Effect of nisin-producing Lactococcus lactis starter cultures on the inhibition of two pathogens in ripened cheeses

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/141761 since 2016-07-13T09:32:46Z

Published version:
DOI:10.1111/1471-0307.12064

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is the accepted version of the following article:

doi: 10.1111/1471-0307.12064

which has been published in final form at http://dx.doi.org/10.1111/1471-0307.12064
Effect of nisin producing *Lactococcus lactis* starter cultures on the inhibition of two pathogens in ripened cheeses

BARBARA DAL BELLO\(^a\), GIUSEPPE ZEPPA\(^a\), DANIELA MANILA BIANCHI\(^b\), LUCIA DECASTELLI\(^b\), AMARANTA TRAVERSA\(^b\), SILVIA GALLINA\(^b\), JEAN DANIEL COISSON\(^c\), MONICA LOCATELLI\(^c\), FABIANO TRAVAGLIA\(^c\), LUCA COCOLIN\(^a\)*

\(^a\) DIVAPRA, Agricultural Microbiology and Food Technology sector, University of Turin, Italy.

\(^b\) Ist. Zooprofilattico Sperimentale Piemonte Liguria e Valle d’Aosta, Turin, Italy

\(^c\) Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Novara, Italy.

* Corresponding author. Via Leonardo da Vinci, 44, 10095 Grugliasco-Torino, Italy.

Tel.: +39 011 670 8553; fax: +39 011 670 8549.

E-mail address: lucasimone.cocolin@unito.it (L. Cocolin).

RUNNING TITLE Nisin producing lactococci controlling pathogens
ABSTRACT

The antimicrobial activity of *Lactococcus lactis* nisin producing strains, isolated from Italian fermented foods, was investigated in experimental cheese production on the survival of two foodborne pathogens namely *Listeria monocytogenes* and *Staphylococcus aureus*.

First trial of cheeses were manufactured using five different *L. lactis* nisin producers as starter cultures without addition of two foodborne pathogens. Gross composition, SDS-PAGE, biogenic amines quantification and sensory evaluation of cheeses were evaluated. Results showed that among five *L. lactis* employed, three of them explained the best performances in cheeses in particular regarding the low biogenic amines production (< 10 mg/Kg for each amine) and proteolysis capacity.

Semi-industrial production of cheeses individually inoculated with the three *L. lactis* nisin starter cultures selected and two pathogens, *List. monocytogenes* and *S. aureus* (each approximately 6 log cfu/mL), were manufactured. Among *L. lactis* nisin producers inoculated, one of them confirmed antimicrobial activity principally against *S. aureus*. In particular during the first three days, *L. lactis* 41FL1 lowered *S. aureus* count by 1.73 log cfu/g till reaching the highest reduction by 3.54 log cfu/g to the end of ripening (60 days). No effect in reducing *List. monocytogenes* was instead observed in cheeses with the application of nisin producing *L. lactis*.

These preliminary results have demonstrated the possibility of future applications in cheese of this new *L. lactis* 41FL1 as bioprotective starter or co-culture in controlling of *S.aureus*.

Keywords: *L. lactis*, nisin, *S. aureus*, *List. monocytogenes*, cheese
INTRODUCTION

Lactic acid bacteria (LAB) are widely used for the fermentation and preservation of a wide range of milk, meat and vegetable foods. Among LAB strains, *L. lactis* is extensively used as starter culture in the dairy industry and the potential applications of these strains in food production are well documented. In particular, in recent years great interest was focused on the possible use of certain products of their metabolism, called bacteriocins, as potential biopreservatives in foods (O’ Sullivan *et al.* 2002).

Bacteriocins are proteinaceous antimicrobial compounds ribosomally synthesized by bacteria and able to inhibit a high number of potential pathogens among which *Listeria monocytogenes* and *Staphylococcus aureus* (Cotter *et al.* 2005).

The current technologies employed to inactivate bacterial pathogens in foods are not always efficient and often represent particular treatments that may modify the physical and chemical properties of the food products. Therefore, new approaches to combat pathogenic and spoilage microorganisms are needed. In the last few years, bacteriocins from LAB have been thoroughly characterized and tested in food systems as new food preservatives (Stiles 1996).

Although many bacteriocins have been characterized, two of the most widely used in food industry as biopreservative are nisin (Class I, lantibiotic) and pediocin (Class II). Nisin is the bacteriocin with the longest history of safe use in food industry. It has been shown to be effective for the microbial control in a number of dairy products and also widely assessed in cheese manufacturing (Ross *et al.* 2002). In most of cases, the bacteriocin is incorporated into the product as a dried concentrated powder (O’Sullivan *et al.* 2002) but currently
the use of nisin-producing starter or co-starter cultures seems to be an alternative way of incorporating the bacteriocin (e.g. cheese-making process) (Sobrino-López and Martín-Belloso 2008).

Among the pathogenic bacteria potentially associated with dairy foods, S. aureus and *List. monocytogenes* are the cause of numerous food-poisoning outbreaks (De Buyser *et al.* 2001; Kousta *et al.* 2010).

Some *S. aureus* strains are able to produce staphylococcal enterotoxins (SEs) in food matrices and are responsible for food poisoning, one of the most common causes of gastroenteritis worldwide (Balaban and Rasooly 2000).

