This is an author version of the contribution published on:

The definitive version is available at:
http://pubs.acs.org/doi/abs/10.1021/jo401188e
Memory Effects in Carbocation Rearrangements: Structural and Dynamic Study of the Norborn-2-en-7-ylmethyl-X solvolysis case.

Giovanni Ghigo,* Andrea Maranzana, Glaucot Tonachini

Dipartimento di Chimica, Università di Torino, V. Giuria 7, I-10125 Torino, Italy

Abstract

The solvolysis of two diastereomers may give the same two products, but in different ratios, notwithstanding the two reaction pathways share an apparently identical intermediate carbocation. This was dubbed “memory effect”, since the initial carbocation seems to “remember” its origin when undergoing further evolutions through multi-step rearrangements. This puzzling result is studied theoretically for the case of the solvolysis of norborn-2-en-7-ylmethyl-X systems, by defining the reaction potential energy surface, (PES) then carrying out a dynamical study. The PES shows that upon X⁻ loss multi-phase rearrangements concertedly yield the two stablest carbocations G and L. These carbocations are connected by a transition structure. The carbocation intermediates proposed in the literature do not correspond to any stationary point. The preference for the rearrangement to G or L (the memory effect) is determined by structural and stereoelectronic effects: the competitive interaction between an empty p orbital with a σ orbital or with a p/π orbital is guided by geometrical aspects present in the starting carbocations. The dynamic study shows that: (1) G and L do not interconvert; (2) the evolving system can switch from one pathway to the other to different extents, thus determining a more or less pronounced memory loss (the leakage).

KEYWORDS: Memory effect, Rearrangement, Carbocation, Stereoelectronic effect, DFT, Dynamic

* Corresponding author giovanni.ghigo@unito.it
Introduction

The memory effect1 is a stereochemical control on a reaction center operated by a different center localized on the same molecule. The most known case is the neighboring group effect which leads to maintain the configuration in some solvolyses (Scheme 1 shows two examples2).

\textbf{Scheme 1. Memory effect due to neighboring group effect.}

In some cases such a control can be exercised by a more remote center. In particular, the memory effect has been invoked in the multiple rearrangement of carbocations when the two stereoisomers of the precursor rearrange to different products despite the apparent existence of some common intermediate along the reaction pathway. This case is illustrated by Scheme 2 which shows the solvolysis with rearrangement of R-X which takes place through carbocation intermediates R+ and M+. Here we can see that the solvolysis of the stereoisomer R'-X mainly yields product P' while that of the stereoisomer R''-X mainly yields product P''. The presence of a memory effect is testified by the fact that intermediates R''+ and R'+ are expected to easily interconvert because linked by a simple conformational relation (in contrast to being just the same structure, which would leave the effect unexplained). The picture is completed
by the observation that the solvolysis of $M'\cdot X$ yields exclusively product P' while the solvolysis of $M''\cdot X$ yields exclusively product P''. Intermediates $M'^+\cdot$ and $M''^+\cdot$ are structural isomers (not just stereoisomers) and they do not interconvert. Their formation from $M'\cdot X$ and $M''\cdot X$ involves a rearrangement often with some neighboring group effect.

Scheme 2. The memory effect in the multiple carbocation rearrangement.

