopted loading 

control configurations. The same increasing tendency is highlighted as in Figs.5a and 5b, with a 

maximum increase in time to failure of 136% and 416% for and distributed and local 

healing, respectively. These values prove how the use of SH can improve material properties 

considerably, especially in the case of local healing, and simulations can be extended to fatigue 

experiments to predict improved specimen lifetimes. 

 

4.2 Heterogeneous material-healing agent properties 

Next, we consider a condition which potentially occurs experimentally, when the healing agent 

often displays considerably reduced mechanical properties with respect to the original material. In 

this case, it is reasonable to expect reduced SH efficiency in recovering mechanical properties. 

Numerical simulations can help in this case in quantifying the effect. We thus consider the 

following mechanical properties for the healing agent Young’s modulus Eh = Ef /5= 200 GPa and 

Weibull scale parameters h = 0.04, mh = 1.5, and carry out simulations for a bi-phase material 

corresponding to the ideal case of a graphene/CNT-based material with a healing agent with 

reduced mechanical properties. Results are discussed for a distributed healing configuration only, as 

this corresponds to the situation that best corresponds to the analytical model. As shown in Fig. 6, 

analytical and numerical results are in good agreement, despite the simplifications discussed above. 

Here, the effect of SH on strength and toughness is strongly reduced, and the approximately 5-fold 

reduction in healing agent stiffness and strength results in an even greater reduction in the effect of 

SH on strength (only a 5% strength increase compared to the previous 56% for ). The 



reduction is smaller in the case of toughness, with an approximate increase in dissipated energy of 

7-9% instead of 39%. On the other hand, the effect on the time-to-failure remains considerable, 

with a 114% increase compared to the previous 416% for  (only numerical results are 

considered here). This shows that healing agent mechanical properties are an important factor to 

consider in the design of efficient SH materials: it is essential to obtain mechanical properties as 

close as possible to those of the host material, if not superior, to maximize the effectiveness of the 

SH process. 

Results from numerical simulations in a local healing configuration are summarized in a wider 

parameter range in Fig. 7, where property maps are provided as a function of varying healing agent 

stiffness Eh and strength h , as well as healing parameter η. Fig. 7a shows the overall strength 

improvement as a function of h/f and η, Fig. 7b the overall increase in dissipated energy (in log 

scale) as a function of h/f and η, Fig. 7c the overall strength improvement (in log scale) as a 

function of Eh/Ef and η, and Fig. 7d the overall increase in dissipated energy (in log scale) as a 

function of Eh/Ef and η. Some irregularities in the patterns of the maps appear, due to the statistical 

nature of the simulations. These maps could provide useful information for the design of 

experimental studies, once relevant material properties are known. 

 

4.3 SH in hierarchical structures 

Next, the effect of SH on a hierarchical structure is evaluated by using the HFBM, i.e. by applying 

the FBM recursively, as explained in Section 3, and comparing results to analytical calculations 

using the hierarchical procedure described in Section 2.4. Since analytical results have been seen to 

be representative of a distributed healing configuration, only this configuration is considered in 

numerical simulations. Each hierarchical level corresponds to a different size scale, depending on 

the chosen modelling parameters (number of fibres in series and in parallel). As an example, we 

consider a 4-level hierarchical structure ranging from a length of 100 nm (fibre dimension at level 

1) to 1 mm at level 4. For brevity, we only analyze specimen strength to evaluate effectiveness of 



SH. First, we consider the case in which SH occurs at the same rate at all hierarchical levels, using a 

healing agent with the same mechanical properties as the original material (i.e. those specified at the 

beginning of Section 4). The assumption here is that SH can occur at various size scales in an 

equivalent manner, i.e. it can be triggered by micro- to macro-cracks. Clearly, this ideal case is a 

simplification, but it serves the purpose of determining a benchmark with which to compare more 

realistic scenarios. Analytical and numerical results for this case are shown in Fig. 8a, where the 

ratios between the strength and the level-0 Weibull scale parameter are plotted for various healing 

ratios. The decreasing trend with increasing hierarchical level is consistent with previous results 

obtained for homogeneous materials 
26

, but it is apparent that SH introduces significant 

improvements to the mean strength at all hierarchical levels. There is some discrepancy between 

analytic and numerical results, possibly highlighting the need for appropriate correction factors in 

the analytical hierarchical formulation, as discussed in 
27

. 