Contamination by *S. aureus* can come from raw material (e.g. mastitic milk), from the processing plant environment (e.g. biofilm on surfaces of processing plant) or from human activity (e.g. healthy carriage, sneeze, whitlow…) during food preparation and manipulation (Charlier *et al.* 2008). Among products, cooked meals and fermented milk are the most common types of food involved in *S. aureus* poisoning (Le Loir *et al.* 2003). In particular, an initial population of 3 log cfu/mL of *S. aureus* in milk may be sufficient for the production of enterotoxin A in cheese at detectable levels (Meyrand *et al.* 1998) with the possible risk of human intoxication.

List. monocytogenes and *Listeria* spp. are also widely distributed and abundant in nature as well as in food products especially ready to eat meats and dairy products (Santorum *et al.* 2012). *List. monocytogenes* is resistant to refrigeration, low pH as 3.5 and high salt concentration (Koutsoumanis and Sofos, 2004), conditions for which it has been found in a variety of raw foods such as uncooked meats and vegetables (Miettinen and Wirtanen 2005; Little *et al.* 2007; Lianou and Sofos 2007) as well as milk products and various type of
cheeses made of unpasteurized or pasteurized milk (Bille et al. 2005; Brito et al. 2008; Manfreda et al. 2005). Study published by Fox et al. (2009) showed also the relative high prevalence of *List. monocytogenes* in the dairy farm environment (water, soil, forage, milk, etc) particularly in milking facilities due to its high ability of dispersion.

EU data for 2009 showed that *List. monocytogenes* was most often detected in soft and semi-soft cheeses made from pasteurised milk (EFSA, 2011). Moreover recent outbreaks due to contamination of *Listeria* in cheeses made from pasteurised or heat-treated milk rather than raw milk were reported (Fretz et al. 2010; Koch et al. 2010; Kousta et al. 2010).

According to the EFSA Report, in EU the number of confirmed listeriosis cases has increased from 2004 to 2006 with a slight decrease observed in 2010 and among cases fatality rate was 17 % (EFSA, 2012).

The ability of *Listeria* to inhabit a wide range of environments makes this pathogen particular difficult to control in food therefore new approaches to better control this food-borne pathogen are needed.

Several LAB bacteriocins offer potential applications in food preservation and the use of bacteriocins in the food industry can help to reduce the addition of chemical preservatives as well as the intensity of heat treatments (Galvez et al. 2007).

Among the available approaches used to reduce the prevalence of *Listeria* and/or *Staphylococcus* in milk products the application of bacteriocin and/or bacteriocin producing cultures could be considered. The use of nisin producing strains as biopreservative agents to control the food-borne *S. aureus* was successfully presented by Rodriguez et al. (2005, 2001).
The objectives of the present study were i) to assess the technological potential as starter cultures of five \(L. \) lactis bacteriocin producing strains in ripened cheese; ii) to evaluate the potential application of some of these strains as bioprotective starter cultures in cheese productions inoculated with \(S. \) aureus and \(Listeria \) monocytogenes.

MATERIALS AND METHODS

Microorganisms and culture conditions

Four \(L. \) lactis nisin Z producers (44SGLL3, 29FL1, 28FL1 and 41FL1) and one \(L. \) lactis lacticin 481 producer (32FL3) (Dal Bello et al. 2010) were selected and used as starters in cheese-making trials. Commercial lyophilized \(L. \) lactis Lyoto MO 540 non-bacteriocin producer (Sacco, Como, Italy) was used as control. Five different cheese makings were carried out on pasteurized cow milk. \(L. \) lactis strains were cultured twice in M17 broth (Oxoid, Milano, Italy) and incubated overnight at 30°C. All revitalized lactococci were cultured in reconstituted skim milk at 30°C for 24 h before use in cheesemaking.

** Manufacture of cheese**

Thermally treated whole milk (63°C for 30 min) was transferred into a 5 L vat, cooled to 37°C and maintained to this temperature in a water-bath before the inoculation with 8-9 log cfu/mL of \(L. \) lactis strains. Rennet (1:10000 of 75% chymosin - 25% bovine pepsin) (Sacco) was added and the milk held for 1 hour to obtain a firm coagulum. After the coagulum was cut, the curd was left for 30 min at 37°C. The curd was then put in the mould and turned upside down. After
the moulding the curd was salted in a salt saturated solution (20%) for 15 hours and then maintained in a ripening room at 8°C and 90% of humidity for 60 days. After the ripening time, the cheese was subjected to chemical and sensory analysis.

Chemical analyses of cheeses

Gross composition

Gross composition of cheese (moisture, pH, fat, ash, total nitrogen and soluble nitrogen) was determined using Official Methods of Analysis (AOAC 1990). The ripening index was also determined and calculated as percentage of water soluble nitrogen on total nitrogen. The analyses were performed in triplicate.

SDS-PAGE Electrophoresis

SDS-PAGE was performed according to the method of Laemmli (1970) using a Mini Protean III Dual Slab Cell apparatus (Bio-Rad Laboratories S.r.l., Segrate, Italy). The analysis of proteins was done on the urea-soluble fraction of cheese obtained using a 6 M urea solution at pH 8.5. Gels were stained with Coomassie Blue R-250 to reveal protein bands. Fluor-S Multimager and Quantity One software (Bio-Rad) were used for gels analysis. Gel bands were expressed as relative percentage for each sample and used as parameters for statistical analysis.

Biogenic amines quantification

Biogenic amines extraction was performed by using 20 g of cheese added with 95 mL of pure HPLC water (Milli-Q, Millipore, Billerica, MA): each sample was
homogenized for 2 min. Then 5 mL trichloroacetic acid (TCA, 100% w/v) (Fluka, Buchs, Switzerland) were added. After centrifugation at 2000 rpm for 15 min, 50 mL of supernatant were extracted for three times with 15 mL of ether. The volume of aqueous solution (after removing traces of ether in a Rotavapor) was adjusted to 50 mL with HPLC water and filtered through a 0.22 µm syringe filter (Millipore, Bedford, MA, USA) before HPLC analyses as described elsewhere (Arlorio et al. 1998).

