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Granular semantic user similarity
in the presence of sparse data

Francesco Osborne, Silvia Likavec and Federica Cena

Università di Torino, Dipartimento di Informatica, Torino, Italy
{osborne,likavec,cena}@di.unito.it

Abstract. Finding similar users in social communities is often challenging, es-
pecially in the presence of sparse data or when working with heterogeneous or
specialized domains. When computing semantic similarity among users it is de-
sirable to have a measure which allows to compare users w.r.t. any concept in
the domain. We propose such a technique which reduces the problems caused by
data sparsity, especially in the cold start phase, and enables granular and context-
based adaptive suggestions. It allows referring to a certain set of most similar
users in relation to a particular concept when a user needs suggestions about a
certain topic (e.g. cultural events) and to a possibly completely different set when
the user is interested in another topic (e.g. sport events). Our approach first uses
a variation of the spreading activation technique to propagate the users’ inter-
ests on their corresponding ontology-based user models, and then computes the
concept-biased cosine similarity (CBC similarity), a variation of the cosine simi-
larity designed for privileging a particular concept in an ontology. CBC similarity
can be used in many adaptation techniques to improve suggestions to users. We
include an empirical evaluation on a collaborative filtering algorithm, showing
that the CBC similarity works better than the cosine similarity when dealing with
sparse data.

Keywords: Recommender systems, ontology, propagation of interests, user similarity,
data sparsity, cosine similarity

1 Introduction

One of the most basic assumptions in social communities is that people who are known
to share specific interests are likely to have additional related interests. This assumption
is used by many approaches, especially in collaborative-filtering recommender systems,
which recommend items that people with tastes and preferences similar to the target
user liked in the past [13]. User profiles can be compared using a range of metrics, such
as cosine similarity [16], the Pearson Correlation Coefficient [1], Jaccard’s index [6], to
name just a few.

However, these traditional methods for computing similarity do not come without
limitations. First, similarity is difficult to calculate in the presence of data sparsity, a
problem which arises when the user ratings are spread over items that seldom overlap.
This especially happens in two situations: at the beginning of the interaction, when we



do not know much about the user (the cold start problem [12]) and when the domain is
huge and we do not have the user interest values for all the concepts in the domain.

Second, these similarity measures usually take into account all the concepts in
the domain. This solution may not always be flexible enough, especially in a non-
specialized and heterogeneous domain, i.e. the domain covering a range of very dif-
ferent topics and subtopics. In this case, rarely similar people show to have the same
tastes for all the different concepts. Even when the domain is not so heterogeneous, it
frequently happens that people have the same tastes for some portions of the domain,
but different ones for others. There are many cases in which it is very important to be
able to be more granular and to establish a different set of similar users for different con-
cepts. For example, two users can have a very different tastes for many elements of the
domain and still be very similar w.r.t. a certain topic or subculture, such as Rock Music
or Wine. Computing the user similarity over all the elements of the domain does not
consider this aspect, wasting useful information, which is a shame especially in the
presence of sparse and poor data.

To address these two issues (sparsity problem and computing similarity over the
whole domain), we introduce the concept-biased cosine similarity (CBC similarity), a
novel similarity metric designed to privilege certain concept in an ontology, according
to the recommendation context, and overcome data sparsity.

The prerequisites for our approach are the following:
– semantic representation of the domain knowledge using an OWL ontology1 where

domain concepts are taxonomically organized;
– user model defined as an overlay over the domain ontology;
– a strategy for propagation of the user interest values in the user model.
– a methodology to calculate for each user a set of similar users w.r.t. a certain topic.

Our approach consists of three steps. First, we use a variation of the spreading acti-
vation technique, introduced in [3, 4], to propagate the users interests on their ontology
based user models (Sect. 2). Then, we pre-compute a matrix in which every pair of users
is assigned a similarity score using cosine similarity for each concept in the ontology
for which there is enough feedback from both users. Finally, we calculate the concept-
biased cosine similarity (CBC similarity), a variation of the cosine similarity designed
for privileging a particular concept in an ontology (Sect. 3).

The main contribution of the paper is this novel method for calculating fine grained
user similarity for specific sub-portions of the domain (CBC similarity) even in the pres-
ence of sparse data. We tested the CBC similarity in a collaborative filtering algorithm
and showed that it outperforms the standard cosine similarity when dealing with sparse
data. The method is general and applicable in wide variety of domains, provided that
the domain is described using an ontology.

