
13 March 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Memory affinity in multi-threading: the Bowtie2 case study

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Academia Press - Ghent, Belgium

This is the author's manuscript

This version is available http://hdl.handle.net/2318/143005 since

Memory affinity in multi-threading:
the Bowtie2 case study
Claudia Misale∗, Marco Aldinucci∗1,
Massimo Torquati†2

∗ University of Torino, corso Svizzera 185, 10124 Torino, Italy
† University of Pisa, largo Pontecorvo 3, 56127 Pisa, Italy

ABSTRACT

The diffusion of the Next Generation Sequencing (NGS) has increased the amount of data ob-
tainable by genomic experiments. From a DNA sample a NGS run is able to produce millions
of short sequences (called reads), which should be mapped into a reference genome. In this pa-
per, we analyse the performance of Bowtie2, a fast and popular DNA mapping tool. Bowtie2 ex-
hibits a multithreading implementation on top of pthreads, spin-locks and SSE2 SIMD extension.
From parallel computing viewpoint, is a paradigmatic example of a software requiring to address
three fundamental problems in shared-memory programming for cache-coherent multi-core plat-
forms: synchronisation efficiency at very fine grain (due to short reads), load-balancing (due to
long reads), and efficient usage of memory subsystem (due to SSE2 memory pressure).

We compare the original implementation against an alternative implementation on top of the
FastFlow pattern-based programming framework. The proposed design exploits the high-level
farm pattern of FastFlow, which is implemented top of nonblocking multi-threading and lock-
less (CAS-free) queues, and provides the programmer with high-level mechanism to tune task
scheduling to achieve both load-balancing and memory affinity. The proposed design, despite
the high-level design, is always faster and more scalable with respect to the original one. The
design of both original and alternative version will be presented along with their experimental
evaluation on real-world data sets.
KEYWORDS: Bioinformatics; Concurrency; Multiprocessors; Non-blocking synchronisation

1 Introduction

A typical DNA mapping workload is composed by millions of both short and long se-
quences of nucleotides (called reads) to be aligned against the whole reference genome.
They can be processed as independent tasks. The length of a read is one of the key fac-
tors that determines the computational grain of the task; number of mismatches tolerated
in the mapping is another one. Different biological analysis need different datasets with dif-
ferent distributions in the lengths of the set of reads. A concrete example is the concurrent,
pthread-based Bowtie2, that is among the most popular and one of the fastest alignment
tool running on cache-coherent multi-core platforms [CHC+13]. Bowtie2, which has been

1E-mail: {misale, aldinuc}@di.unito.it
2E-mail: torquati@di.unipi.it

deeply hand-tuned along different versions, is build as a pool of workers extracting tasks
from a shared memory buffer; synchronisations are achieved by way of spin-locks. Since
the alignment problem is severely memory bound and is implemented via memory hungry
SSE2 primitives, a significant care have been devoted in keeping memory as local as possible
within each thread. A good overall memory bandwidth is enforced by the OS that typically
spreads threads onto different sockets (attached to different memory nodes).

We advocate an alternative design, where the original structure of the code has been
reorganised in order to use a lock-free approach in reading data from file and in writing
results. Our objective is to study which kind of improvement are achievable by using data
movement and memory affinity with a lock-free implementation and to show how different
algorithm implementations in a shared-memory architecture can help to improve perfor-
mances. As an orthogonal aspect, it should be noted that the presented design can be easily
ported onto distributed cluster of multi-cores because it is designed on top of FastFlow pat-
terns [ADKT13], which have both a multi-core and distributed implementation. The analysis
of the distributed implementation is beyond the scope of the present work.

2 Bowtie2 Implementation and its FastFlow Porting

In Bowtie2 implementation, each thread’s workflow is characterized by first setting up per-
thread pointers to shared global data structures and creating per-thread data structures,
then cycling the following three steps: i) take a read (or a pair of) from the input file (global
to all threads), ii) align the sequence against the genome loaded into the index file, and iii)
populate global structures related to the alignment output or to general output statistics. In
the first and the last of these steps, shared data should be accessed. Accesses are protected
by mutexes (either pthreads locks or spin-locks). Software design is sketched in Fig. 1.

In the alternative version of Bowtie2 (Bowtie2-FF, from now on), we changed the original
code to exhibit a high-level design using the FastFlow farm pattern. All the required code
changes are very localised within a reduced chunk of code (within a single file). Basically the
three main steps above mentioned. The farm pattern has specialised to behave in a master-
workers fashion (see Fig. 1), where steps i) and iii) involving data sharing are mapped onto
the master (Emitter E), whereas step ii) is mapped onto parallel workers (Wi). As byproduct,
the Bowtie2-FF exhibits no mutexes since data dependencies are managed by the FastFlow
run time using a lock-less approach.

Task balancing is automatically achieved thanks to FastFlow farm on-demand memory-
affine scheduling policy, as detailed in Sec 2.2.

2.1 Data Paths and Synchronisations

The original version of Bowtie2 expects that each thread takes needed data directly from
the filesystem. For this reason, it is necessary to lock the counter variable that identifies
the current read and let each thread increment it avoiding data races. Within the FastFlow
implementation, these levels of wrapping and function calls are removed and the operation
of dispensing reads is totally deputed to a dedicated thread (Emitter). In this way, it is no
more needed to lock the counter variable. The Emitter, once has taken the current sequence
to be aligned, prepares the task and sends it to a worker.

input - sh-mem
(reads and genome)

output - sh-mem
(mapping)

private task
(read)

W1 private task
(read)

Wn

W1 Wn

E

input and output
(reads, genome, mapping)

lock-free
FIFO buffers

(reads)

Botwtie2 Botwtie2-FF (NA)

W2 Wn-1 W1 Wn

E

input and output
(reads, genome, mapping)

Botwtie2-FF (NAI)

W2 Wn-1

affinity scheduling
on mem nodes

mem node 1 mem node k

...

