Collisions of heavy nuclei at ultrarelativistic energies are used to investigate a deconfined high temperature and density state of nuclear matter, the quark-gluon plasma. It was observed at the Relativistic Heavy Ion Collider (RHIC) [1,2], that the Λ/K_S^0 and p/π ratios at intermediate p_T (2–6 GeV/c) are markedly enhanced in central heavy-ion collisions when compared with peripheral or pp results. A similar observation was also made at the Super Proton Synchrotron [3]. These observations led to a revival and further development of models based on the premise that deconfinement opens an additional mechanism for hadronization by allowing two or three soft quarks from the bulk to combine forming a meson or a baryon [4,5]. If the (anti-)quarks generated by (mini)jet fragmentation are also involved in recombination [6], the baryon enhancement could even extend up to 10–20 GeV/c [7].

The relative contribution of different hadronization mechanisms changes with hadron momentum. While at intermediate p_T recombination might be dominating, hydrodynamical radial flow contributes to the baryon enhancement at lower p_T, and fragmentation could take over at higher p_T. For this reason, it is important to identify baryons and mesons in a wide momentum range, which can be achieved by the topological decay reconstruction of K_S^0 and Λ particles.

In this Letter we present the K_S^0 and Λ p_T spectra and the Λ/K_S^0 ratios from Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV recorded by the ALICE Collaboration [8] in November 2010. The p_T dependence of the Λ/K_S^0 ratios is compared with pp results obtained at $\sqrt{s} = 0.9$ and 7 TeV, that bracket the Pb-Pb measurements in energy.

For the analysis presented here, we used the time projection chamber (TPC) and the inner tracking system to reconstruct charged particle tracks within the pseudorapidity interval of $|\eta| < 0.9$. For the offline analysis, we accepted only events with the primary vertex position within ± 10 cm of the detector center and with at least one particle hit in each of the trigger detectors (Silicon Pixel Detector, VZERO-A and VZERO-C). The events were classified by the collision centrality, based on the amplitude distribution in the VZERO counters fitted with a Glauber model description as discussed in Ref. [9]. The final data sample contained 1.6×10^7 events in the 0%–90% centrality range, corresponding to an integrated luminosity of $2.3 \pm 0.1 \mu$b$^{-1}$.

The weakly decaying K_S^0 and Λ were reconstructed using their distinctive V-shaped decay topology in the channels (and branching ratios) $K_S^0 \rightarrow \pi^+\pi^- (69.2\%)$ and $\Lambda \rightarrow p\pi^- (63.9\%)$ [10]. The reconstruction method forms so-called V0 decay candidates and the details are described in Ref. [11]. Because of the large combinatorial background in Pb-Pb collisions, a number of topological selections had to be more restrictive than those used in the pp analysis [11]. In addition, we retained only the V0 candidates reconstructed in a rapidity window of $|y| < 0.5$, with their decay-product tracks within the acceptance window $|\eta| < 0.8$. To further suppress the background, we kept only V0 candidates satisfying the cut on the proper decay length $l_T m/p_T < 3 c\tau(4c\tau)$, where l_T and m are the V0 transverse decay length and nominal Λ (K_S^0) mass [10], and $c\tau$ is 7.89 cm (2.68 cm) for Λ (K_S^0) [10]. For the Λ candidates with $p_T < 1.2$ GeV/c, a three-standard-deviation particle-identification cut on the difference...
between the specific energy loss \((dE/dx)\) measured in the TPC and that defined by a momentum-dependent parameterization of the Bethe-Bloch curve was applied for the proton decay-product tracks. To reduce the contamination of \(\Lambda\) reconstructed as \(K_S^0\), an additional selection was applied in the Armenteros-Podolanski variables \([12]\) of \(K_S^0\) candidates, rejecting candidates with \(p_T^{\text{rem}} < 0.2 \times |\alpha^{\text{rem}}|\). Here, \(p_T^{\text{rem}}\) is the projection of the positively (or negatively) charged decay-product momentum on the plane perpendicular to the \(V0\) momentum. The decay asymmetry parameter \(\alpha\) is defined as \(\alpha = (p_T^+ - p_T^-)/(p_T^+ + p_T^-)\), where \(p_T^+\) (\(p_T^-\)) is the projection of the positively (negatively) charged decay-product momentum on the momentum of the \(V0\). The minimal radius of the fiducial volume of the secondary vertex reconstruction was chosen to be 5 cm to minimize systematic effects introduced by efficiency corrections. It was verified that the decay-length distributions reconstructed within this volume were exponential and agreed with the \(c\tau\) values given in the literature \([10]\).