This kind of stereochemical control was first observed as early as in 1961 by Marc Silver3 and one year later by Jerome Berson and coworkers4 who dubbed it memory effect.1 Other studies by Berson and coworkers followed in the 60s5 and by Clair Collins in the first 70s6. Despite the the great amount of experimental work, the causes of the memory effect are not fully understood. Therefore, we have undertaken the study of this stereochemical control by theoretical methods. We have chosen, among several cases, the norborn-2-en-7-ylmethyl cation derived from acetolysis of different X-substituted norborn-2-en-7-ylmethyl systems which is the most famous case.7 Starting from its syn (IIα) and anti (Iα) diastereomers (Scheme 3), beside small amounts of the products of the simple solvolysis (IIIα and IIIα) they also observed
the formation of different amounts of the two distinct products belonging to the so called Goering8 series (VIII from carbocation G) and Le Bel9 series (IX from carbocation L). In his paper, Berson suggested that after the ionic detachment of the leaving groups the two norborn-2-en-7-ylmethyl carbocations II, and II\textsubscript{a}, before the capture of the solvent, can rearrange to cations IV\textsubscript{a} and IV\textsubscript{a}. These two carbocations could yield the product of solvent capture VI1 and VI2 (found, indeed, in very small amounts) or give rise to a second rearrangement leading, respectively, to the final products from cation G (from I\textsubscript{a}) and from cation L (from I\textsubscript{a}). The observation that the solvolysis of the syn isomer I, mainly leads to product G, while that of the isomer anti I\textsubscript{a} mainly leads to product L through cations IV\textsubscript{a} and IV\textsubscript{a}, which are just two conformers of the same carbocation, suggests the existence of some sort of "memory effect" that make the two cations "to remember" from which cation they come. Indeed, in the solvolysis of I\textsubscript{a} small amount of product L were also found and, by converse, in the solvolysis of I\textsubscript{a} small amount of product G were also found. This suggested the occurrence of some equilibration between the two cations IV\textsubscript{a} and IV\textsubscript{a} through a transition structure V or, possibly, the existence of an intermediate structure V which connects cations IV\textsubscript{a} and IV\textsubscript{a}. This equilibration determinates a partial loss of the memory effect, a phenomenon known as leakage.
Scheme 3. The memory effect as proposed in the literature.

Despite the elegance of scheme 3, a full comprehension of this phenomena was not achieved: the experimental findings (isotope labelling and a substantial lack of ion-couples and solvent effects) only demonstrated that the "memory must be preserved in processes passing through carbonium ions, not bimolecular nucleophilic reactions." A role for a "asymmetric ionic solvation" was also excluded by Berson.5d Collins8c proposed this role again, but his experiments were performed on completely different systems. Another fact complicates the picture: the solvolysis of the two tosylates of 2-bicyclo[2.2.2]oct-5-enyl (VII' and VII'') only yields the products of the rearrangement: the acetate VIII of cation G from VII' and the acetate IX of cation L from VII''.5a This result confirms that the equilibration, if any, it is not between cations G and L. However, considering that the heterolysis of the two
tosylates must form cations IV, and IV, it is hard to explain why there is not a partial loss of the memory effect that would yield again to the formation of the acetates of cation G from VII" and of cation L from VII'. In the experiments several leaving group were used and in all cases the memory effect with some leakage was observed. Table 1 collects the different cases. We stress that, without leakage, the solvolysis of the syn isomer should only yield the acetates of G while that of the anti isomer, the acetates of L. We can observe that the solvolysis of the syn isomer presents quite an extended leakage while the solvolysis of the anti isomer presents a quite extended memory of the starting molecule.

<table>
<thead>
<tr>
<th>Leaving group</th>
<th>syn (I,)</th>
<th>anti (I,;)</th>
<th>syn (I,;)</th>
<th>anti (I,;)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>G/L</td>
<td>excess G^a</td>
<td>L/G</td>
<td>excess L^b</td>
</tr>
<tr>
<td>N<sub>2</sub> (from NH<sub>2</sub>)</td>
<td>3 - 5</td>
<td>45 - 65</td>
<td>30 - 70</td>
<td>94 - 97</td>
</tr>
<tr>
<td>ONs</td>
<td>3 - 5</td>
<td>47 - 64</td>
<td>3.5 - 4.5</td>
<td>56 - 64</td>
</tr>
<tr>
<td>Br</td>
<td>2 - 4</td>
<td>33 - 64</td>
<td>42 - 45</td>
<td>82 - 96</td>
</tr>
</tbody>
</table>

^a Per cent excess G = 100(G-L)/(G+L), ^b Per cent excess L = 100(L-G)/(L+G).