 The exploitation of healing agents with superior mechanical properties with respect to the 

host material provides, at least theoretically, the possibility of reversing the trend shown in Fig. 8a, 

i.e. decreasing strength for increasing hierarchical levels. One numerically calculated example is 

shown in Fig. 8b, where data are reported for a healing agent 100 times stiffer and stronger than the 

host material: Eh = 100Ef, h = 100f. In order to obtain an increase in strength with each 

hierarchical level, the healing rates are suitably graded at each level: 1 = 0, 2 = 0.11,3 = 

0.17,4 = 0.25. Clearly, this is an extreme example, and would require from an experimental point 

of view a "soft", rubber-like material, with some sort of high-quality polymeric healing agent. 

However, numerical data indicate that the possibility exists, in agreement with previous results by 

the authors, showing that hierarchy alone is unable to provide improved mechanical properties, 

while hierarchy and material mixing is 
26

.  

 If we now consider SH to occur only at one specific size scale or hierarchical level, the 

overall strengthening effect with respect to the non-SH case is reduced, as shown in Fig. 9. Only 

results from numerical simulations are reported here, for simplicity. It is interesting to observe that 



the lower the hierarchical level at which SH occurs, the more effective the healing is, particularly 

for high  values. Indeed, there is only a small decrease in strength between the case in which SH 

takes place at all levels and the case in which it only occurs at the lowest hierarchical level. These 

results suggest that the most effective SH strategies could thus lie at microscopic or molecular 

level.  

 Next, we investigate the combined effect of SH and hierarchy on the strength of different 

hierarchical architectures. For simplicity, we consider four different hierarchical structures made up of N=8 

fibres, differing only in hierarchical structure, which varies from one to three hierarchical levels. The first-

level structure consists of eight parallel fibres (indicated as “(8,1)”). The properties of each of these level 1 

fibres is derived from the level 0 Weibull statistics, including SH. There are two level 2 structures, indicated 

as "(4,2)", i.e. 4 bundles of two fibres in parallel and "(2,4)", i.e. 2 bundles of 4 fibres in parallel. Finally, 

there is one level 3 structure indicated with "(2,2,2)", i.e. 2 bundles of 2-fibre bundles. These structures are 

schematically illustrated in Fig. 10. Only analytical calculations are discussed here.  If one considers SH 

to be present at all hierarchical levels, we find as above that the strength of all 4 structures (normalized with 

respect to the chosen Weibull scale parameter) increases with increasing SH parmeter, as shown in Fig.10. 

What is interesting, however, is that the relative strength between the 4 structures is reversed as  increases: 

when no SH is present, the non hierarchical structure (8,1) has the highest strength, while for  > 0.2, the 3rd 

level structure (2,2,2) becomes the most favourable. Thus, the tendency found in previous publications for 

non-hierarchical structures 
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 is reversed, and we find that hierarchy enhances the effect of SH. Moreover, 

these results point to the fact that in the presence of SH, the effect of hierarchy is to improve mechanical 

material characteristics. This tendency is precisely what is found in real bio-materials, where the ability of 

self healing combines with a natural hierarchical structure to give enhanced structural properties. This 

finding is extremely important as it shows that the conflict between strength and hierarchy can be resolved 

by introducing self healing as an additional design variable. This can provide inspiration for scientists and 

engineers to design multifunctional artificial materials with optimized properties. 

 



5. Conclusions 

We have presented numerical results on the mechanical behaviour of self-healing hierarchical 

materials, using a previously developed Hierarchical Fibre Bundle Model. The model allows to 

consider varying healing rates and different healing mechanisms, depending on where fibres are 

restored in the considered bundle. Results show that considerable improvements can be obtained in 

material strength and time to failure, and especially in material toughness. Simulations on 

hierarchical materials reveal the advantages of achieving self-healing at the smallest possible scale, 

and the possibility of inverting the strength scaling behaviour ("smaller is stronger") when using 

healing agents with appropriate mechanical properties. Finally, we show that combining self-

healing and hierarchy begets superior strength, as observed in natural materials. These results are 

promising for further more in-depth investigations in the possibilities of self-repairing materials, 

and the presented analytical/numerical model can constitute a useful tool to support experimental 

work and aid in the attempt to synthesize real self-healing materials with tailor made properties.  

 

Acknowledgements: 

NMP acknowledges support from the European Research Council, ERC Ideas Starting grant n. 