The raw yield in each \(p_T\) bin was extracted from the invariant-mass distribution obtained for this momentum bin. The raw yield was calculated by subtracting a fit to the background from the total number of \(V0\) candidates in the peak region. This region was \(\pm 5\sigma\) for \(K_S^0\), and \(\pm (3.5\sigma + 2\text{ MeV}/c^2)\) (to better account for tails in the mass distribution at low \(p_T\)) for \(\Lambda\). The \(\sigma\) was obtained by a Gaussian fit to the mass peaks. The background was determined by fitting polynomials of first or second order to sideband regions left and right of the peak region.

The overall reconstruction efficiency was extracted from a procedure based on HIJING events \([13]\) and the \(\text{GEANT3}\) \([14]\) transport Monte Carlo simulation package, followed by detector simulations and reconstruction done with the ALICE software framework \([15]\). The efficiency included the geometrical acceptance of the detectors, track reconstruction efficiency, the efficiency of the applied topological selection cuts, and the branching ratios for the \(V0\) decays. The typical efficiencies for both particles were about 30% for \(p_T > 4\text{ GeV}/c\), dropping to 0 at \(p_T \sim 0.3\text{ GeV}/c\). The efficiencies did not change with the event centrality for \(p_T\) above a few \(\text{GeV}/c\). However, at lower \(p_T\), they were found to be dependent on the event centrality. For \(\Lambda\) at \(p_T < 0.9\text{ GeV}/c\) the difference was about a factor 2 between the 0%-5% and 80%-90% centrality intervals. The final momentum spectra were corrected in each centrality bin separately.

The spectra of \(\Lambda\) were in addition corrected for the feed-down contribution coming from the weak decays of \(\Xi^-\) and \(\Xi^0\). A two-dimensional response matrix, correlating the \(p_T\) of the detected decay \(\Lambda\) with the \(p_T\) of the decayed \(\Xi\), was generated from Monte-Carlo simulations. By normalizing this matrix to the measured \(\Xi^-\) spectra \([16]\), the distributions of the feed-down \(\Lambda\) were determined and subtracted from the inclusive \(\Lambda\) spectra. The phase space distributions and total yields for the \(\Xi^0\) were assumed to be the same as for the \(\Xi^-\). The feed-down correction was found to be a smooth function of \(p_T\) with a maximum of about 23% at \(p_T \sim 1\text{ GeV}/c\) and monotonically decreasing to 0% at \(p_T > 12\text{ GeV}/c\). As a function of centrality, this correction changed by only a few percent.

Since the ratio \(\Xi^-/\Xi^0\) in \(\text{Pb-Pb}\) collisions of different centralities at \(\sqrt{s_{NN}} = 2.76\text{ TeV}\) does not exceed 0.18 \([16]\), and taking into account that the branching ratio \(\Omega^- \rightarrow \Lambda K^-\) is 67.8% \([10]\), the feed-down contribution from decays of \(\Omega^-\) to \(\Xi^-\) baryons is less than 1.5%, which is negligible compared with other sources of uncertainty (see below). We did not correct the \(\Lambda\) spectra for the feed-down from non-\(\Xi^0\) decays of \(\Sigma^0\) and the \(\Sigma(1385)\) family.

The fraction of \(\Lambda\)'s produced in hadronic interactions with the detector material was estimated using the Monte Carlo simulations mentioned above, found to be less than 1%, and was neglected.

The following main sources of systematic uncertainty were considered: raw yield extraction, feed-down, efficiency corrections, and the uncertainty on the amount of crossed material. These were added in quadrature to yield the overall systematic uncertainty on the \(p_T\) spectra for all centralities.

The systematic uncertainties on the raw yields were estimated by using different functional shapes for the background and by varying the fitting range. Over the considered momentum range, the obtained raw yields varied within 3% for \(K_S^0\) and 4%-7% for \(\Lambda\).

As a measure for the systematic uncertainty of the feed-down correction, we used the spread of the values determined for different centrality ranges with respect to the feed-down correction estimated for minimum bias events. This deviation was found to be about 5% relative to the overall \(\Lambda\) yield.