The nature of the leaving group changes the relative yields but the presence of the memory effect and the different extent of the leakage for the syn and anti isomers is unchanged. In the main part of our study the leaving groups and the solvent molecules are not present. This will not allow us to observe the effect of the leaving groups on the yields and the alternative pathways as deprotonation (which are, however, experimentally found negligible). However, the experiments proved that the rearrangements only involve carbonium...
ions, that the ion-couples are excludes and, more important, that no products of the counterion recapture were isolated.

Our goal is to unravel the most important factors that lead to the memory effect and the leakage phenomenon. Therefore, our computational study is mainly focused on the free carbocations starting from the cations II_e and II_a after a preliminary analysis of their generation.

Results and discussion

The formation of cations II_e and II_a is a consequence of the heterolysis of the C—X bonds in I_e and I_a, respectively, induced by the ionizing solvent. In the former, the heterolysis can also generate the non-classical carbocation II_e (Scheme 4). The study of the heterolysis in the diazonium derivatives10 ($X = \text{N}_2^+$, Table 2 and Figure 1) shows that the formation of II^{NC}_e is negligible with respect to the formation of II_e (from all three methods, yield is estimated $< 0.5\%$ at room temperature).

![Scheme 4. The generation of carbocations from the solvolysis of norborn-2-en-7-ylmethylidiazonium.](image)

Table 2. Relative energies ($\Delta E + \Delta ZPE$ in kcal mol$^{-1}$) in the solvolysis of norborn-2-en-7-ylmethyldiazenium.

<table>
<thead>
<tr>
<th>Structure</th>
<th>ΔE^a</th>
<th>ΔE^b</th>
<th>ΔE^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>I$_s$—NN$^+$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>TS to II$_s$ + N$_2$</td>
<td>5.0</td>
<td>8.2</td>
<td>8.0</td>
</tr>
<tr>
<td>TS to II$_s$$^\text{NC}$ + N$_2$</td>
<td>9.3</td>
<td>11.8</td>
<td>11.3</td>
</tr>
<tr>
<td>I$_a$—NN$^+$</td>
<td>2.2</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>TS to II$_a$ + N$_2$</td>
<td>7.3</td>
<td>10.5</td>
<td>10.2</td>
</tr>
</tbody>
</table>

a B3LYP energies; b mPW1PW91 energies; c BB1K energies.

Figure 1. Transition structures of the solvolysis of norborn-2-en-7-ylmethyldiazenium. Plain figures: B3LYP; italics: mPW1PW91; in parenthesys: BB1K.

Once the transition structures (TS) are overcome we assume, on the basis of the experimental evidences, that \mathbf{X} moves apart and leaves the reacting system. Therefore, we can proceed with our main intent which is to confirm the existence, on the potential energy surface (PES), of the carbocation intermediates shown in Scheme 3. The PES is illustrated by the More O’Ferrall-Jencks plot (Figure 2) where R_{cc} is the distance between \mathbf{C}^4 and \mathbf{C}^8, r_1 is the distance between \mathbf{C}^7 and \mathbf{C}^2, and r_2 is the distance between \mathbf{C}^7 and \mathbf{C}^6 (although important, distance...
C⁴—C⁷ is not shown in the bidimensional plot). On the right side of the plot (at long \(R_{cc} \), \(r_2-r_1 \) close to zero, and short C⁴—C⁷) we find cations \(\text{II}_1 \) and \(\text{II}_a \) while in the left side (short \(R_{cc} \) and long C⁴—C⁷) we find cations \(\text{L} \) (at \(r_2-r_1 \approx 0.9 \)) and \(\text{G} \) (at \(r_2-r_1 \approx -0.9 \)).

Figure 2. More O’Ferrall-Jencks diagram of the B3LYP IRCs for the rearrangement of cations \(\text{II}_1 \) (blue line) and \(\text{II}_a \) (red line) and the ridge from TS \(\text{V} \) (grey line). The positions of cations \(\text{V} \), \(\text{G} \), and \(\text{L} \) are indicated by dots. \(R_{cc} \) is the distance C⁴—C⁷; \(r_1 \) is the distance C⁷—C²; \(r_2 \) is the distance C⁷—C⁶. Values are in Å.