The remainder of the paper is organized as follows. In Sect. 2 we provide some
details of our ontology-based user model, how to determine the user interest in domain
concepts and how to subsequently propagate it to similar concepts in the domain on-
tology. We describe how to calculate the similarity between users for different specific
sub-portions of the domain ontology in Sect. 3 . We present the results of the evaluation

1 http://www.w3.org/TR/owl-features/



of our approach in Sect. 4, followed by related work in Sect. 5. Finally, we conclude
and give some directions for future work in Sect. 6.

2 User interest

Our technique for finding similar users in particular contexts as the first step includes
the determination and propagation of user interests in order to populate and update the
user model. User interests are propagated to similar concepts, using various approaches,
in order to reduce data sparsity and reach distant concepts. We start this section with
the definition of the user model in Sect. 2.1, followed by a brief overview of how to
determine the user interest in Sect. 2.2 and conclude with some possible propagation
techniques in Sect. 2.3.

2.1 User model definition

In order to satisfy the previously listed requirements, our domain is represented using
an OWL ontology2. As will be seen later, the way in which this ontology is formulated,
influences the choice of propagation technique.In our approach we employ an ontology-
based user model, defined as an overlay over the domain ontology. More precisely,
each ontological user profile is an instance of the domain ontology, and each node in
the ontology has an interest value associated to it. This means that each node N in
the domain ontology can be seen as a pair 〈N,I(N)〉, where I(N) is the interest value
associated to node N.

2.2 Determining user interest

We describe here the initial step of our approach which considers determining the user
interest in domain concepts and is based on our previous work described in [3, 4]. When
the user provides feedback for a certain concept in the domain ontology3, this feedback
is implicitly recorded by the system so that it can be further used to calculate user
interest values for other domain concepts.

For each concept N in the domain ontology we distinguish two types of interest
values: sensed interest and propagated interest. Given the user feedback for the concept
N, we first calculate the user sensed interest as follows:

Is(N) =
l(N)

max(1 + e−f(N))
where l(N) is the level of the node receiving the feedback, max is the level of the deepest
node in the ontology and f(N) is the user feedback for the node N. The sensed interest
depends on the user feedback for the node and the position of the node in the ontology,
since the nodes lower down in the ontology represent specific concepts, and as such
signal more precise interest than the nodes represented by upper classes in the ontology,
expressing more general concepts. Subsequently, the sensed interest value is used in
propagation phase (see Sect. 2.3) to propagate the user interest to similar objects.

2 http://www.w3.org/TR/owl-ref/
3 How the feedback is obtained is out of the scope of this paper.



These two interest values, Is and Ip are kept separated for each concept, and the
total interest for each concepts in the ontology is calculated as:

I(N) = φIo(N) + σIs + Σn
i=1πiIp(Ni,N)

where φ, σ, π1, . . . , πn ∈ R and φ+σ+Σn
i=1π = 1, Io is the old interest value (initially set

to zero),Is(N) is the sensed interest for the node N andIp(Ni,N) is the total propagated
interest from the node Ni to the node N, n being the number of nodes which propagate
their interest values to the node N. By varying the constants φ, σ and πi it is possible to
assign different level of importance to either sensed or propagated interest values.

2.3 Propagating user interest values

Depending on how the ontology is designed, the concepts to which to propagate the user
interest can be determined in different ways. Here we describe two different propagation
techniques:

– distance-based propagation,
– property-based propagation.

Distance-based propagation One of the simplest ways to measure the similarity of
two concepts in the ontology is to use the ontology graph structure and calculate the
distance between nodes by using the number of edges or the number of nodes that need
to be traversed in order to reach one node from the other (see [11]).

Using the distance between nodes, the user interest in a certain domain object can
be propagated vertically in the ontology, upward to the ancestors and downward to the
descendants of a given node. In this case the propagated interest is calculated by mod-
ulating the sensed interest of the node N that receives the feedback by the exponential
factor which describes the attenuation with each step up or down and a weight inversely
correlated with the amount of feedback already received by the node as follows:

Ip(N,M) =
e−kd(N,M)

1 + log(1 + n(M))
Is(N)

where d(N,M) is the distance between the node N receiving the feedback and the node
M receiving the propagated interest, n(M) is the number of actions performed in the
past on the node M and k ∈ R is a constant.