Biogenic amines (tyramine, histamine, tryptamine and 2-phenylethylamine) and their precursor amino acids (tyrosine, histidine, tryptophan and phenylalanine) were determined using an ion-pair HPLC method already optimized (Coisson et al. 2004). Analyses were carried out on an Shimadzu Class VP HPLC system (Shimadzu, Milano, Italy) equipped with a temperature controller (Column Oven CTO-10AS), UV-VIS detector SPD-10A, using a ODS 2 column (4.6 I.D., 250 mm length) (Waters, Milano, Italy) and two pumps. The ion pair reagent heptanesulphonate/phosphate was prepared by dissolving sodium heptanesulphonate (8.3 mM) and KH$_2$PO$_4$ (9.0 mM) in ultra-pure water and adjusting the pH to 3.5 with phosphoric acid. 20 µL/L of octylamine were added as second ion-pair reagent (Eluant 1). The solution was freshly prepared each second day, filtered (0.45 µm, Millipore type HA) and degassed before use.

Pump A: Eluant 1.

Pump B: Methyl alcohol HPLC-grade.

Gradient: 100% pump A for 1 minute; pump B from 0 to 26% in 5.25 minutes; pump B from 26 to 5% in 9 minutes; pump B from 35 to 42% in 1.5 minutes; pump B at 42% for 24 minutes; pump A at 100% for 9.40 minutes.

Flow rate: 1.0 mL min$^{-1}$. Detection: (UV) 215 nm.
The column was kept at 27°C during the analyses. Sample volume injected 10 µL.

Sensory evaluation

A ranking test to evaluate the differences between the cheeses produced with commercial stater and nisin producing strains was performed (EN ISO 2006a, EN ISO 2006b). An hedonic unipolar scale with values between 0 (dislike extremely) and 10 (like extremely) was used (EN ISO 2003). Assessors could also justify their assessment with a brief description of the product. The panel was made up of ten tasters (6 male and 4 female, between 30 and 42 years old, recruited according to EN ISO regulations) (EN ISO 1991; EN ISO 2008). The sensory laboratory was designed according to EN ISO 8589 with separate booths (EN ISO 2007).

Statistical analysis

All statistical analyses were performed using the free statistical software R 2.8.1 version (R Development Core Team 2008). The PCA and the subsequent hierarchical classification were performed after a normalization step in order to minimize the differences between the magnitude levels of the results. All the data were then previously mean centered and scaled to unit variance, dividing the variables mean by their respective standard deviations.

Evaluation of S. aureus and List. monocytogenes growth in ripened cheese made with nisin producing starter cultures

Microorganisms and culture conditions
L. lactis nisin Z producers (44SGLL3, 29FL1 and 41FL1) were employed as starter cultures to manufacture cheese contaminated with S. aureus and List. monocytogenes.

Prior to cheese production all revitalized lactococci were cultured in reconstituted skim milk at 30°C for 24 h and indicator strains List. monocytogenes NCTC 10527 and S. aureus ATCC®6538™ propagated twice in Brain Heart Infusion broth (BHI) (Oxoid) at 37°C for 18 h.

Manufacture of cheese inoculated with List. monocytogenes and S. aureus

In order to validate the inhibition effect of the nisin producing L. lactis against List. monocytogenes and S. aureus, a semi-industrial cheesemaking was carried out.

Pasteurized high quality milk kindly provided by ABIT (TreValli Cooperlat, Turin, Italy) was transferred into a 80 L vat and heated to 37°C. A bacteria inoculum (7-8 log cfu/mL) of L. lactis strains, 44SGLL3, 29FL1, 41FL1 nisin Z producers and a non-bacteriocin producer L. lactis used as control, were added to milk in three separated trials. Each trial was separately inoculated only with L. lactis strains, with L. lactis and S. aureus, with L. lactis and List. monocytogenes. Pathogen concentration was approximately 6 log cfu/mL. L. lactis 44SGLL3, active only against S. aureus, was not employed in cheese spiked with List. monocytogenes. Cheese was manufactured as described above (see Manufacturing of cheese par.).
Microbiological analysis

The analyses on cheese inoculated with pathogenic strains were carried out after the cut of the curd (time 0), on curd at 24 h, curd after brine and on cheeses at 3, 7, 15, 30, 45 and 60 days of ripening. For enumeration of total lactococci, samples of cheese (10 g) were homogenized in ¼ Ringer's solution (Oxoid). Decimal dilutions were performed and plated on M17 agar (Oxoid). In order to assess the presence of the inoculated *L. lactis* bacteriocin producing strains, after the enumeration the count plates were covered with a soft BHI agar layer (8 g/L agar) containing about 5-6 log cfu/mL of the indicator strain (*List. monocytogenes* or *S. aureus*). The plates were kept at 30°C for 24 h in aerobic condition and after incubation the bacteriocin producing colonies were confirmed by observing an halo of inhibition. The pathogenic strains were also counted, *S. aureus* by using RPF medium (EN ISO 6888-2/1999) and *List. monocytogenes* by using ALOA agar (EN ISO 11290-2/1998) after incubation at 37°C for 24-48 h.