The cation \(\text{G} \) (blue big dot in Figure 2, left, and Figure 3) is the most stable structure, since it contains a 1,3-disubstituted allyl system. Therefore, it is used as energy reference in Table 3. \(\text{G} \) and \(\text{L} \) (a secondary carbocation stabilized by a fused three-carbon ring, \(\Delta E = 2-7 \) kcal mol⁻¹, red big dot in Figure 2, left, and Figure 3) are found to be real intermediates. Cation \(\text{II}_a^{NC} \) is the non-classical carbocation originated by the alternative solvolysis of \(\text{I}_a \). Because its formation is
negligible (see Table 2) further evolutions are not analyzed.

Table 3. Relative energies \(\Delta E + \Delta ZPE \) in kcal mol\(^{-1} \) in the rearrangement of carbocations II\(_a\) and II\(_s\).

<table>
<thead>
<tr>
<th>Structure</th>
<th>(\Delta E^a)</th>
<th>(\Delta E^b)</th>
<th>(\Delta E^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II(_s)</td>
<td>44.2</td>
<td>44.2</td>
<td>42.9</td>
</tr>
<tr>
<td>II(_s)(_NC)</td>
<td>31.5</td>
<td>24.8</td>
<td>20.0</td>
</tr>
<tr>
<td>II(_a)</td>
<td>47.3</td>
<td>47.3</td>
<td>46.1</td>
</tr>
<tr>
<td>V</td>
<td>17.6</td>
<td>16.8</td>
<td>16.8</td>
</tr>
<tr>
<td>L</td>
<td>7.1</td>
<td>3.6</td>
<td>1.7</td>
</tr>
<tr>
<td>G</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\(^a \) B3LYP energies; \(^b \) mPW1PW91 energies; \(^c \) BB1K energies.

Figure 3. Cations G and L and transition structure V. Plain figures: B3LYP; italics: mPW1PW91; in parentheses: BB1K.

By contrast, cations IV\(_s\) and IV\(_a\) do not exist as stationary points on the PES. Moreover, the structures II\(_s\) and II\(_a\) (primary carbocation structures, Figure 2, right) and V (a secondary carbocation structures) are found, indeed, to be transition structures and not stable cations. In particular, TS V (17 kcal mol\(^{-1} \), grey dot in Figure 2, left, and Figure 3) directly connects cations G and L. The grey line in Figure 2 is the
ridge that originates from \mathbf{V} and that "separates" the \mathbf{G} region from the \mathbf{L} region. From a stereochemical point of view, we can see (Figure 4) that the empty p orbital on \mathbf{C}^7 gives two competing stabilizing orbital interactions: one with the σ orbital of the \mathbf{C}^1—\mathbf{C}^6 bond (leading to cation \mathbf{G}), the other with the p/π orbital on \mathbf{C}^2 (leading to cation \mathbf{L}). In this almost symmetrical structure ($r_1=2.386$ Å, $r_2=2.376$ Å) there is a balance between the two interactions that “pull” \mathbf{C}^7, respectively, towards \mathbf{C}^6 or \mathbf{C}^2 in the transition structure \mathbf{V}.

![Figure 4](image)

Figure 4. Orbital interactions in the carbocationic structure \mathbf{V}.

In Π_s (44 kcal mol$^{-1}$ with respect to \mathbf{G}) and Π_a (46-47 kcal mol$^{-1}$) the vibrational mode with imaginary frequency corresponds to the stretching \mathbf{C}^4—\mathbf{C}^7 (or \mathbf{C}^1—\mathbf{C}^7) bond and the oscillation of \mathbf{C}^8 towards \mathbf{C}^4 (or towards \mathbf{C}^1).