Further improvement of distance-based propagation can be obtained with concep-
tual distance where the main idea is to modify the lengths of the edges in the ontology
graph, as initially proposed in [5]. First, the set of relevant concepts is determined. Then
for the relevant concepts, the notion of conceptual specificity is introduced, in order to
specify their relevance in the given context. Using the conceptual specificity, the edge
lengths are modified so that they exponentially decrease as the levels of the nodes in-
crease. Then the propagated interest is calculated using these exponentially decreasing
edge lengths to calculate the distances between concepts.

Property-based propagation If the ontology has explicit specification of the concepts’
properties, we can use these properties to calculate the similarity between the concepts,
the distance between them. To do this, we can adopting the approach described in [4],



and decide to which elements to propagate the user interest. This propagation does not
have any particular direction and permits propagation of user interests to various nodes
in the ontology. The propagated interest value is calculated using the hyperbolic tangent
function as:

Ip(N,M) =
e2sim(N,M) − 1
e2sim(N,M) + 1

Is(N)

where Is(N) is the sensed interest for the node N which received the feedback and
sim(N,M) is the property-based similarity between the node N which received the feed-
back and the node M which receives the propagated interest.

Property-based similarity calculates the similarity of classes, starting from Tver-
sky’s feature-based model of similarity [17], where similarity between objects is a func-
tion of both their common and distinctive characteristics. For two domain elements N1
and N2, for each property p, we calculate cfp, df1p and df2p, which denote how much p
contributes to common features of N1 and N2, distinctive features of N1 and distinctive
features of N2, respectively, depending on how p is defined in N1 and N2. We calculate
the similarity between N1 and N2 as follows:

sim(N1,N2) =
cf(N1,N2)

df(N1) + df(N2) + cf(N1,N2)
.

The property-based similarity of equivalent classes is equal to 1, whereas for instances
the values-property pairs declared for each instance are compared.

The choice of one of these propagation methods depends on the ontology structure.
If the ontology has a deep taxonomy, (conceptual) distance-based propagation can be
used. Our experiments showed that conceptual distance performs better than the stan-
dard one. If the ontology does not have a deep hierarchy and the classes are defined by
means of properties, property-based propagation is the most suitable one.

3 The concept-biased cosine similarity

In this section we propose a novel technique for computing granular semantic user
similarity w.r.t. any concept formalized in the ontology, called concept-biased cosine
similarity or CBC similarity. The CBC similarity measure introduces a bias in the stan-
dard cosine similarity measure, in order to privilege a certain concept in the domain
ontology. It is particularly useful when the user is interested in a specific part of the
domain and there is a need to find the most similar users concerning that part of the
domain. For example, we can refer to a set of the most similar users when a user needs
suggestions about one topic (e.g. cultural events) and to a possibly different set when
the user is interested in another topic (e.g. sport events). This similarity measure can
be used by many kinds of recommendation techniques which build on similarity mea-
sures between users, allowing a more granular prospective on the domain. However, the
investigation of recommendation strategies is out of the scope of this paper.

The algorithm to compute the CBC similarity exploits a pre-computed tridimen-
sional matrix which contains for each pair of users the similarity values obtained using
the standard cosine similarity w.r.t. the significant concepts of the domain ontology.
The significant classes may be pre-labeled or can be defined autonomically by setting
a threshold on the level or the number of their instances. Table 1 displays a part of this



structure using an ontology describing social events. The meaning is intuitive: Ann is
similar to Bill w.r.t. some concepts, such as gastronomical events and cooking courses,
but different w.r.t. cultural events. Hence, it makes sense to use the information from
Bill’s user model when recommending gastronomical events to Ann.

To compute this matrix we scan the ontology top-down and for each significant class
X and each pair of users we compute the cosine similarity, using as input the interest
values for the subclasses and instances of X. To save time and space, it is advisable
to ignore all the subclasses of a given class which for a specific pair of users have co-
sine similarity below a certain threshold (0.5 in our approach) or do not include enough
common feedback values to be significant. For example, if Ann and Bill have few feed-
back values w.r.t. Sport Event, their similarity w.r.t. the significant classes which are
subclasses of Sport Event (e.g. Race, Open Day etc.) are not computed.

Similarity with Ann Bill Cindy Damian
Event 0.79 0.82 0.75
Gastronomical Event 0.89 0.84 0.65
Cultural Event 0.54 0.81 0.94
Sport Event 0.72 0.92 0.6
Cooking Course 0.96 0.84 0.69
Concert 0.72 0.74 0.92
Tasting 0.83 0.71 0.63
Soccer Match 0.56 0.97 0.67
... ... ... ...