... ...

mutex

mutex

mem node 1 mem node k

standard OS allocation (genome) interleaved allocation (genome)

pinned
threads

Figure 1: Architecture of Bowtie2, Bowtie2-FF with memory affinity (NA), and Bowtie2-FF
with memory affinity and interleaving (NAI).

2.2 Task Scheduling and Load Balancing

As shown in figure 1, links between the Emitter (E) and each worker (Wi) and vice-versa,
are implemented using lock-free FIFO queues [ADK+12]. Backward connections (Wi →E),
are accomplish to two main duties: 1) carry results from Wi to E, and 2) recycle exhaust
tasks allocated memory in order to avoid any code change in original one, in which tasks
are managed as a thread-private data. Despite FastFlow supports both bound and unbound
queues, all the queues are bounded to a fixed number of elements (QueueSize > 1) since the
scheduling policy enforces the absence of deadlocks.

The scheduling policy used is very simple: initially QueueSize tasks are assigned to each
worker thread by the Emitter (actually enqueued in the worker queue), then as soon as a
task is get back from a worker, one new task is scheduled to the same worker (indeed, no
deadlock). Tasks are allocated in the local memory of the core running the worker, which
is automatically pinned to a core by the FastFlow default mapping strategy. Having fixed
the size of the queues, allows to assign multiple tasks per worker obtaining the following 4
main advantages: 1) each worker has not to wait for the emitter to send him a task because
tasks are immediately ready in the queue; 2) with small enough queues, the workload is
dynamically partitioned among all workers thus avoiding the possible load imbalance due
to long duration alignment tasks all assigned to few threads; 3) the amount of memory used
during the computation is bounded to sizeof(task)× N. Workers × QueueSize since memory is
recycled by the Emitter for the new tasks as soon as tasks come back from worker threads;
4) Workers always access the memory in their local memory node.

As further optimisation, the genome (≈ 2 GB), which is shared (read-only) by all work-
ers, can be allocated with an interleaved policy across memory nodes to exploit aggregate
memory bandwidth.

3 Performance Analysis

In this section are shown two performance analysis of original Bowtie2 and Bowtie2 with
numa memory pages interleaving (Bowtie2-NI, run with “numactl –interleave=all” in order to

 1

 4

 8

 12

 16

 20

 24

 28

 32

 1 4 8 12 16 20 24 28 32

S
p

e
e

d
u

p

Number of threads

10M reads, uniform distr, readlen 20 (SRR072996)

Ideal
Bt2

Bt2-indexinter
Bt2FF-pin

Bt2FF-pin+inter

 1

 4

 8

 12

 16

 20

 24

 28

 32

 1 4 8 12 16 20 24 28 32

S
p

e
e

d
u

p

Number of threads

3M reads, bimodal distr, readlen 8 and 68 (SRR078586)

Ideal
Bt2

Bt2-indexinter
Bt2FF-pin

Bt2FF-pin+inter

Figure 2: Speedup of Bowtie2 and Bowtie2-FF on SRR072996 (left) and SRR078586 (right)
datasets (Illumina HiSeq 2000 paired end sequencing).

have as much as possible the same conditions as Bowtie 2-FF versions), Bowtie 2-FF with
numa threads pinning (Bowtie2-FF-NA) and Bowtie2-FF with threads pinning and index in-
terleaving (Bowtie2-FF-NAI). The first analysis was made by aligning a subset of a dataset
of about 60 millions Reads of 20 bases length (SRR072996: Illumina HiSeq 2000 paired end
sequencing). As shown in 2 (left), both Bowtie2-FF versions reach a higher speedup. Partic-
ularly we can observe that, using both pinning and interleaving, speedup can rise up from
≈ 16 to≈ 26 using 32 threads. The second analysis was done on a dataset of about 3 millions
Read of both 8 and 68 bases length (SRR078586 : Illumina HiSeq 2000 paired end sequenc-
ing). Figure 2 (right) demonstrates how a dataset with different reads’ length can lead to very
different performances. In fact, we can notice very different speedup curves with lower per-
formances respect to the previous dataset. Also in this experiment, both Bowtie2-FF versions
reach a better speedup respect to Bowtie2, rising up the speedup value from ≈ 18 to ≈ 23.

References

[ADK+12] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano Meneghin,
and Massimo Torquati. An efficient unbounded lock-free queue for multi-core
systems. In Proc. of 18th Intl. Euro-Par 2012 Parallel Processing, volume 7484 of
LNCS, pages 662–673, Rhodes Island, Greece, aug 2012. Springer.

[ADKT13] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati.
Fastflow: high-level and efficient streaming on multi-core. In Sabri Pllana and
Fatos Xhafa, editors, Programming Multi-core and Many-core Computing Systems,
Parallel and Distributed Computing, chapter 13. Wiley, 2013.

[CHC+13] Yaoliang Chen, Ji Hong, Wanyun Cui, Jacques Zaneveld, Wei Wang, Richard
Gibbs, Yanghua Xiao, and Rui Chen. Cgap-align: A high performance dna short
read alignment tool. PLoS ONE, 8(4), 04 2013.

	Introduction
	Bowtie2 Implementation and its FastFlow Porting
	Data Paths and Synchronisations
	Task Scheduling and Load Balancing

	Performance Analysis

