VGF-like immunoreactivity in amphibian hypothalamo-hypophysial system.

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1415 since

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
This is an author version of the contribution published on:
Questa è la versione dell’autore dell’opera:


The definitive version is available at:
La versione definitiva è disponibile alla URL:
VGF-like Immunoreactivity in Amphibian Hypothalamo-Hypophysial System

SILVIA DE MARCHIS, a MARJORIE LECOMTEb, MARIA-FOSCA FRANZONI, a
PAOLA MARITANO, a EZIO CAMPANTICO, a GIAN-LUCA FERRI,c AND ALDO FASOLOa

aDepartment of Animal Biology, University of Turin, Turin, Italy
bLaboratory of Molecular and Cellular Neuroendocrinology, University of Rouen, Rouen, France
cLaboratory of Cytomorphology, University of Cagliari, Cagliari, Italy

VGF is a neurotrophin-inducible early-delayed gene that encodes a 617-amino-acid polypeptide—VGF protein—bearing no significant homology with known sequences. The VGF protein is selectively expressed in specific groups of cells in the mammalian central nervous system, particularly in the hypothalamus (e.g., suprachiasmatic, paraventricular, and supraoptic nuclei)1 and in endocrine cells such as adenohypophysial and adrenal medullary cells.2 VGF is stored and transported in secretory granules and processed to intermediate to small molecular weight products, which are preferentially released.3

In the present immunohistochemical study, the distribution of VGF protein was examined in the hypothalamo-hypophysial complex of two anuran species: Xenopus laevis and Rana esculenta. The two antibodies a-VGF used were: anti-VGF215, raised against the C-terminus, and anti-VGF216, against a potential cleavage product of VGF. Double labellings were performed in a simultaneous procedure using a-VGF and a-LH (luteinizing hormone) antibodies.

VGF NEUROENDOCRINE LOCALIZATION

In Xenopus laevis, the hypothalamus is a major site of VGF localization: many VGF-immunoreactive (ir) fibers and scattered bipolar neurons were detected in the anterior and supra/retrochiasmatic areas. The most conspicuous VGF-ir cell group (liquor-contacting neurons) was observed in the paraventricular organ (PVO) (FIG. 1a). Immunostained beaded fibers were also observed along the preoptic-hypophysial tract, and a strong VGF-immunoreactivity was found in the fibrous layer of the median eminence and in the pars nervosa (FIG. 1b) of the pituitary (in perivascular terminals and Herring bodies). Small clusters of VGF-ir cells were seen in the pars distalis, while no reaction was detected in the pars intermedia of adenohypophysis.

In Rana esculenta, only after a-VGF216 incubation, a strong reaction was observed in clusters of liquor-contacting neurons in the lateral infundibular recesses of the posterior hypothalamus. No positivity was detected in other hypothalamic areas and in pituitary pars nervosa. In contrast, numerous adenohypophysial cells were immunopositive in the pars distalis, where, after double immunostaining, some cellular colocalizations of VGF- and LH-immunoreactivity were found. VGF-ir fibers were also seen, after a-VGF216 incubation, in the pars intermedia of the gland.

From G.L. Ferri, university of Calgliari (Italy).
From Affinity Research Products (Ilkeston, United Kingdom).
The present data show the occurrence of a VGF-like antigen in the CNS of amphibians. The observed VGF-immunoreactivity in various mammalian species, as well as in amphibians (present study), indicates a phylogenetic conservation of this protein, although the different distribution patterns observed with the two antibodies (VGF$_{215}$ and VGF$_{216}$) might reflect species-specific processing of the molecule.

It has been suggested that in mammals VGF may represent a precursor of bioactive peptides and control pituitary secretion. Given the abundant VGF-immunoreactivity in the hypothalamo-hypophysial complex, we propose that a similar role could be active also in the neuroendocrine regulation mechanisms of amphibians.

ACKNOWLEDGMENTS

P. Berger, and the National Hormone and Pituitary Program, NIDDK, NICHHD, and USDA are thanked for the supply of antisera. Financial Support was received from the CNR, Murst, and EU.

REFERENCES