Table 1. Ann’s similarity with Bill, Cindy and Damian w.r.t. different concepts. In bold the high-
est value for each row, representing the user the most similar to Ann, w.r.t. a certain class.

A naive way to use the matrix given in Table 1 would be to take directly the co-
sine similarity scores computed for each concept when a suggestion for that concept
is needed. This approach, however, may miss the big picture. In fact, while most of
the information expressing similarity w.r.t. a certain concept can be derived from the
feedback values for the items classified under this concept, by not considering the other
feedback values we may miss precious and more subtle information about the users’
common preferences. For example, we might compute the cosine similarity using only
the interest values for the subconcepts of the class Sport Event and use this similarity
to find similar users with the same interest for sport events. However, if we also con-
sider the user feedback about some Book Presentation which talks about Yoga, we
would reinforce our knowledge about user interest in yoga related sport events.

We address this issue with: (i) interest propagation and (ii) super-class weighing.
Interest propagation, as discussed in Sect. 2, is not only appropriate for reducing spar-
sity, but it also forces the interest value assigned to each class to take into consideration
also the feedback values for any semantically related concepts. However, interest propa-
gation effectiveness depends on how well the ontology is designed. For a well-designed
domain ontology which describes all the explicit and subtle relationships among the
domain elements, interest propagation would be enough to solve the problem of includ-
ing the information contained in different classes. In a realistic scenario, instead, the



ontology is often far from perfect. For this reason, when computing the similarity w.r.t.
concept X it is better not to exclude completely all the other concepts, but rather weigh
them differently. This is where CBC similarity comes into picture.

Our approach includes in the computation of the CBC similarity w.r.t. X the sim-
ilarity scores of the super-classes of X. For example, when the concept Race is taken
into consideration we want a similarity metric that does not only award people similar
w.r.t. Race but also gives a bonus to people similar with respect to Sport Event and
Event. We compute the CBC similarity for concept X using the following formula:

CBC(X, a, b) = w · cos(va(X), vb(X)) + (1 − w)
∑

i∈S
si
T cos(va(Xi), vb(Xi))∑

i∈S
si
T

(1)

where
– a, b are the users we want to compare;
– X is the starting class for which we calculate the CBC similarity;
– cos(x, y) is the cosine similarity for vectors x and y;
– i refers to the element Xi of the set S composed of super classes of X;
– va(X) and vb(X) are the interest value vectors associated to the subclasses/instances

of the class X according to the user models of users a and b;
– va(Xi) and vb(Xi) are the interest value vectors associated to the sub-classes/instances

of the class Xi according to the user models of users a and b;
– si is the number of subclasses of Xi for which both users provided feedback;
– T is the total number of classes in the ontology;
– 0 < w < 1 weighs the relationship between a class and its super classes.

We believe that w should depend on the sparsity degree of the data for a class: if
it is high we will need more support from the super classes, whereas if it is low, it can
take care of itself. Thus, in our system we estimate w for concept X as the average of
the ratios between the subclasses which received a direct feedback and the total number
of subclasses for each ontology-based user model which received at least 10 feedbacks.

It should be noticed that in order for CBC to be meaningful for a user, she/he should
have a decent amount of feedback values for class X for which we calculate the CBC
similarity. If this is not true, it is better to compute the CBC on the first super class
of X that has enough feedback. For example, if the context is Race and the user did
not provide enough feedback on Race concept we can check if she/he has the interest
values for Sport Event or for Event, relying to the first usable super class.

We now give an example of the last step of CBC computation, using the values
in Table 1. Assume that we need to suggest to Ann a concert for tomorrow night. A
standard way would be to exploit the feedback values of the most similar users ac-
cording to different techniques (e.g. memory-based collaborative filtering). If we adopt
the standard cosine similarity we will conclude that Cindy is the most similar user
to Ann, followed by Bill and Damian. While this is true taking into consideration the
whole domain, the situation may be different if we consider only the items related to the
Concert class. Thus, taking into consideration also the context in which the suggestion
is needed we can compute CBC relative to class Concert. In the domain ontology the
super-classes of Concert are Cultural Event and Event. For simplicity we assume
that Cultural Event subsumes one third of the items and w = 0.5.