![Graphs](image)

Figure 5. Energy profiles of along the B3LYP IRCs for the rearrangement of cations Π_s (left) and Π_a (right).
The IRCs (Figure 5) pathways (the blue and red lines starting from the right side in Figure 2) show that this atom displacements correspond to the “first rearrangement” of cations II\textsubscript{s} and II\textsubscript{a} that should yield the more stable secondary carbocations IV\textsubscript{s} and IV\textsubscript{a}. These structures, however, do not correspond to stationary points on the PES (they are neither minima nor transition structures), in such a way that the chemical process does not stop in a single step and while C8—C4 bond completes its formation (R\textsubscript{cc} gets below 1.6 Å), carbon C7 bends towards C6 (if coming from II\textsubscript{s}) or towards C2 (if coming from II\textsubscript{a}) giving rise to the “second rearrangement”. A “slight-shoulder”,\textsuperscript{11a} which appears in the energy profile of the IRC from II\textsubscript{s}, around the 80th point, hints to a structure as carbocation IV\textsubscript{s}. Yet, this structure cannot be considered as a proper intermediate, since it does not correspond to an energy minimum. By contrast, the energy profile for the IRC from II (Figure 5, right) does not suggest the existence of any carbocation intermediate. So, each reaction path follows a curve (left side in Figure 2) which finally yields either cations G or L describing a “two-stages” asynchronous concerted processes.11 The More O’Ferrall-Jencks plot clearly shows the nature of the memory effect: in both rearrangements cations IV\textsubscript{s} and IV\textsubscript{a} are not present on the PES as stationary points, in such way that the structure of the starting carbocations determines the final products. In fact, in cation II\textsubscript{s}, the distance between C7 and C6 (r\textsubscript{2}) is already shorter than the distance between C7 and C2 (r\textsubscript{1}). Therefore, when the rearrangement starts C7 is attracted by the C6 center (r\textsubscript{2}−r\textsubscript{1} become more negative) because the orbital interaction between incipient empty p orbital on C7 with the \(\sigma \) orbital of the C1—C6 bond prevails. Consequently, the two rearrangements take place concertedly (though asynchronously) to
finally yield the cation G. The same structural guidance occurs for
cation IIa, where the shorter distance between C7 and C2 (r1, r2–r1
positive) dictates a concerted rearrangement to the cation L. In this
case it is the interaction between the incipient empty p orbital on C7
with the p/π orbital on C2 to prevail. In both cases the rearrangements
are quite exothermic (by more than 40 kcal mol⁻¹). Therefore, the PES
can be described as two valleys originated from II, and IIa and
separated by a ridge originated from V. The topology of this case
seems to differs from that studied found by other authors where the the
key point is a valley bifurcation leading to two minima on the PES.¹²

The structural reasons explain the memory effect but the occurrence of
the leakage is not covered yet. At first sight, the leakage could be the
explained by the interconversion of cations G and L through V. However, as reported above, the solvolysis of VII' and VII'' excludes
this possibility, and the leakage must take place in a different way. As
we can see on the right side of Figure 2, in the initial phase of the
rearrangements, r2–r1 (and therefore r1 and r2) only changes by a small
amount until Rcc gets below 1.8–9 Å. Therefore, it is possible that
dynamics effects¹²,¹³ could allow the two pathways to cross one each
other. This is just what we verified by using a Born-Oppenheimer
Molecular Dynamics model (see Method section) calculations. The
resulting trajectories are shown in two More O’Ferrall-Jencks diagrams:
Figure 6 for the rearrangement taking origin from TS II, and Figure 7
for the rearrangement from TS IIa.
Figure 6. Trajectories (More O’Ferrall-Jencks diagram) relevant to rearrangement of cation IIₖ. For R_{CC}, r_1, and r_2 see caption to Figure 2.