RESULTS AND DISCUSSION

Chemical parameters of cheese inoculated with lactococcal bacteriocin producing starter cultures

Gross composition

Table 1 reports the gross chemical composition of cheeses produced by inoculation of five *L. lactis* (44SGLL3, 29FL1, 41FL1, 28FL1 and 32FL3) bacteriocin producing strains after a ripening period of 60 days.
In general, chemical parameters did not highlight particular differences among the cheeses. The differences in ashes, fat and protein could be attributed to variations in the chemical composition of the raw milk used in cheese making. The lowest value of pH was observed in cheese made with *L. lactis* 32FL3 for which the highest value in proteolysis was detected (ripening index: 31.8 %). In cheese made with *L. lactis* 41FL1 it was instead observed the lowest rate of proteolysis (ripening index: 23.4%).

Electrophoretic protein analysis

To evaluate the impact of the strains on the caseins primary proteolysis electrophoretic analyses of urea-soluble protein extract were performed in SDS-PAGE (Figure 1). The electrophoretic profiles obtained for the cheeses analysed were similar concerning the molecular weight of the bands revealed, but their relative intensities were different, denoting variable proteolytic activities in the cheeses. The primary proteolysis was specially in charge to \(\alpha_{s1} \)-casein (very evident for the strains 29FL1 and 32FL3), and could be attributed to residual chymosin activity, to some lactococcal cell envelope-associated proteinases (Sousa *et al.* 2001), and also to the effects of pH on the enzyme activities as indirect effects of the strains used as starter.

Biogenic amines and related precursor amino acids

Biogenic amines (BA) production in cheese has been most extensively studied with respect to histamine and tyramine, probably the two most important BA of bacterial origin in food, due to their toxicological aspects (Stratton *et al.* 1991).
Data pertaining to free amino acid and biogenic amine concentrations detected in cheese inoculated with the five *Lact. lactis* (44SGLL3, 29FL1, 41FL1, 28FL1 and 32FL3) bacteriocin producing strains are reported in Table 2. Data are expressed as mg/Kg (mean ± standard deviation) for three replicate analyses. The concentration of the precursor amino acids quantified was low (< 150 mg/Kg) for 4 cheeses (44SGLL3, 29FL1, 41FL1 and 32FL3), denoting a reduced secondary proteolysis. Only the cheese produced using the strain 28FL1 highlights a concentration of amino acids in the range of other commercial cheeses, such as Toma Piemontese, a PDO cheese produced with a similar technology and a ripening of 60 days (Arlorio *et al.* 2003).

Data on biogenic amines obtained showed that three of five strains applied as starters in cheese making did not show intense decarboxylase activity. For these strains the BA concentration detected was quite low (< 10 mg/Kg for each amine) in comparison with other cheeses after a similar (60 days) ripening time (Komprda *et al.* 2007, Arlorio *et al.* 2003). In contrast, one strain, *Lact. lactis* 28FL1, exhibited high tyramine production, reaching 136 mg/Kg for tyramine, and another, *Lact. lactis* 32FL3, a medium level (> 20 mg/Kg for tyramine).

Sensory evaluation

Sensory evaluations showed significant differences (*p*<0.05) among cheeses inoculated with *L. lactis* strains and control cheeses. Cheeses obtained with 44SGLL3, 41FL1, 32FL3 strains were less appreciated than control for bitterness and sour-acid taste.

Instead cheeses manufactured with 28FL1 and 29FL1 strains were more appreciated than control cheeses.
Statistical analysis on proteolysis data

To evaluate globally the impact of the strains on protein fraction, a statistical multivariate analysis was performed using all the data available related to proteolysis (N total and soluble, ripening index, electrophoretic patterns, free amino acids and biogenic amines, a total of 40 parameters). The analysis performed was a Principal Component Analysis (PCA) followed by hierarchical classification on principal components (HCPC), a further unsupervised analysis in order to cluster the strains (Figure 2).

Principal component analysis yielded three principal components explaining about 85% of the total variance. The loadings values, which express the correlation degree between the new dimensions (i.e. the principal components, PCs) and the old variables, are presented in Table 3; significant correlation coefficients and the corresponding variables are highlighted using the boldface type. Among the parameters considered, only the electrophoretic protein fingerprint was useful for the samples discrimination; N total and soluble, ripening index, free amino acids and biogenic amines were not significant. Particularly, the first PC, explaining 37.4% of the total variance, negatively correlates with bands of molecular weight (MW) of 16 and 13 KDa, corresponding respectively to the α_{s1}-casein f80-199 fragment and $\gamma_2+\gamma_3$ caseins. PC2 (27.7% of the total variance) was principally characterized by relative intensity of MW 64 band (significant negative correlation), while was positively associated to bands of MW 35, 20 and 9 (respectively intact α_{s1}-casein, an unknown peptide and α_{s1}-casein f121-199 fragment), confirming that
the prevalence of proteolysis in charge to α_{s1}-casein. The band attributions were performed following literature data (Mooney et al. 1998, Gaiaschi et al. 2000).

Considering the results obtained from the HCPC analysis (Figure 2), the strains were classified in three groups: a group including 29FL1, 41FL1 and 44SGL3, and two separated strains. The strain 28FL1 was characterised by higher levels of free phenylalanine and biogenic amines; the strain 32FLC1 had the higher ripening index and the minimal levels of intact α_{s1}-casein.

Evaluation of antistaphylococcal and antilisterial activity of nisin producing strains in cheese

LAB counts in cheese inoculated with List. monocytogenes and S. aureus

To evaluate the antimicrobial activity of bacteriocin producing strains against S. aureus and List. monocytogenes, three *L. lactis* nisin Z producing strains (44SGLL3, 41FL1 and 29FL1), previously selected for their performance in the primary experimental cheese and minimal biogenic amines production, were employed as starter cultures in new experimental cheese productions. A commercial cheese starter *L. lactis* Lyoto MO 540 non-bacteriocin producer (Sacco) was also employed as control.