CBC(Concert, Ann, Bill) = 0.72 · 0.5 +
0.54·1/3+0.79

1/3+1 · 0.5 = 0.36 + 0.36 = 0.72
CBC(Concert, Ann,Cindy) = 0.74 · 0.5 +

0.81·1/3+0.82
1/3+1 · 0.5 = 0.37 + 0.41 = 0.78

CBC(Concert, Ann,Damian) = 0.92 · 0.5 +
0.54·1/3+0.79

1/3+1 · 0.5 = 0.46 + 0.40 = 0.86

We can see that using the CBC similarity Damian is the user most similar to Ann w.r.t.
the class Concert, followed by Cindy and Bill.

4 Evaluation

To evaluate the CBC similarity we implemented a memory-based collaborative filtering
recommender that computes the suggested rating for an item as the weighed sum of the
feedback values given by the most similar users [2].

Our assumption was that using the CBC similarity would yield more accurate re-
sults than adopting the standard cosine similarity, especially in the presence of sparse
data. Furthermore, we wanted to compare the conceptual distance-based propagation
and the property-based propagation for the CBC similarity computation. We decided to
only test conceptual distance-based propagation since it provides better recommenda-
tion accuracy than standard distance-based propagation. To this aim we compared three
similarity measures:

– Cosine similarity (COS);
– CBC similarity after conceptual distance-based propagation (CBC-C);
– CBC similarity after property-based propagation (CBC-P).

We used as input concept for the CBC metrics the most direct super-class of any item
for which the rating had to be suggested.

4.1 Experiment Setup and Sample

We employed a domain ontology describing social events, focusing on gastronomic
events (e.g. tastings, food fairs), cultural events (e.g. concerts, movies) and sport events
(e.g. races, open days). The ontology was designed for recommending purposes and it
includes 16 main classes at 3 levels. In order to collect users preferences regarding the
domain items, we used a questionnaire in which 44 events had to be graded on a scale
from 1 to 10. The sample was composed of 231 subjects, 19-38 years old, recruited
according to an availability sampling strategy. We obtained a total of 10,164 ratings.

To test the accuracy of CBC similarity combined with different propagation tech-
niques we generated an ordered list of rated items starting from a portion of each user’s
ratings and compared this list with the remaining part of the user ratings. We ran dif-
ferent tests varying the initial percentage of rated items ( 5%, 10%, 20%), to simulate
different degrees of sparsity in the input data.

4.2 Measures

The difference between the estimated ratings and the real ones was computed using the
mean absolute error (MAE). The correlation between the list generated by the tested



algorithm and the original user’s list was estimated using Spearman’s rank correla-
tion coefficient ρ, which provides a non-parametric measure of statistical dependence
between two ordinal variables and gives an estimate of the relationship between two
variables using a monotonic function. In the absence of repeated data values, a perfect
Spearman correlation of ρ = +1 or ρ = −1 is obtained when each of the variables is
a prefect monotone function of the other. The performance of the different techniques
was compared with the χ-square test.

4.3 Results

Fig. 1. Left panel: Spearman correlation between the suggested and real preference list in case of
5%, 10% or 20% rated items. Right panel: MAE of the suggested and real rating in case of 5%,
10% or 20% rated items.

The left panel in Fig. 1 shows that the lists produced with the CBC similarity have
a higher degree of association ρ with the real ratings than the ones produced by us-
ing the standard cosine similarity. CBC similarity is particularly efficient in case of
data sparsity, since it allows to use domain knowledge to compensate for the lack of
data. Hence, as the percentage of rated items grows the difference between the two ap-
proaches becomes less prominent. In all tests the CBC-P approach was more effective
than the CBC-C approach confirming the results presented in [4]. The right panel of
Fig. 1 displays the mean absolute error of the suggested ratings w.r.t. the real ratings.
Also in this case CBC similarity performed better then the cosine similarity for all the
tests and CBC-P yielded a slightly better result than CBC-C.

To understand better the aforementioned results we studied the frequency distribu-
tion of the Spearman Coefficient for a percentage of rated items equal to 5% and 10%,
respectively (Fig. 2). The standard cosine similarity was unable to produce any case
with a good association (ρ > 0.5) in the 5% test, whereas CBC-P did so for 10% of
users. On the 10% test COS obtained a good association in 2% of the cases as opposed
to the 15% of CBC-P. This trend continues also for the 20% test yielding 20% for COS
and 34% for CBC-P.

The difference between the cosine similarity and the CBC similarity is statistically
significant according to the χ-square test for the 5% and 10% test, but not for the 20%
one. More precisely, in the 5% test the χ-square between COS and CBC-C yielded
p = 6 · 10−8, between COS and CBC-P it yielded p = 2 · 10−100 and between CBC-C
and CBC-P it yielded p = 6 · 10−19. For the 10% it yielded p = 5 · 10−9 for COS and



Fig. 2. Distribution of cases for various values of ρ for the 5% (left panel) and 10% (right panel)
of rated items.