Figure 7. Trajectories (More O’Ferrall-Jencks diagram) relevant to rearrangement of cation IIₖ. For R_{CC}, r_1, and r_2 see caption to Figure 2.
In Figure 6 we can see that about half of the trajectories from \(\text{II}_a \) leads to cation \(\text{L} \) instead of cation \(\text{G} \). The \(\text{G/L} \) ratio is 1.0 and the excess of \(\text{G} \) is only 2%. By contrast, in Figure 7 we can see a great majority of trajectories from \(\text{II}_a \) goes to the expected cation \(\text{L} \) while only a few go to cation \(\text{G} \). This corresponds to a \(\text{L/G} \) ratio of 27 and an excess of \(\text{L} \) of 96%. These values are in qualitative agreement with the experimental findings (compare Table 1): in the rearrangement of that follows TS \(\text{II}_a \) the \textit{memory effect} is more efficient (less \textit{leakage}) than in the rearrangement that follows TS \(\text{II}_a \). The oscillation of the trajectories could also allow solvent capture yielding the minor products and \(\text{III}_a, \text{III}_b, \text{VI}' \), and \(\text{VI}'' \). Comparing Figures 6 and 7 we can observe that when the \(\text{C}_8-\text{C}_4 \) bond formation is almost complete (\(R_{cc} \) below 1.7 Å), the trajectories from \(\text{II}_a \) oscillates around \(\text{V} \) and its ridge (the grey line) while the trajectories from TS \(\text{II}_a \) oscillates definitely in the \(\text{L} \) region (above the ridge from \(\text{V} \)) determining the greater \textit{leakage} in the rearrangement of \(\text{II}_a \). This behavior can also be observed in Figures 8 and 9 that report the values of \(R_{cc} \) and \(r_2-r_1 \) as function of the time. In the rearrangement that follows TS \(\text{II}_a \), we can see (Figure 8, blue lines) that the \(\text{C}_8-\text{C}_4 \) bond forms (\(R_{cc} \) oscillates around 1.5 Å) within a time ranging between 90 to 150 femtoseconds (fs). The evolution of \(r_2-r_1 \) shows on the other hand that \(\text{C}_7 \) starts to bend towards \(\text{C}_2 \) or \(\text{C}_6 \) only after 140 fs (Figure 8, green lines). By contrast, in the rearrangement that follows TS \(\text{II}_a \) we can see (Figure 9, red lines) that while the \(\text{C}_8-\text{C}_4 \) bond also forms within 80-140 fs, \(\text{C}_7 \) starts to bend towards \(\text{C}_2 \) or \(\text{C}_6 \) (Figure 9, green lines) already after 80 fs. Moreover, we can observe (green lines in Figures 8 and 9) that when \(\text{G} \) or \(\text{L} \) are formed, \textit{i.e.} \(|r_2-r_1| > 0.5 \) Å, the trajectories do not cross any longer the line \(r_2-r_1 = 0 \) Å, \textit{i.e.} \(\text{G} \) and \(\text{L} \) do not interconvert through \(\text{V} \).
Figure 8. Trajectories as a function of time (fs) relevant to rearrangement of cation IIₜ. Blue lines R_{cc}, green lines r_2-r_1.

Figure 9. Trajectories as a function of time (fs) relevant to rearrangement of cation IIₐ. Red lines R_{cc}, green lines r_2-r_1.
In both cases the “first rearrangement” (formation of \mathbf{C}^8—\mathbf{C}^4 bond) is complete within 150 fs, quite similar to other cases,13,14 while the “second rearrangement” (formation of \mathbf{G} or \mathbf{L}) requires a longer time. A possible explanation (compare Figure 4) for the different extent of leakage is that being the p/π orbital more diffuse than the σ orbital, the interaction of incipient empty p orbital on \mathbf{C}^7 (particularly when the \mathbf{C}^4—\mathbf{C}^8 bond is already formed) with the former is more effective than the interaction with the latter. Therefore, during the oscillation of the trajectories beyond TS \mathbf{II}_s along and in some proximity of the corresponding IRC pathway (black line in Figure 2) the interaction with the p/π orbital can prevail, in some cases, on the interaction with the σ orbital leading the rearrangement towards cation \mathbf{L} (instead of \mathbf{G}) so giving rise to the leakage. In the rearrangement beyond TS \mathbf{II}_s the interaction of the empty p orbital with the p/π orbital (leading to \mathbf{L}) is further favored by structural reasons (\mathbf{C}^7 closer to \mathbf{C}^2) so less leakage is observed.