Figure 3 shows the viable counts of lactococcal strains added as starters during the ripening of cheese inoculated with S. aureus (panel a) and List. monocytogenes (panel b).

In the cheese made with S. aureus an increase of ~ 2-3 log cfu/g in lactococcal population during the first 3 days from manufacture was observed both in control cheese inoculated with the non-bacteriocin producer and in cheese inoculated with the two nisin Z producers (41FL1 and 29FL1). With respect to
the initial levels of inoculum (7-8 log cfu/g), *L. lactis* strains 44SGLL3 did not show a particular increase in counts from time 0 to day 3. From then to the end of ripening period (60 days) a reduction of ~2 log cfu/g was observed for non-bacteriocin producer and 41FL1 and 29FL1 strains, while 44SGLL3 showed the highest growth after 7 days and rapidly decrease by ~3 log cfu/g to the end of ripening time.

In cheese spiked with *List. monocytogenes* (Figure 3b), *L. lactis* commercial strain and *L. lactis* nisin producing strains, 29FL1 and 41FL1, showed good viability during all the ripening period (60 days). In particular, during the first 30 days of ripening the viable count increased by 1-2 log cfu/g for *L. lactis* 29FL1 and 2-3 log cfu/g for *L. lactis* 41FL1 and the non-bacteriocin producer. From day 30 to day 60 a slight decrease of ~1 log cfu/g was detected for two nisin producers while the lactococcal count in control cheese remained almost unchanged.

In both cheese manufactures, *L. lactis* growth mainly occurred during the first 24 hours maybe due to the physical retention of the cells in the coagulum which led their multiplication during coagulation and whey drainage. In particular, in cheeses spiked with pathogens, both *L. lactis* 41FL1 and 29FL1 as well as commercial strain showed the highest increases during first three days maintaining unchanged their counts up to the end of ripening. Among two nisin strains, *L. lactis* 29FL1 showed similar trend compared to commercial starter, in particular in cheese spiked with *List. monocytogenes*. *L. lactis* 41FL1 count was lower in cheese spiked with *List. monocytogenes* maybe due to its initial inoculation level.
On the basis of the results obtained we can conclude that no great differences were shown in the counts of *L. lactis* nisin and non-bacteriocin producing strains in presence of pathogens less than for *L. lactis* 44SGLL3 which showed a weak ability to grow when inoculated with *S. aureus*. In particular, *L. lactis* 44SGLL3 showed its highest increase from day 3 to day 7 leading to a rapid decrease from day 7 to the end of the ripening (Figure 3b).

The pH values of the cheese after manufacture and during the ripening gradually decreased from 6.9 (time 0) to values of 4.8-5 (24 hours) to remain unchanged up to the end of ripening (60 days) (data not shown). No differences in pH value were detected both in cheeses made with the non-bacteriocin producer and in cheese made with nisin positive cultures. Therefore considering the evolution of the growth showed by the commercial starter culture and the pH value reached in cheese during 60 days of ripening, these three *L. lactis* nisin producers could be take into account for application as possible acidifying starter or co-starter cultures in cheese production.

Survival of *S. aureus* in cheese

Cheese is one of the principal ecosystem where LAB are the dominant microbiota and where *S. aureus* is prone to major public health problems. Recent studies reported the ability of *S. aureus* to grow both during acidification of milk (Charlier *et al.* 2008) and during the production of different type of cheeses productions (Lamprell 2003; Meyrand *et al.* 1998).

The survival of *S. aureus* in cheese manufactured with the *L. lactis* non-bacteriocin producer and nisin producers is shown in Table 4. The pathogen was able to grow in the presence of the non-bacteriocin producing culture,
increasing by ~1-1.50 log cfu/g within 30 days. In particular, *S. aureus* showed the highest growth after the first 24 hours, in particular in control cheese and in cheese inoculated with *L. lactis* 41FL1, maybe due to the concentration of the pathogen inside the curd after the draining (Charlier *et al.* 2008) to achieve little decrease by 1 log cfu/g at day 3 and day 15. These apparent decreases of *S. aureus* growth could be attributed to the lack of cells entrapped in the cheese. At the end of ripening time (60 days), the viable counts of *S. aureus* slightly decreased by ~2 log cfu/g. Similar results were also presented by Arqués *et al.* (2005), Erkmen (1995) and Meyrand *et al.* (1998) in three different types of ripened cheese, raw milk cheese, Feta and Camembert-type goat’s cheese, respectively.

Among the three *L. lactis* nisin producing strains, surprisingly strain 41FL1 displayed the best antimicrobial activity and ability to reduce *S. aureus*. In particular, this nisin producing strain was able to decrease *S. aureus* counts by 1.73 log cfu/g within the first 3 days. The values in *S. aureus* reduction observed in this study were higher than those reported by Rodriguez *et al.* (2005). In that study, cheese manufactured with nisin producing cultures reduced the pathogen counts by 1.02 log cfu/g during 30 days of cheese ripening. From days 3 to 30, *S. aureus* counts remained constant, however between days 30 and 60 the highest inactivation and reduction in the growth of 3.54 log cfu/g was observed.