The systematic uncertainty associated with the efficiency correction was evaluated by varying one-by-one the topological, track selection, and particle-identification cuts. The cut variations were chosen such that the extracted uncorrected yield of the \(K_S^0\) and \(\Lambda\) would change by 10%. To measure the systematic uncertainty related to each cut, we used as a reference the corrected spectrum obtained with the nominal cut values. For \(\Lambda\), the feed-down correction was reevaluated and taken into account for every variation of the cut on the cosine of the pointing angle. The overall \(p_T\)-dependent systematic uncertainty associated with the efficiency correction was then estimated by choosing the maximal (over all cut variations) deviation between varied and nominal spectra values obtained in each momentum bin. For the momentum range considered, this systematic uncertainty was determined to be 4%-6% for both \(K_S^0\) and \(\Lambda\).

The systematic uncertainty introduced because of possible imperfections in the description of detector material in the simulations was estimated in Ref. \([11]\) and amounted to 1.1%-1.4% for \(K_S^0\) and 1.6%-3.4% for \(\Lambda\).
The corrected p_T spectra, fitted using the blast-wave parameterization described in Ref. [17], are shown in Fig. 1. The fit range in p_T was from the lowest measured point up to 2.5 GeV/c (1.6 GeV/c) for Λ (K_S^0). The fitting functions were used to extrapolate the spectra to zero p_T to extract integrated yields dN/dy. The results are given in Table I. The systematic uncertainties of the integrated yields were determined by shifting the data points of the spectra simultaneously within their individual systematic uncertainties and reapplying the fitting and integration procedure. In addition, an extrapolation uncertainty was estimated, by using alternative (polynomial, exponential, and Lévy-Tsallis [18,19]) functions fitted to the low-momentum part of the spectrum, and the corresponding difference in obtained values was added in quadrature.

The p_T dependence of the Λ/K_S^0 ratios is presented in Fig. 2 (left). The Λ/K_S^0 ratios observed in pp events at $\sqrt{s} = 0.9$ [111] and 7 TeV [20] agree within uncertainties over the presented p_T range, and they bound in energy the Pb-Pb results reported here. The ratio measured in the most peripheral Pb-Pb collisions is compatible with the pp measurement, where there is a maximum of about 0.55 at $p_T \sim 2$ GeV/c. As the centrality of the Pb-Pb collisions increases, the maximum value of the ratio also increases and its position shifts towards higher momenta. The ratio peaks at a value of about 1.6 at $p_T \sim 3.2$ GeV/c for the most central Pb-Pb collisions. This observation may be contrasted to the ratio of the integrated Λ and K_S^0 yields which does not change with centrality (Table I). At momenta above $p_T \sim 7$ GeV/c, the Λ/K_S^0 ratio is independent of collision centrality and p_T, within the uncertainties, and compatible with that measured in pp events.

A comparison with similar measurements performed by the STAR Collaboration in Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV is shown in Fig. 2 (right). Since the antibaryon-to-baryon ratio at the LHC is consistent with unity for all p_T [21,22], the Λ/K_S^0 and $\bar{\Lambda}/K_S^0$ ratios are identical and we show only the former. The STAR Λ/K_S^0 and $\bar{\Lambda}/K_S^0$ ratios shown are constructed by dividing the corresponding p_T spectra taken from Ref. [23]. The quoted 15% p_T-independent feed-down contribution was subtracted from the Λ and $\bar{\Lambda}$ spectra. The shape of the distributions

Since the systematic uncertainties related to the efficiency correction are correlated for the Λ and K_S^0 spectra, they partially cancel in the Λ/K_S^0 ratios. These uncertainties were evaluated by dividing Λ and K_S^0 spectra obtained with the same cut variations and found to be half the size of those that would be obtained if the uncertainties of the Λ and K_S^0 spectra were assumed to be uncorrelated. Altogether, over the considered momentum range, the maximal systematic uncertainty for the measured Λ/K_S^0 ratios was found to be about 10%.