Conclusions

The memory effect in the rearrangement of the two carbocations generated in the solvolysis of the syn and anti norborn-2-en-7-ylmethyl-\mathbf{X} systems (\mathbf{I}_s and \mathbf{I}_a) has been explained here as being determined by the different interactions that build up along the rearrangement pathways cationic systems. The parameter r_2-r_1 determines which is the dominant stabilizing orbital interaction (see Figure 4) of the incipient empty p orbital on \mathbf{C}^7: that with the p/π orbital on \mathbf{C}^2 (which leads to cation \mathbf{L}) or, alternatively, the one with the σ orbital of the \mathbf{C}^1—\mathbf{C}^6 bond (which leads instead to cation \mathbf{G}).
The study of the PES has shown that the carbocations \(\text{IV}_a \) and \(\text{IV}_b \) (Scheme 3), proposed in the literature, do not exist as stationary point on the PES, and that structure \(\text{V} \) is a TS connecting cations \(\text{G} \) and \(\text{L} \). PES and dynamic studies (and experiments\(^{5a} \) with \(\text{VII}' \) and \(\text{VII}'' \)) then shows that \(\text{V} \) has no role despite its low energy with respect to cations \(\text{G} \) (17 kcal mol\(^{-1} \)) or \(\text{L} \) (10-15 kcal mol\(^{-1} \)). These energy barriers should lead products from cation \(\text{G} \) to prevail but this would disagree with the experimental findings. Moreover, when dynamics effects are introduced, the oscillation of the rearrangement trajectories can overcome the initial structural guidance, responsible of the memory effect, leading in some cases to the opposite result in the orbital interactions. This effect, in turn, partially yields the products not expected on the basis of the starting structure, thus giving rise to the leakage phenomenon (the partial loss of memory effect).

Experimental Section

Methods

The Potential Energy Surface (PES) was first explored optimizing geometries within the Density Functional Theory (DFT),\(^{15} \) making use of the composite functionals B3LYP,\(^{16} \) mPW1PW91\(^{17} \), and BB1K.\(^{18} \) Several functionals have already been tested\(^{19} \) so we choose B3LYP being the most used even in recent papers\(^{20} \) and mPW1PW91\(^{19c} \)\(^{6,21} \) and BB1K\(^{12a,19b} \) being suggested in the more recent papers. From the inspection Tables 2 and 3 we can observe a substantial agreement between the three functionals that show the same qualitative mechanistic picture. The basis set used was Pople's 6-31G(d).\(^{22} \) Solvent effects were introduced in geometry optimization by the
Polarized Continuum Method (PCM)23 within the universal Solvation Model Density (SMD).24 All minima and transition structures where fully characterized by vibrational analysis25 and the zero point energies combined with electronic energies and reported in Tables 2 and 3. The nature of the transition structures (TS) was confirmed by Intrinsic Reaction Coordinate (IRC) optimizations.26

The dynamic study was performed within the Born-Oppenheimer Molecular Dynamics model.27 Energy and gradient were calculated with the HF method28 and the 3-21G basis set.29 This level of theory satisfactorily reproduced the DFT surface (see Table 3 and compare Figures 1 and 2 in the Supporting Information) and allowed the calculation of an adequate number of trajectories. We calculated a total of 500 trajectories (250 from TS II, and 250 from TS II\textsubscript{a}).

All calculations were performed using Gaussian 09 software.30 Figures 1 and 3 and Figures 1 and 2 in the Supporting Information have been obtained by the program Molden.31

Acknowledgment. Local funding from the Torino University is gratefully acknowledged.

Supporting Information Available: Cartesian coordinates of all structures, their absolute energies in hartrees and energy difference in kcal/mol and energy profiles for the IRCs are given. This information is available free of charge via the Internet at http://pubs.acs.org.
REFERENCES

(10) Tests performed with other leaving groups (bromide and nosylate) shown very high and unrealistic barrier possibly due to the lack of explicit solvent molecules.