S. aureus counts in cheese inoculated with *L. lactis* strains 29FL1 and 44SGLL3 strains did not display important decreases for the entire ripening period. Among these, lowest value of *S. aureus* was only achieved in *L. lactis* strain 29FL1 after 45 day of ripening.
Survival of *List. monocytogenes* in cheese

Many studies reported the ability of *List. monocytogenes* to grow in different semi-ripened cheeses varieties such as Cheddar, Camembert and Manchego (Linton *et al.* 2008; Nuñez *et al.* 1997; Gahan *et al.* 1996), and several researches reported the efficacy with which actively growing nisin-producing starter cultures in cheeses inhibit *List. monocytogenes* (Rodriguez *et al.* 2005; Benech *et al.* 2002).

The results obtained from this study (Table 5) showed that *List. monocytogenes* was not influenced by *L. lactis* employed during all ripening period. In cheese made with non-bacteriocin producing culture, *List. monocytogenes* increased ~1 log cfu/g from curd (time 0) to day 3. A decrease of pathogen numbers of ~2 log cfu/g was instead observed from day 3 to the end of ripening period in agreement with previous studies in semi-hard cheese manufactured with commercial lactic culture (Rodriguez *et al.* 2005; 2001). The application of nisin producing *L. lactis* strains (29FL1 and 41FL1) had less effect in reducing *List. monocytogenes* counts than cheese manufactured with non-bacteriocin producing culture. In particular, in cheese made with nisin producing strains *List. monocytogenes* counts increased about ~1-2 log cfu/g from curd (time 0) to the end of ripening period.

The data obtained in this study showed that the nisin producing starter cultures selected in this study cannot be used to control *List. monocytogenes* in ripened cheese. Perhaps the high inoculum of *List. monocytogenes* added to milk in present work (6 log cfu/mL) may be the reason why counts of pathogen in cheeses did not decrease throughout the ripening period.
CONCLUSIONS
Cheese made by using nisin producing *L. lactis* 41FL1 as starter achieved reduction up to 3.54 log cfu/g for *S. aureus* in comparison to control cheese inoculated with a commercial starter. None inhibition effect was instead observed in cheese spiked with *List. monocytogenes*, presumably for the higher level of pathogen inoculated.

From the results obtained it can be concluded that in addition to a classical technological starter cultures usually employed in cheese making, *L. lactis* 41FL1 nisin Z producer could be considered a promising candidate as potential bioprotective starter or co-starter culture to control and reduce *S. aureus* counts. New experimental approaches to evaluate the effective and potential use of this strain are required. Alternatively, the strain could be used for the production of crude nisin preparation for the direct application in foods with the aim in extending the biopreservation and shelf-life of food since nisin is authorised as food additive by Directive 95/2/EC.

ACKNOWLEDGEMENTS
This research was supported by funds from the Piedmont Region, Italy – research program CIPE 2006. Authors would like also to thank Doct. D’Alessio, ABIT TreValli Cooperlat, Piemonte, Italy to have provided the high quality milk for the cheesemaking productions.

REFERENCES

cheese and a contaminated dairy plant to establish prevalence, relatedness, and sources of *Listeria monocytogenes* isolates. *Applied and Environmental Microbiology* **74** 4954-4961.

Figure legends

Figure 1 SDS-PAGE profiles of caseins extracted from ripened cheeses inoculated with: 1, 28FL1; 2, 44SGLL3; 3, 29FL1; 4, 41FL1; 5, 32FL3; M, Molecular marker.

Figure 2 PCA and HCPC analysis score plot of the information obtained by proteolysis parameters (total and soluble N, ripening index, electrophoretic pattern, free amino acids and biogenic amines).

Figure 3 Growth of L. lactis commercial culture (ظروف); 44SGLL3 (■); 41FL1 (x); 29FL1 (▲) (log cfu/g) used as starter in ripened cheese contaminated with S. aureus (a) and List. monocytogenes (b).
Tables

Table 1 Gross chemical composition of cheese inoculated with *L. lactis* bacteriocin producers. Data are presented as mean ± standard deviation for three replicates

<table>
<thead>
<tr>
<th>L. lactis strain</th>
<th>Moisture (%)</th>
<th>pH</th>
<th>Ashes (% d.w.)</th>
<th>Fat (% d.w.)</th>
<th>Protein (% d.w.)</th>
<th>R.I. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44SGLL3</td>
<td>41.38±0.02</td>
<td>5.81±0.01</td>
<td>5.53±0.01</td>
<td>45.06±2.79</td>
<td>37.53±1.41</td>
<td>30.6</td>
</tr>
<tr>
<td>29FL1</td>
<td>41.32±0.31</td>
<td>5.69±0.04</td>
<td>6.59±0.05</td>
<td>42.94±1.51</td>
<td>44.90±0.46</td>
<td>30.5</td>
</tr>
<tr>
<td>41FL1</td>
<td>37.16±0.31</td>
<td>5.54±0.04</td>
<td>5.87±0.02</td>
<td>43.90±0.72</td>
<td>43.81±0.43</td>
<td>23.4</td>
</tr>
<tr>
<td>28FL1</td>
<td>37.15±0.13</td>
<td>5.58±0.01</td>
<td>6.34±0.01</td>
<td>39.14±0.37</td>
<td>47.24±1.13</td>
<td>31.7</td>
</tr>
<tr>
<td>32FL3</td>
<td>34.19±0.12</td>
<td>5.42±0.01</td>
<td>5.12±0.03</td>
<td>55.74±1.89</td>
<td>35.63±0.62</td>
<td>31.8</td>
</tr>
</tbody>
</table>

R.I. – ripening index

d.w.: dry weight
Table 2 Free amino acids and biogenic amines concentration (mg/Kg) in cheese samples inoculated with five starters of *L. lactis* bacteriocin producers