CBC-C, p = 10−11 for COS and CBC-P and p = 0.6 (thus not significant) for CBC-C
and CBC-P.

Hence, we can conclude that the CBC similarity approach works significantly better
then the standard cosine similarity and can be effective in alleviating the data sparsity
and the cold start problem.

5 Related work

In this section we briefly describe the works in the literature which exhibit similari-
ties with our approach. In particular, we present works that share the cornerstones of
our approach: usage of ontology-based user model, and propagation of user interests in
an ontology. Then, we present other modalities of calculation of similarity among users.

The most similar works are the ones of Sieg et at. [14, 15] and Middleton et al. [8],
since they all employ ontology-based user models and propagate user interests in the
ontology. Sieg et al. use ontological user profiles to improve personalized Web search
in [14] and in collaborative-filtering recommender in [15]. User interaction with the
system is used to update the interest values in domain ontology by using spreading ac-
tivation. While Sieg et al. annotate instances of a reference ontology with user interest
values, we annotate also the classes, not only the instances. Middleton et al. [8] present
a hybrid recommender system in which the user feedback is mapped onto the domain
ontology. They propagate user interest to superclasses of specific topics using IS-A sim-
ilarity. Their propagation is bottom-up and always propagates 50% of the value to the
super class.

A review and comparison of different similarity measures and algorithms can be
found in Cacheda et al. [2]. Our alternative similarity metric makes use of domain onto-
logical structure to calculate similarity among users, and in particular uses the interest
values of these users’ corresponding user models. In a similar fashion to us, other works
follow this approach.

For example, Mobasher et al. [9] calculate user similarities based on interests scores
across ontology concepts, instead of their ratings on individual items like traditional
collaborative filtering. A main difference w.r.t. our approach is the method they use



to calculate similarity. They first turn the ontological user profiles into flat vectors of
interest scores over the space of concepts, and then compare the user profiles to figure
out how distant each users profile is from all other users profiles. The distance between
the target user and a neighbor user is calculated using the Euclidean distance.

In Yuan et al. [18] a structured cosine similarity is proposed for supporting text
clustering by considering the structure of the documents. Similarly to us they built on
the cosine similarity and flatten the values assigned to an ontology classes in a vector
to feed to the cosine similarity. However, they simply pass the lower class value to the
super-class and do not weigh the relations between different classes.

In Thiagarajan et al. [16] the authors represent user profiles as bags-of-words (BOW)
where a weight is assigned to each term describing user interests to create extended user
profiles. They then use a spreading activation technique to find and include additional
terms in user profiles. The similarity measure is obtained by combining cosine similar-
ity (for overlapping parts) with bipartite graph approaches (for remaining profile terms).

The idea that not all domain concepts should be treated the same is elaborated in [7]
which shows that some of the ratings carry more discriminative information than others.
They argue that less common ratings for a specific item tend to provide more discrim-
inative information than the most common ratings. Thus, they propose to divide user
similarity into two parts: local user similarity (a vector similarity among users) and
global user similarity (considers the number of similar neighbors).

6 Conclusions and future work

We proposed the concept-biased cosine similarity (CBC similarity), a novel approach
to measure the user similarity relative to a specific concept, which is able to alleviate
data sparsity problem. Our approach can be adopted for several purposes. For example,
it can be used to enhance collaborative filtering recommender in a semantic direction
[15], for alleviating data sparsity and for improving of recommendation results. It can
also be exploited by social applications in order to suggest new connections to users,
based on shared interests.

An empirical evaluation showed that CBC similarity outperforms the cosine simi-
larity in supporting collaborative filtering, especially in the presence of sparse data. In
the tests with less then 20% of the items rated the difference between the two techniques
was statistically significant.

We are working in several directions to exploit interest propagation and refine on-
tology-based similarity metrics. We plan on allowing bias in the similarity metric not
only for preferring a specific topic, but also for other dimensions such as context and
expertise. A more ambitious work would be to even allow this multiple dimensions to
influence the structure of the ontology as suggested in [10]. For this reason, we are
also working on an approach to compute the CBC similarity across user profiles rep-
resented as overlays over different ontologies or personal ontology views. This avenue
of work may also be useful to compare user profiles from different systems, making
cross-system personalization easier.
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