![FIG. 1 (color online). K_S^0 and Λ p_T spectra for different event centrality intervals. The curves represent results of blast-wave fits [17].](image)

| TABLE I. Integrated yields, dN/dy, for Λ and K_S^0 with uncertainties which are dominantly systematic. A blast-wave fit is used to extrapolate to zero p_T. Fractions of extrapolated yield are specified. Ratios of integrated yields, Λ/K_S^0, for each centrality bin with the total uncertainty, mainly from systematic sources, are shown. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $p_T < 0.6$ GeV/c frac. | dN/dy | 0%–5% | 5%–10% | 10%–20% | 20%–40% | 40%–60% | 60%–80% | 80%–90% |
| $p_T < 0.4$ GeV/c frac. | dN/dy | 0%–5% | 5%–10% | 10%–20% | 20%–40% | 40%–60% | 60%–80% | 80%–90% |
| Λ | dN/dy | 26 ± 3 | 22 ± 2 | 17 ± 2 | 10 ± 1 | 3.8 ± 0.4 | 1.0 ± 0.1 | 0.21 ± 0.03 |
| K_S^0 | dN/dy | 110 ± 10 | 90 ± 6 | 68 ± 5 | 39 ± 3 | 14 ± 1 | 3.9 ± 0.2 | 0.85 ± 0.09 |
| Ratio dN/dy Λ/K_S^0 | 0.24 ± 0.02 | 0.24 ± 0.02 | 0.25 ± 0.02 | 0.25 ± 0.02 | 0.25 ± 0.02 | 0.25 ± 0.03 | 0.25 ± 0.02 | 0.25 ± 0.02 |
of Λ/K^0_S and $\bar{\Lambda}/K^0_S$ are the same but they are offset by about 20% and have peak values around 10% higher, and, respectively, lower, than the ALICE data. This comparison between LHC and RHIC data shows that the position of the maximum shifts towards higher p_T as the beam energy increases. It is also seen that the baryon enhancement in central nucleus-nucleus collisions at the LHC decreases less rapidly with p_T, and, at $p_T \approx 6$ GeV/c, it is a factor of 2 higher compared with that at RHIC.

Also shown in the right panel of Fig. 2 is a hydrodynamical model calculation [24–26] for most central collisions, which describes the Λ/K^0_S ratio up to p_T about 2 GeV/c rather well, but for higher p_T progressively deviates from the data. Such decoupling between the calculations and measurements is already seen in the comparison with p_T spectra [27]. The agreement for other charged particles is improved when the hydrodynamical calculations are coupled to a final-state rescattering model [28]. Therefore, it would be interesting to compare these data and their centrality evolution with such treatment. For higher p_T, a recombination model calculation [5] is presented (Fig. 2, right). It approximately reproduces the shape, but overestimates the baryon enhancement by about 15%. We also show a comparison of the EPOS model calculations [29] with the current data. This model takes into account the interaction between jets and the hydrodynamically expanding medium and arrives at a good description of the data.

In conclusion, we note that the excess of baryons at intermediate p_T, exhibiting such a strong centrality dependence in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, does not reveal itself in pp collisions at the center-of-mass energy up to $\sqrt{s} = 7$ TeV. For $p_T > 7$ GeV/c, the measured Λ/K^0_S ratios become constant within our uncertainties for all centralities and equal to that of the previously reported pp data. This agreement between collision systems suggests that the ratio of fragmentation into Λ and K^0_S at high p_T, even in central collisions, is not modified by the medium.

As the collision energy and centrality increase, the maximum of the $\Lambda(\bar{\Lambda})/K^0_S$ ratio shifts towards higher p_T, which is in qualitative agreement with the effect of increased radial flow, as predicted in Ref. [4]. The ratio of integrated Λ and K^0_S yields does not, within uncertainties, change with centrality and is equal to that measured in pp collisions at 0.9 and 7 TeV. This suggests that the baryon enhancement at intermediate p_T is predominantly due to a redistribution of baryons and mesons over the momentum range rather than due to an additional baryon production channel progressively opening up in more central heavy-ion collisions.

The width of the baryon enhancement peak increases with the beam energy. However, contrary to expectations [7], the effect at the LHC is still restricted to an intermediate-momentum range and is not observed at high p_T. This puts constraints on parameters of particle production models involving coalescence of quarks generated in hard parton interactions [30].