279985 “BIHSNAM: Bio-inspired Hierarchical Super Nanomaterials” and ERC Proof of Concept 

grant n. 619448 “REPLICA2: Large-area replication of biological anti-adhesive nanosurfaces” and 

from the European Commission within the Graphene Flagship. FB acknowledges support from 

BIHSNAM. The authors thank F. Della Croce and the related support from the computational 

resources at Politecnico di Torino's DAUIN High Performance Computing Initiative (www.dauin-

hpc.polito.it). 



References 

 

1. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S., 

Autonomic healing of polymer composites. Nature 2001, 409, 794-797. 

2. Jones, A. S.; Rule, J. D.; Moore, J. S.; Sottos, N. R.; White, S. R., Life extension of self-healing polymers with rapidly 

growing fatigue cracks. J R Soc Interface 2007, 4, 395-403. 

3. Chen, X. X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H. B.; Nutt, S. R.; Sheran, K.; Wudl, F., A thermally re-mendable cross-

linked polymeric material. Science 2002, 295, 1698-1702. 

4. Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R., Self-healing materials with microvascular networks. 

Nat Mater 2007, 6, 581-585. 

5. Hansen, C. J.; Wu, W.; Toohey, K. S.; Sottos, N. R.; White, S. R.; Lewis, J. A., Self-Healing Materials with 

Interpenetrating Microvascular Networks. Adv Mater 2009, 21, 4143-4147. 

6. Brown, E. N.; White, S. R.; Sottos, N. R., Retardation and repair of fatigue cracks in a microcapsule toughened epoxy 

composite - Part II: In situ self-healing. Compos Sci Technol 2005, 65, 2474-2480. 

7. Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L., Self-healing and thermoreversible rubber from supramolecular 

assembly. Nature 2008, 451, 977-980. 

8. Burnworth, M.; Tang, L. M.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C., Optically 

healable supramolecular polymers. Nature 2011, 472, 334-337. 

9. Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z., Multiphase design of autonomic self-healing thermoplastic 

elastomers. Nat Chem 2012, 4, 467-472. 

10. Murphy, E. B.; Wudl, F., The world of smart healable materials. Prog Polym Sci 2010, 35, 223-251. 

11. Verberg, R.; Dale, A. T.; Kumar, P.; Alexeev, A.; Balazs, A. C., Healing substrates with mobile, particle-filled 

microcapsules: designing a 'repair and go' system. J R Soc Interface 2007, 4, 349-357. 

12. Salib, I. G.; Kolmakov, G. V.; Gnegy, C. N.; Matyjaszewski, K.; Balazs, A. C., Role of Parallel Reformable Bonds in the 

Self-Healing of Cross-Linked Nanogel Particles. Langmuir 2011, 27, 3991-4003. 

13. Salib, I. G.; Kolmakov, G. V.; Bucior, B. J.; Peleg, O.; Kroger, M.; Savin, T.; Vogel, V.; Matyjaszewski, K.; Balazs, A. C., 

Using Mesoscopic Models to Design Strong and Tough Biomimetic Polymer Networks. Langmuir 2012, 27, 13796-13805. 

14. BaLazs, A. C., Modelling self-healing materials. Materials Today 2007, 10, 18-23. 

15. Yuan, Q.; Xu, Z.; Yakobson, B. I.; Ding, F., Efficient Defect Healing in Catalytic Carbon Nanotube Growth. Phys Rev Lett 

2012, 108, 245505. 

16. Zan, R.; Ramasse, Q. M.; Bangert, U.; Novoselov, K. S., Graphene Reknits Its Holes. Nano Lett 2012, 12, 3936-3940. 

17. Shi, X.; Cheng, Y.; Pugno, N. M.; Gao, H., A translational nanoactuator based on carbon nanoscrolls on substrates. Appl 

Phys Lett 2010, 96, 053115. 

18. Lakes, R., Materials with Structural Hierarchy. Nature 1993, 361, 511-515. 



19. Fratzl, P.; Weinkamer, R., Nature's hierarchical materials. Prog Mater Sci 2007, 52, 1263-1334. 

20. Currey, J. D., Hierarchies in Biomineral Structures. Science 2005, 309, 253-254. 

21. Qian, H.; Greenhalgh, E. S.; Shaffer, M. S. P.; Bismarck, A., Carbon nanotube-based hierarchical composites: a review. 

Journal of Materials Chemistry 2010, 20, 4751-4762. 

22. Daniels, H. E., The statistical theory of the strength of bundles of threads. P. Roy. Soc. Lond. A Mat. 1945, 183, 405-435. 