<table>
<thead>
<tr>
<th>L. lactis strain</th>
<th>TYR</th>
<th>HIS</th>
<th>PHE</th>
<th>TRP</th>
<th>TYM</th>
<th>HIM</th>
<th>2-PHM</th>
<th>TRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>44GGLL3</td>
<td>71.0±1.5</td>
<td>28.9±0.6</td>
<td>111.4±0.7</td>
<td>10.9±0.2</td>
<td>4.8±0.7</td>
<td>4.3±0.6</td>
<td>Tr.</td>
<td>0.9±0.1</td>
</tr>
<tr>
<td>29FL1</td>
<td>31.6±0.2</td>
<td>23.8±0.1</td>
<td>60.3±0.3</td>
<td>2.9±0.1</td>
<td>4.7±0.1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>41FL1</td>
<td>22.2±0.6</td>
<td>11.2±9.7</td>
<td>49.4±1.3</td>
<td>2.4±0.2</td>
<td>7.0±0.4</td>
<td>5.0±0.8</td>
<td>n.d.</td>
<td>Tr.</td>
</tr>
<tr>
<td>28FL1</td>
<td>27.7±1.2</td>
<td>21.2±0.6</td>
<td>409.7±7.4</td>
<td>58.3±0.8</td>
<td>138.8±22</td>
<td>34.2±3.8</td>
<td>20.6±5.2</td>
<td>n.d.</td>
</tr>
<tr>
<td>32FL3</td>
<td>24.5±0.4</td>
<td>21.1±0.2</td>
<td>88.8±2.1</td>
<td>4.6±0.0</td>
<td>202±13</td>
<td>Tr.</td>
<td>Tr.</td>
<td>1.6±0.0</td>
</tr>
</tbody>
</table>

TYR, tyrosine; HIS, histidine; PHE, phenylalanine; TRP, tryptophan; TYM, tyramine; HIM, histamine; 2-PHM, 2-phenylethylamine; TRM, tryptamine.

Tr., <LOQ; N.D, <LOD

n.d.: not detected
Table 3 Principal component loadings (PC1, PC2 and PC3) related to Figure 2.

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N soluble</td>
<td>0.5687</td>
<td>-0.0998</td>
<td>0.8079</td>
</tr>
<tr>
<td>N total</td>
<td>-0.4253</td>
<td>-0.0806</td>
<td>-0.3861</td>
</tr>
<tr>
<td>Ripening Index</td>
<td>0.5513</td>
<td>-0.0919</td>
<td>0.8190</td>
</tr>
<tr>
<td>Tyr</td>
<td>-0.3047</td>
<td>0.5592</td>
<td>0.1125</td>
</tr>
<tr>
<td>His</td>
<td>-0.2018</td>
<td>0.4069</td>
<td>0.7265</td>
</tr>
<tr>
<td>Phe</td>
<td>0.6783</td>
<td>0.6131</td>
<td>0.2409</td>
</tr>
<tr>
<td>Trp</td>
<td>0.6509</td>
<td>0.6449</td>
<td>0.2007</td>
</tr>
<tr>
<td>Tyramine</td>
<td>0.7182</td>
<td>0.4925</td>
<td>0.2064</td>
</tr>
<tr>
<td>Histamine</td>
<td>0.6859</td>
<td>0.6010</td>
<td>0.0641</td>
</tr>
<tr>
<td>2-Phenylethylamine</td>
<td>0.7365</td>
<td>0.6033</td>
<td>0.2092</td>
</tr>
<tr>
<td>Tryptamine</td>
<td>0.4328</td>
<td>-0.8422</td>
<td>0.1665</td>
</tr>
<tr>
<td>MW75</td>
<td>-0.8253</td>
<td>-0.5258</td>
<td>-0.1439</td>
</tr>
<tr>
<td>MW72</td>
<td>0.3053</td>
<td>-0.8022</td>
<td>-0.3218</td>
</tr>
<tr>
<td>MW64</td>
<td>0.1980</td>
<td>-0.9543</td>
<td>0.1564</td>
</tr>
<tr>
<td>MW56</td>
<td>0.6730</td>
<td>-0.5710</td>
<td>0.3112</td>
</tr>
<tr>
<td>MW50</td>
<td>0.8212</td>
<td>-0.2648</td>
<td>0.0530</td>
</tr>
<tr>
<td>MW48</td>
<td>-0.7338</td>
<td>0.4054</td>
<td>0.3007</td>
</tr>
<tr>
<td>MW47</td>
<td>0.0499</td>
<td>-0.6711</td>
<td>0.1967</td>
</tr>
<tr>
<td>MW43</td>
<td>-0.6077</td>
<td>0.5805</td>
<td>0.5389</td>
</tr>
<tr>
<td>MW41</td>
<td>0.5366</td>
<td>-0.7232</td>
<td>0.3562</td>
</tr>
<tr>
<td>MW38</td>
<td>0.5705</td>
<td>-0.2062</td>
<td>-0.7333</td>
</tr>
<tr>
<td>MW35</td>
<td>0.4217</td>
<td>0.8807</td>
<td>-0.2025</td>
</tr>
<tr>
<td>MW32</td>
<td>0.7944</td>
<td>0.2728</td>
<td>-0.3368</td>
</tr>
<tr>
<td>MW26.5</td>
<td>-0.6867</td>
<td>-0.4034</td>
<td>0.3521</td>
</tr>
<tr>
<td>MW24.5</td>
<td>0.4459</td>
<td>0.0744</td>
<td>-0.7636</td>
</tr>
<tr>
<td>MW24</td>
<td>-0.8228</td>
<td>0.1965</td>
<td>-0.2858</td>
</tr>
<tr>
<td>MW23</td>
<td>0.8059</td>
<td>-0.4178</td>
<td>0.4190</td>
</tr>
<tr>
<td>MW22</td>
<td>-0.7726</td>
<td>-0.4632</td>
<td>0.4322</td>
</tr>
<tr>
<td>MW21</td>
<td>-0.8080</td>
<td>-0.1198</td>
<td>0.5009</td>
</tr>
<tr>
<td>MW20</td>
<td>0.3689</td>
<td>0.8977</td>
<td>-0.0161</td>
</tr>
<tr>
<td>MW19</td>
<td>-0.8525</td>
<td>0.2880</td>
<td>0.2920</td>
</tr>
<tr>
<td>MW18.5</td>
<td>-0.2616</td>
<td>0.0807</td>
<td>0.7287</td>
</tr>
<tr>
<td>MW17.5</td>
<td>0.1014</td>
<td>0.8717</td>
<td>-0.0390</td>
</tr>
<tr>
<td>MW16</td>
<td>-0.8821</td>
<td>0.0663</td>
<td>0.3095</td>
</tr>
<tr>
<td>MW15</td>
<td>0.6823</td>
<td>-0.6386</td>
<td>0.0811</td>
</tr>
<tr>
<td>MW14</td>
<td>0.1763</td>
<td>-0.2290</td>
<td>0.9539</td>
</tr>
<tr>
<td>MW13</td>
<td>-0.9399</td>
<td>-0.1227</td>
<td>-0.3124</td>
</tr>
<tr>
<td>MW12</td>
<td>-0.8222</td>
<td>0.5194</td>
<td>-0.2280</td>
</tr>
<tr>
<td>MW10</td>
<td>-0.0500</td>
<td>0.6937</td>
<td>0.5324</td>
</tr>
<tr>
<td>MW9</td>
<td>0.3448</td>
<td>0.8959</td>
<td>0.0003</td>
</tr>
<tr>
<td>Variance (%)</td>
<td>37.40</td>
<td>29.66</td>
<td>17.95</td>
</tr>
<tr>
<td>Cumulative variance (%)</td>
<td>37.40</td>
<td>67.06</td>
<td>85.01</td>
</tr>
</tbody>
</table>