Qualitatively, the baryon enhancement presented here as p_T dependence of Λ/K^0_S ratios, is described in the low-p_T region (below 2 GeV/c) by collective hydrodynamical radial flow. In the high-p_T region (above 7–8 GeV/c), it is very similar to pp results, indicating that there it is dominated by hard processes and fragmentation. Our data provide evidence for the need to include the effect of the hydrodynamical expansion of the medium formed in Pb-Pb collisions in the mechanisms of hadronization.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of
Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE), and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation, and the Danish National Research Foundation; the European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the “Region Pays de Loire,” “Region Alsace,” “Region Auvergne,” and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, México, ALFA-EC, and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autoritatea Națională pentru Cercetare Științifică ȘANCS); Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations, and the Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), CEADEP, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); the United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

B. Sitar,70 M. Sitta,88 T. B. Skaali,50 K. Skjerdal,24 R. Smakal,2 N. Smirnov,4 R. J. M. Snellings,58 R. Soltz,2
M. Song,106 J. Song,85 C. Soos,6 F. Soramel,73 M. Spacek,2 I. Sputowska,48 M. Spyropoulou-Stassinaki,98
B. K. Srivastava,69 J. Stachel,29 I. Stan,91 G. Stefanek,93 M. Steinpreis,100 E. Stenlund,84 G. Steyn,72 J. H. Stiller,29
D. Stocco,33 M. Stolpovskiy,64 P. Strmen,70 A. A. P. Suáide,26 M. A. Subieta Vásquez,56 T. Sugitate,130 C. Suire,87
M. Suleymanov,13 R. Sultanov,15 M. Šumbera,3 T. Susa,31 T. J. M. Symons,62 A. Szanto de Toledo,26 I. Szarka,70
A. Szczepankiewicz,9 M. Szymański,104 J. Takahashi,92 M. A. Tangaro,23 J. D. Tapia Takaki,87 A. Tarantola Peloni,34
A. Tarazona Martínez,6 A. Tauro,6 G. Tejeda Muñoz,89 A. Telesca,6 C. Terrevoli,23 A. Ter Minasyan,16,63 J. Thäder,28
G. L. Usai,78 M. Vajzer,3 M. Vala,45,49 L. Valencia Palomo,87 P. Vande Vyvre,6 L. Vannucci,129 J. W. Van Hoorne,6
M. van Leeuwen,58 A. Vargas,89 R. Varma,52 M. Vasileiou,98 A. Vasiliev,16 V. Vechernin,25 M. Veldhoen,58
M. Venaruzzo,76 E. Vercellin,56 S. Vergara,89 R. Vernet,131 M. Verweij,66,58 L. Vickovic,103 G. Viesti,73
J. Viinikainen,80 Z. Vilakazi,72 O. Villalobos Baillie,17 A. Vinogradov,16 L. Vinogradov,25 Y. Vinogradov,71
T. Virgili,94 Y. P. Viyogi,16 A. Vodopyanov,49 M. A. Völk,29 S. Voloshin,66 K. Voloshin,15 G. Volpe,6 B. von Haller,6
I. Vorobyev,25 D. Vranic,6,28 J. Vršovská,25 B. Vulpescu,40 A. Vyushin,106 H. Wagner,74 V. Wagner,2 J. Wagner,28
C. Xiang,74 C. G. Yaldo,66 Y. Yamaguchi,106 H. Yang,44,58 P. Yang,74 S. Yang,24 S. Yano,130 G. Yasnaspolskiy,16
J. Yi,85 Z. Yin,24 I.-K. Yoo,25 I. Yushmanov,16 V. Zaccolo,51 C. Zampolli,19 S. Zaporozhets,49
H. Zhu,74 A. Zichichi,18,10 M. B. Zimmermann,30,6 A. Zimmermann,29 G. Zinovjev,20 Y. Zoccarato,83
M. Zynovyev,20 and M. Zyzak34
(ALICE Collaboration)

1Lawrence Livermore National Laboratory, Livermore, California, USA
2Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
3Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rež u Prahy, Czech Republic
4Yale University, New Haven, Connecticut, USA
5Physics Department, Panjab University, Chandigarh, India
6European Organization for Nuclear Research (CERN), Geneva, Switzerland
7Politecnico di Torino, Turin, Italy
8Sezione INFN, Turin, Italy
9Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
10Dipartimento di Fisica and Astronomia dell’Università and Sezione INFN, Bologna, Italy
11Variable Energy Cyclotron Centre, Kolkata, India
12Department of Physics Aligarh Muslim University, Aligarh, India
13COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
14Korea Institute of Science and Technology Information, Daejeon, South Korea
15Institute for Theoretical and Experimental Physics, Moscow, Russia
16Russian Research Centre Kurchatov Institute, Moscow, Russia
17School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
19Sezione INFN, Bologna, Italy
20Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
21Faculty of Engineering, Bergen University College, Bergen, Norway
22Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
23Dipartimento Interateneo di Fisica “M. Merlin” and Sezione INFN, Bari, Italy
24Department of Physics and Technology, University of Bergen, Bergen, Norway
25V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
26Universidade de São Paulo (USP), São Paulo, Brazil
27National Institute for Physics and Nuclear Engineering, Bucharest, Romania
28Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
29Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
30Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany

PRL 111, 222301 (2013) PHYSICAL REVIEW LETTERS week ending 27 NOVEMBER 2013
222301-8
Rudjer Bošković Institute, Zagreb, Croatia
Sezione INFN, Padova, Italy
SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Physics Department, University of Cape Town, Cape Town, South Africa
Sezione INFN, Catania, Italy
Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
Institute for Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
Institute of Physics, Bhubaneswar, India
Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
Joint Institute for Nuclear Research (JINR), Dubna, Russia
Department of Physics, University of Oslo, Oslo, Norway
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Indian Institute of Technology Bombay (IIT), Mumbai, India
Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France
University of Houston, Houston, Texas, USA
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
Petersburg Nuclear Physics Institute, Gatchina, Russia
Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
University of Tsukuba, Tsukuba, Japan
Laboratori Nazionali di Frascati, INFN, Frascati, Italy
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
Lawrence Berkeley National Laboratory, Berkeley, California, USA
Moscow Engineering Physics Institute, Moscow, Russia
Institute for High Energy Physics, Protvino, Russia
Faculty of Science, P.J. Safárik University, Košice, Slovakia
Wayne State University, Detroit, Michigan, USA
Instituto de Física, Pontificia Universidad Católica del Perú, Lima, Peru
Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
Instituto de Investigación de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
University of Jyväskylä, Jyväskylä, Finland
Saha Institute of Nuclear Physics, Kolkata, India
Physics Department, Creighton University, Omaha, Nebraska, USA
Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
Pusan National University, Pusan, South Korea
Sezione INFN, Cagliari, Italy
Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy

PRL 111, 222301 (2013) PHYSICAL REVIEW LETTERS week ending 27 NOVEMBER 2013

222301-9
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

Institute of Space Science (ISS), Bucharest, Romania

Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

National Centre for Nuclear Studies, Warsaw, Poland

Dipartimento di Fisica “E.R. Caianiello” dell’Università and Gruppo Collegato INFN, Salerno, Italy

Sezione INFN, Bari, Italy

Sezione INFN, Rome, Italy

Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

Physics Department, University of Athens, Athens, Greece

Sezione INFN, Trieste, Italy

Department of Physics, Ohio State University, Columbus, Ohio, USA

Chicago State University, Chicago, USA

Universidad Autónoma de Sinaloa, Culiacán, Mexico

Technical University of Split FESB, Split, Croatia

Warsaw University of Technology, Warsaw, Poland

A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

University of Tokyo, Tokyo, Japan

Eberhard Karls Universität Tübingen, Tübingen, Germany

Department of Physics, Sejong University, Seoul, South Korea

Yonsei University, Seoul, South Korea

KTO Karatay University, Konya, Turkey

Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

California Polytechnic State University, San Luis Obispo, California, USA

The University of Texas at Austin, Physics Department, Austin, Texas, USA

Sawanaree University of Technology, Nakhon Ratchasima, Thailand

Helsinki Institute of Physics (HIP), Helsinki, Finland

Vestfold University College, Tønsberg, Norway

Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia

Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

University of Tennessee, Knoxville, Tennessee, USA

Indian Institute of Technology, Indore, India (IITI)

Dipartimento di Fisica dell’Università “La Sapienza” and Sezione INFN, Rome, Italy

University of Belgrade, Faculty of Physics and “Vinča” Institute of Nuclear Sciences, Belgrade, Serbia

Indian Institute of Science Education and Research, Bhubaneswar, India

Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany

Konkuk University, Seoul, Korea

Budker Institute for Nuclear Physics, Novosibirsk, Russia

Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland

Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy

Hiroshima University, Hiroshima, Japan

Centre de Calcul de l’IN2P3, Villeurbanne, France

*Deceased.