23. Pradhan, S.; Hansen, A.; Chakrabarti, B. K., Failure processes in elastic fiber bundles. Reviews of Modern Physics 2010, 

82, (1), 499-555. 

24. Pugno, N., Abdalrahman, T. , Modeling the self-healing of biological or bio-inspired nanomaterials. International Space 

Elevator Consortium Journal, CLIMB 2011, 1, 79-86. 

25. Weibull, W., A Statistical Theory Of The Strength Of Materials. Ingeniörsvetenskapsakademiens Handlingar 1939, 151. 

26. Bosia, F.; Abdalrahman, T.; Pugno, N. M., Investigating the role of hierarchy on the strength of composite materials: 

evidence of a crucial synergy between hierarchy and material mixing. Nanoscale 2012, 4, 1200-1207. 

27. Pugno, N. M.; Bosia, F.; Abdalrahman, T., Hierarchical fiber bundle model to investigate the complex architectures of 

biological materials. Physical Review E 2012, 85, 011903. 

28. Bosia, F.; Pugno, N.; Lacidogna, G.; Carpinteri, A., Mesoscopic modeling of Acoustic Emission through an energetic 

approach. International Journal of Solids and Structures 2008, 45, 5856-5866. 

29. Pugno, N. M.; Bosia, F.; Carpinteri, A., Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic 

cables. Small 2008, 4, 1044-1052. 

30. Bosia, F.; Buehler, M. J.; Pugno, N. M., Hierarchical simulations for the design of supertough nanofibers inspired by spider 

silk. Physical Review E 2010, 82, 056103. 



Figures: 

 

 

Fig.1: Analytically-calculated stress-strain curves (in displacement control) for self-healing CNT-

based specimens for various SH parameter values. 

  



 

Fig.2: a) Schematic representation of damage/SH process in a fibre bundle. Broken fibres are 

represented by missing circles and healed fibres are represented by filled circles. The healing rate 

is =0.5, so that half of the damaged fibres are replaced by healed fibres; b) hierarchical 

implementation of the fibre bundle model: level n properties are derived from repeated simulations 

at level (n-1). 

  



 

 

Fig.3: a) Time evolution of stress in SH specimens subjected to traction up to rupture for various 

healing rates (in distributed healing configuration. b) Stress vs. Strain 

behaviour in distributed healing configuration. c) Stress vs. Time in local healing configuration. d) 

Stress vs. Strain behaviour (all simulations in crack-opening displacement control). 

  



 

 

 

Fig. 4: Strength distributions for a) distributed healing and b) local healing, with 

.  



 

Fig.5: Calculated and simulated variations in a) Mean strength and b) Dissipated energy as a 

function of healing rate in the case of distributed and local SH. c) Simulated time to failure as a 

function of in the case of distributed and local SH. Quadratic fits on all numerical data are 

included. 



 

Fig.6: Calculated and simulated variations in a) Mean strength b) Dissipated energy and c) Time 

to failure as a function of healing rate  in the case of a healing agent with reduced mechanical 

properties with respect to the host material (numerical results are relative to distributed SH). 



 

Fig.7: Maps showing percentage improvement in overall material properties as a function of 

healing rate and host material vs. healing agent propertiesa) Strength improvement for varying 

host material strength f and healing agent strength h (Ef=Eh); b) Increase in dissipated energy for 

varying f and h (log scale, Ef=Eh); c) Strength improvement for varying host material stiffness f 

and healing agent stiffness h (log scale, f=h); d) Increase in dissipated energy for varying f 

and h (log scale, f=h). All results are for local SH. 



 

Fig.8: Scaling of the ratio between mean strength and Weibull scale parameter as a function of 

hierarchical level n:  a) Comparison between analytical calculations and numerical simulations for 

various  values (distributed SH); b) Numerical comparison between “without SH” (1 = 2 =3 = 

4 =0) and “with SH” (1 = 0, 2 = 0.11,3 = 0.17,4 = 0.25) when the healing agent mechanical 

properties are considerably superior to those of the host material (see text for details).    



 

Fig.9: Strength increase with respect to the non-SH case in 4-level hierarchical structures as a 

function of  when SH is applied at a single or at all hierarchical levels. 



 

Fig.10: Schematic of different hierarchical fibre architectures, ranging from 1 level (i) to 3 hierarchical levels 

(iv), and their variation of normalized mean strength vs. SH parameter. SH is shown to be more effective in 

the structure with highest hierarchy. 

 