PC, principal component; Tyr, tyrosine; His, histidine; Phe, phenylalanine; Trp, tryptophan; MW, molecular weight
Table 4 Survival of *S. aureus* (log cfu/g) in cheeses manufactured with commercial cultures (Control) and *L. lactis* nisin producers

<table>
<thead>
<tr>
<th>L. lactis strain</th>
<th>0</th>
<th>24h</th>
<th>after the brine</th>
<th>3d</th>
<th>7d</th>
<th>15d</th>
<th>30d</th>
<th>45d</th>
<th>60d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6,57</td>
<td>7,75</td>
<td>7,48</td>
<td>6,85</td>
<td>7,23</td>
<td>6,23</td>
<td>7,67</td>
<td>5,08</td>
<td>5,57</td>
</tr>
<tr>
<td>44SGL L3</td>
<td>7,11</td>
<td>7,26</td>
<td>7,20</td>
<td>7,26</td>
<td>7,30</td>
<td>8,48</td>
<td>9,04</td>
<td>8,40</td>
<td>7,90</td>
</tr>
<tr>
<td>29FL1</td>
<td>7,95</td>
<td>7,38</td>
<td>7,81</td>
<td>7,48</td>
<td>7,54</td>
<td>7,91</td>
<td>7,91</td>
<td>5,45</td>
<td>6,23</td>
</tr>
<tr>
<td>41FL1</td>
<td>7,54</td>
<td>8,28</td>
<td>8,11</td>
<td>5,81</td>
<td>6,36</td>
<td>5,66</td>
<td>5,93</td>
<td>4,36</td>
<td>2,39</td>
</tr>
</tbody>
</table>
Table 5 Survival of *List. monocytogenes* (log cfu/g) in cheeses manufactured with commercial *L. lactis* non-bacteriocin producer (Control) and *L. lactis* nisin producers

<table>
<thead>
<tr>
<th>L. lactis strain</th>
<th>0</th>
<th>24h</th>
<th>after the brine</th>
<th>3d</th>
<th>7d</th>
<th>15d</th>
<th>30d</th>
<th>45d</th>
<th>60d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7,04</td>
<td>7,88</td>
<td>7,41</td>
<td>8,08</td>
<td>5,00</td>
<td>5,89</td>
<td>5,92</td>
<td>6,90</td>
<td>4,85</td>
</tr>
<tr>
<td>29FL1</td>
<td>7,38</td>
<td>8,20</td>
<td>8,49</td>
<td>7,91</td>
<td>8,43</td>
<td>7,58</td>
<td>7,41</td>
<td>7,08</td>
<td>7,32</td>
</tr>
<tr>
<td>41FL1</td>
<td>7,11</td>
<td>8,20</td>
<td>8,11</td>
<td>8,66</td>
<td>8,68</td>
<td>8,41</td>
<td>8,49</td>
<td>8,94</td>
<td>7,72</td>
</tr>
</tbody>
</table>
Figures

Figure 1

![Figure 1 Image]
Figure 2

Factor map
Figure 3

a)

Log CFU/g

Ripening time

0 24h after the birth 3d 7d 15d 30d 45d 60d

b)

Log CFU/g

Ripening time

0 24h after the birth 3d 7d 15d 30d 45d 60d